JPS60236404A - Method of producing thin film ferrodielectric material - Google Patents

Method of producing thin film ferrodielectric material

Info

Publication number
JPS60236404A
JPS60236404A JP9367684A JP9367684A JPS60236404A JP S60236404 A JPS60236404 A JP S60236404A JP 9367684 A JP9367684 A JP 9367684A JP 9367684 A JP9367684 A JP 9367684A JP S60236404 A JPS60236404 A JP S60236404A
Authority
JP
Japan
Prior art keywords
compounds
dielectric
lead
compound
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9367684A
Other languages
Japanese (ja)
Inventor
吉原 仁夫
一郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP9367684A priority Critical patent/JPS60236404A/en
Publication of JPS60236404A publication Critical patent/JPS60236404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、誘電体特にチタン酸鉛(以下「町と称す。)
、チタンジルコン酸鉛(以下1− PZT 、、Jト称
fo ) 、組成式: Pb (M’l/3− M”2
/3 )03 (ここに、M′は2価のMy、 Co、
 Fe、 Crs Zn、 Mn、 NiまたはCdを
、M“はTaまたはNbを表す。)で表される第3成分
を添加固溶させたチタンジルコン酸鉛(以下[3成分系
PZT jと称す。)またはランタン含有チタンジルコ
ン酸鉛(以下「PLZTJと称す。)の薄膜を金属基板
上に形成してなる薄膜強誘電体の溶液法による製造方法
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a dielectric material, particularly lead titanate (hereinafter referred to as "machi").
, lead titanium zirconate (hereinafter referred to as 1-PZT), composition formula: Pb (M'l/3-M"2)
/3)03 (Here, M' is bivalent My, Co,
Lead titanium zirconate (hereinafter referred to as three-component system PZT j) in which a third component represented by Fe, Crs, Zn, Mn, Ni or Cd is added and dissolved as a solid solution. ) or lanthanum-containing lead titanium zirconate (hereinafter referred to as PLZTJ) on a metal substrate.

本発明の方法で形成される薄膜強誘電体は、高い比誘電
率と、優れ九強誘電特性を有するため、薄膜コンデンサ
ー、圧電体、焦電体等として利用できる。
Since the thin film ferroelectric material formed by the method of the present invention has a high dielectric constant and excellent ferroelectric properties, it can be used as a thin film capacitor, piezoelectric material, pyroelectric material, etc.

〔従来技術〕[Prior art]

従来、pb系誘電体薄膜の製造方法に関し、多くの方法
が提案されている(薄膜ハンドブック、243〜571
頁、オーム社刊、昭和58年12月発行参照)。その中
で、特にRFスパッタリングによシ製造した薄膜は強誘
電性を示し、圧電性、焦電性を利用したデバイスへの応
用が期待されているが、その製造に当シ、誘電体組成の
制御が困難であシ、また、製造設備も複軸で高価である
Conventionally, many methods have been proposed for manufacturing pb-based dielectric thin films (Thin Film Handbook, 243-571).
(See page, Ohmsha, December 1981). In particular, thin films manufactured by RF sputtering exhibit ferroelectric properties and are expected to be applied to devices using piezoelectricity and pyroelectricity. It is difficult to control, and the manufacturing equipment is multi-spindle and expensive.

一方、C■による誘電体薄膜の製造方法も提案されてい
る( Jpn、 J、ApptPhys、 Part 
2198121 (10)655−6 )。しかしなが
ら、該方法で得られる誘電体薄膜の電気的性質は、RF
スパッタリング法で得られる薄膜に比べ著しく劣ってい
る。
On the other hand, a method for manufacturing dielectric thin films using C■ has also been proposed (Jpn, J, ApptPhys, Part
2198121 (10)655-6). However, the electrical properties of the dielectric thin film obtained by this method are
This is significantly inferior to thin films obtained by sputtering.

特開昭56−28408号公報には、有機金属化合物を
含有する溶液をガラス基板上に滴下法またはディッピン
グ法によりm布し、常温の空気中で30分間、さらに1
10℃の恒温槽中で30分間乾燥して加水分解反応を終
了させた後、電気炉中において強制的に水蒸気を送入し
ながら206是800℃の温度で焼成する誘電体薄膜の
製造方法が提案されている。しかしながら、該方法で例
示されている有機金属化合物の溶液は極めて不安定で、
笑気中の水分を吸収して容易に加水分解されるため、均
質な塗膜を得ることが困難である。iた、該方法で得ら
れる薄膜は導通を生じ易く、実用的な薄膜強誘電体とし
て使用できない。
JP-A No. 56-28408 discloses that a solution containing an organometallic compound is applied onto a glass substrate by a dropping method or a dipping method, and then left in air at room temperature for 30 minutes, and then for 1 hour.
A method for manufacturing a dielectric thin film is to dry it in a constant temperature bath at 10°C for 30 minutes to complete the hydrolysis reaction, and then to sinter it at a temperature of 800°C while forcing steam into an electric furnace. Proposed. However, the solution of the organometallic compound exemplified in this method is extremely unstable;
It absorbs moisture from laughing gas and is easily hydrolyzed, making it difficult to obtain a homogeneous coating. Furthermore, the thin film obtained by this method tends to cause electrical conduction and cannot be used as a practical thin film ferroelectric material.

〔解決しようとする問題点〕[Problem to be solved]

本発明は、導通がなく、強誘電特性を有するpb系誘電
体の薄膜を、金属基板上に溶液法によシ形成する薄膜強
誘電体の製造方法を提供することをその目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a thin film ferroelectric material in which a thin film of a pb-based dielectric material having ferroelectric properties without conduction is formed on a metal substrate by a solution method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、チタン酸鉛(PT) 、チタンジルコン酸鉛
(PZT)、第3成分添加チタンジルコン酸鉛(3成分
系PZT )およびランタン含有チタンジルコン酸鉛(
PLZT’)よシなる群から選ばれる1種(7”l−1
【wI*−/I’r苓シタ虚1H喰蘭警マ°Ikg−イ
Gaマルー1fi−mA−ジケトン類、ケトン酸類、ケ
トエステル類、オキシ酸類、オキシ酸エステル類および
オキシケト □ン類よシなる群から選ばれる少なくとも
1種を主成分とする有機溶媒に溶解してなる誘電体形成
前駆体溶液を、金属基板に塗布、乾燥して誘電体形成前
駆体の塗膜を形成した後、該塗膜中の有機物の分解温度
以上、誘電体の結晶化温度以下の温度で仮焼し、さらに
該誘電体形成前駆体溶液の塗布、乾燥および仮焼を繰返
し、次いで誘電体の結晶化温度以上の温度で焼成するか
、もしくは、金属基板への該誘電体形成前駆体溶液の塗
布、乾燥および誘電体の結晶化温度以上の温度での焼成
を繰返すことによシ、金属基板上にチタン酸鉛(PT)
、チタンジルコン酸鉛(PZT)、第3成分添加チタン
ジルコン酸鉛(3成分系PZT )および2ンタン含有
チタンジルコン酸鉛(PLZT)よシなる群から選ばれ
る1種の薄膜を2層以上形成することを特徴とする薄膜
強誘電体の製造方法である。
The present invention uses lead titanate (PT), lead titanium zirconate (PZT), lead titanium zirconate with a third component added (ternary component PZT), and lanthanum-containing lead titanium zirconate (PZT).
One type selected from the group PLZT') (7"l-1
[wI*-/I'rRei Shita Kyou 1H Kouran Kei Man °Ikg-IGa Maru 1fi-mA-Diketones, ketonic acids, ketoesters, oxyacids, oxyacid esters, and oxyketones. A dielectric-forming precursor solution prepared by dissolving in an organic solvent containing at least one selected from the group as a main component is applied to a metal substrate and dried to form a coating film of the dielectric-forming precursor. Calcination is performed at a temperature above the decomposition temperature of the organic matter in the film and below the crystallization temperature of the dielectric, and the application, drying, and calcination of the dielectric forming precursor solution are repeated, and then the temperature above the crystallization temperature of the dielectric is repeated. Lead titanate is formed on the metal substrate by firing at a high temperature, or by repeatedly applying the dielectric forming precursor solution to the metal substrate, drying, and firing at a temperature higher than the crystallization temperature of the dielectric. (PT)
Forming two or more layers of one type of thin film selected from the group consisting of lead titanium zirconate (PZT), lead titanium zirconate with a third component (ternary component PZT), and lead titanium zirconate containing ditanium (PLZT). This is a method for manufacturing a thin film ferroelectric material.

本発明において、薄膜強誘電体は、金属基板上に、下記
(a)ないしくd)に示す一般式(1)および組成式(
2)ないしく4)で表されるPT、 PZT、 3成分
系PZT オよびPLZTよシなる群から選ばれる1種
のpb系誘電体の薄膜を形成してなる。
In the present invention, the thin film ferroelectric material is formed on a metal substrate by general formula (1) and compositional formula (1) shown in (a) to d) below.
A thin film of one type of pb-based dielectric material selected from the group consisting of PT, PZT, three-component PZT, and PLZT represented by 2) or 4) is formed.

(a)一般式(1) %式%(1) で表されるチタン酸鉛(PT) (b)組成式(2) %式%(2) yは0.7〜0.45であシ、かつ、 xyy=iである。) で表されるチタンジルコン酸鉛(、PZT )たとえば
Ti/Zrが0.3〜0.55 / 0.1〜0.45
17)PZT。
(a) General formula (1) Lead titanate (PT) expressed by % formula % (1) (b) Composition formula (2) % formula % (2) y can be 0.7 to 0.45. , and xyy=i. ) Lead titanium zirconate (PZT), for example, Ti/Zr is 0.3-0.55 / 0.1-0.45
17) PZT.

(c)組成式(3) %式%(3) M“はNbtたはTaを表し、 Xは0.3〜0.55 yは0.7〜0.45であシ、かつ、 x + y = 1 t s+t=1かつ、珍≦0.6である。)で表される第3
成分を含有するチタンジルコン酸鉛(3成分系PZT 
)たとえばM′が鞠、M”がNbであルPZT −PM
N、M′がNi 、 M”d(Nb ”t’あルPZT
 −PNN等の3成分系PZT 。
(c) Composition formula (3) % formula % (3) M" represents Nbt or Ta, X is 0.3 to 0.55, y is 0.7 to 0.45, and x + y = 1 t s + t = 1 and rare≦0.6).
lead titanium zirconate (three-component PZT)
) For example, if M' is Mari and M'' is Nb, then PZT -PM
N, M' are Ni, M"d (Nb "t'al PZT
- Three-component system PZT such as PNN.

(d)組成式(4) %式%(4) (ここに、MはTiおよびZrを表し、2≦0.2であ
る。) で表されるランタン含有チタンジルコン酸鉛(PLZT
) また、これらのPb系誘電体の形成前駆体として、それ
ぞれ、下記(a)ないしくd)が使用される。
(d) Composition formula (4) % Formula % (4) (Here, M represents Ti and Zr, and 2≦0.2.) Lanthanum-containing lead titanium zirconate (PLZT
) The following (a) to d) are used as precursors for forming these Pb-based dielectrics.

(a)有機チタニウム化合物および鉛化合物の混合物も
しくはそれらの反応生成物(PT)(b)有機チタニウ
ム化合物、有機ジルコニウム化合物および鉛化合物の混
合物もしくはそれらの反応生成物(PZT ) ゛(C)マグネシウム化合物、コバルト化合物、鉄化合
物、”クロム化合物、亜鉛化合物、マンガン化合物、ニ
ッケル化合物およびカドミウム化合物よシなる群から選
ばれる1種、タンタル化合物またはニオブ化合物、有機
チタニウム化合物、有機ジルコニウム化合物ならびに鉛
化合物の混合物もしくはそれらの反応生成物(3成分系
PZT )(d)ランタン化合物、有機チタニウム化合
物、有機ジルコニウム化合物ならびに鉛化合物の混合物
もしくはそれらの反応生成物(PLZT)本発明におい
て、金属基板は、金、白金、銀、銅、ニッケル、ニッケ
ルークロム合金等および白金族の金属の薄膜を被着した
、ニッケル、ニッケルークロム合金等の耐熱性金属の板
または箔である。 ・ 〔作用〕 本発明者等は、導通のないPb系誘電体の薄膜を、溶液
法によシ金属基板上に形成する方法について鋭意研究し
た結果、前記した誘電体形成前駆体を、アセチルアセト
ン等の極性溶媒に溶解してS/、a雷伏形膚前駆体溶液
が、加水分解に対して極めて安案であシ、かつ、基板特
に金属基板への塗布性に優れ、容易に誘電体形成前駆体
の均質な塗膜が得られること・塗膜0形成ゝよび仮竺を
繰返して誘電体のアモルファス薄膜を積層した後節 □
成して結晶化するか、もしくは、塗膜の形成および焼成
を繰返して誘電体の結晶化薄膜を積層、シ今薄膜が導通
がなく、優れた誘電特性および強誘電特性を有すること
、さらにX線回折によシ、該薄膜中において、特定の結
晶面の優先配向が、認められることを見出し、本発明を
完成した。
(a) A mixture of an organic titanium compound and a lead compound or a reaction product thereof (PT) (b) A mixture of an organic titanium compound, an organic zirconium compound and a lead compound or a reaction product thereof (PZT) {(C) Magnesium compound , cobalt compounds, iron compounds, one selected from the group consisting of chromium compounds, zinc compounds, manganese compounds, nickel compounds and cadmium compounds, tantalum compounds or niobium compounds, organic titanium compounds, organic zirconium compounds and mixtures of lead compounds. or a reaction product thereof (ternary PZT) (d) a mixture of a lanthanum compound, an organic titanium compound, an organic zirconium compound, and a lead compound, or a reaction product thereof (PLZT) In the present invention, the metal substrate is gold, platinum It is a plate or foil made of heat-resistant metal such as nickel, nickel-chromium alloy, etc., coated with a thin film of silver, copper, nickel, nickel-chromium alloy, etc., or platinum group metal. As a result of intensive research into a method for forming a non-conducting Pb-based dielectric thin film on a metal substrate by a solution method, they dissolved the dielectric forming precursor described above in a polar solvent such as acetylacetone and made S. /a The lightning-shaped skin precursor solution is extremely stable against hydrolysis, has excellent coating properties on substrates, especially metal substrates, and easily forms a homogeneous coating film of the dielectric forming precursor. What can be obtained - After repeating the coating film formation and temporary stitching to laminate an amorphous thin film of dielectric material □
Or, by repeating coating film formation and firing, a dielectric crystallized thin film is laminated, and the resulting thin film has no conduction and has excellent dielectric and ferroelectric properties. Through line diffraction, it was discovered that preferential orientation of specific crystal planes was observed in the thin film, and the present invention was completed.

本発明において、誘電体形成前駆体およびその溶媒の選
択は、誘電体形成前駆体の塗膜形成性に作用する。前記
した誘電体形成前駆体に用いる有機チタニウム化合物お
よび有機ジルコニウム化合物は、有機溶媒可溶性の化合
物であればよく、たとえば、下記一般式(5) %式%(5) Rは1価の炭化水素基の異種同種を表 す。) で表されるアルコキシド類、その加水分解によシ生成す
る、下記一般式(6) %式%(6) (ここに、MおよびRは、前記と同じ意味を表to)を
繰シ返しの単位とする重合度2ないし20の重合体類、
アルコキシドまたはその重合体のアルコキシ基の一部ま
たは全部を2個の官能基を有するキレート化剤の残基で
置換した化合物類などを例示することができる。有機チ
タニウム化合物によシ具体例を示すと、テトラメトキシ
チタン、テトラブトキシチタン、テトライソプロポキシ
チタン、テトラブトキシチタン、ジメトキシジインプロ
ポキシチタン、ジェトキシジイソプロポキシチタン、ジ
ェトキシジブトキシチタン等の異種同種の置換基をゆう
するチタニウムアルコキシド類、チタニウムアル;キシ
ドの加水分解によシ生成する重合体類、これらのアルコ
キシドまたはその重合体のアルコキシ基の一部または全
部を、アセチルア′セトン、ベンゾイルアセトン等のβ
−ジケトン類、アセト酢酸、グロピオニル酪酸、ベンゾ
イル蟻酸等のケトン酸類、ケトン酸のメチル、エチル、
プロピル、ブチル等の低級アルキルエステル類、乳酸、
クリコール酸、α−オキシ酪酸、サリチル酸等のオキシ
酸類、オキシ酸の低級アルキルエステル類、ジアセトン
アルコール、アセトイン等のオキシケトン類、グリシン
、アラニン等のα−アミノ酸類、アミンエチルアルコー
ル等のアミノアルコール類などの2個の官能基を有する
キレート化剤の残基で置換した化合物類が挙げられる。
In the present invention, the selection of the dielectric-forming precursor and its solvent affects the film-forming properties of the dielectric-forming precursor. The organic titanium compound and organic zirconium compound used in the dielectric forming precursor described above may be organic solvent-soluble compounds, for example, the following general formula (5) % formula % (5) R is a monovalent hydrocarbon group represents the same species of the same species. ) The following general formula (6) % formula % (6) (herein, M and R have the same meanings as above) is repeated. Polymers with a degree of polymerization of 2 to 20,
Examples include compounds in which part or all of the alkoxy groups of an alkoxide or a polymer thereof are substituted with the residue of a chelating agent having two functional groups. Specific examples of organic titanium compounds include tetramethoxytitanium, tetrabutoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, dimethoxydiimpropoxytitanium, jetoxydiisopropoxytitanium, jetoxydibutoxytitanium, etc. titanium alkoxides having a substituent, polymers produced by hydrolysis of titanium alkoxide, a part or all of the alkoxy groups of these alkoxides or polymers, acetylacetone, benzoylacetone, etc. β of
- diketones, ketonic acids such as acetoacetic acid, glopionylbutyric acid, benzoylformic acid, methyl and ethyl ketonic acids,
Lower alkyl esters such as propyl and butyl, lactic acid,
Oxyacids such as glycolic acid, α-oxybutyric acid, and salicylic acid, lower alkyl esters of oxyacids, oxyketones such as diacetone alcohol and acetoin, α-amino acids such as glycine and alanine, and amino alcohols such as amine ethyl alcohol. Examples include compounds substituted with the residue of a chelating agent having two functional groups, such as.

また、有機ジルコニウム化合物として、前記例示した有
機チタニウム化合物と同様の置換基を有するジルコニウ
ムアルコキシド類、その重合体類、オヨヒジルコニウム
アルコキシドまたはその重合体のアルコキシ基の一部ま
たは全部を前記した2個の官能基を有するキレート化剤
の残基でt−換した化合物類などを例示できる。Ta化
合物およびNb化合物についても、前記した有機チタン
化合物と同様の置換基を有するアルコキシド類、および
アルコキシドのアルコキシ基の一部また社会部を前記し
た2個の官能基を有するキレート化剤の残基で置換した
化合物類などを使用する。また、マグネシウム化合物、
コバルト化合物、鉄化合物、クロム化′合物、亜鉛化合
物、マンガン化合物、ニッケル化合物、カドミウム化合
物、ランタン化合物および鉛化合物として、当該金属の
酸化物、水酸化物、硝酸塩等の無機塩類、酢酸塩、プロ
ピオン酸塩、酪酸塩等のカルボン酸塩およびアルコキシ
ド類などを使用する。
In addition, as the organic zirconium compound, zirconium alkoxides having the same substituents as the organic titanium compounds exemplified above, polymers thereof, and a part or all of the alkoxy group of the oyohizirconium alkoxide or the polymer thereof may be substituted with the above-mentioned two. Examples include compounds obtained by t-substitution with a residue of a chelating agent having a functional group. Regarding Ta compounds and Nb compounds, alkoxides having the same substituents as the organic titanium compounds described above, and a part of the alkoxy group of the alkoxide, or residues of chelating agents having two functional groups as described above, are used. Use compounds substituted with . In addition, magnesium compounds,
As cobalt compounds, iron compounds, chromium compounds, zinc compounds, manganese compounds, nickel compounds, cadmium compounds, lanthanum compounds and lead compounds, inorganic salts such as oxides, hydroxides and nitrates of the metals, acetates, Carboxylate salts such as propionate and butyrate, and alkoxides are used.

誘一体形成前駆体として、前記した金属化合物間の混合
物を使用できるが、塗膜形成性を考慮すると、これら金
属化合物間の反応生成物を用いるのが好ましく、さらに
好ましくは、PT、 PZT、 3成分系PZTおよび
PLZTのそれぞれに対して、本出願人が先に特開昭5
8−41725号および特開昭59−42392号で開
示した、下記組成式(7)ないしく9)に示す構成ユニ
ットの繰返し数が1ないし50の単量体または多量体を
使用する。
A mixture of the metal compounds described above can be used as the dielectric body forming precursor, but in consideration of coating film forming properties, it is preferable to use a reaction product between these metal compounds, and more preferably PT, PZT, 3 For each of the component systems PZT and PLZT, the present applicant previously published JP-A No. 5
Monomers or multimers having a repeating number of 1 to 50 structural units shown in the following compositional formulas (7) to 9) are used, as disclosed in No. 8-41725 and JP-A No. 59-42392.

PbTi0; (OR)j (OCOR’ )k ・・
・・・・・・・・・・・・・(7)(ここに、Rおよび
R′は、異種同種の1価の炭化水素基を表し、 j+に=2である。) PZT :Th jび3成分系PZT K対゛し、Pb
 Ms’ (M’ 1/3 M“2/3 ) t Ox
 (OR月(0COR’ ) k・ ・・・・・・・・
・・・・・・・(8)(ここに、MFiTiおよびZr M′は2価の鞠、Co、 Fe、 Cr、 Zn、 I
vln、NiまたはCd M“はNbまたはTa RおよびR′は、異種同種の1価の炭化水素基を表し、 s+ t=1かつ、t≦0.6、t=0の時PZT、t
’Fo(7)時3成分系PZTj + k = 2であ
る。) PLZTに対し、 Pbi−zLazMl−z/402(OR)j (OC
OR’)k・・・・・・・・・・・・・・・(9)(2
> (y y k〒4 卦k 1g7.vRおよびR′
は、異種同種の1価の炭化水素基を表し、 、 2≦0.2 j+に=2である。) 前記金属化合物の混合物またはそれらの反応生成物から
なる誘電体形成前駆体の溶媒として、メタノール、エタ
ノール、イソプロパツール、ブタノール等の低級アルコ
ール類、アセチルアセトン、ベンゾイルアセトン等のβ
−ジケトン類、アセト酢酸、プロピオニル酪酸、ベンゾ
イル蟻酸等のケトン酸類、ケトン酸のメチル、エチル、
プロピル、ブチル等の低級アルキルニスデル類、乳酸、
グリコール酸、α−オキシ酪酸、サリチル酸等のオキシ
酸類、オキシ酸の低級アルキルエステル類およびジアセ
トンアルコール、アセトイン等のオキシケトン類よシな
る群から選ばれた1mの単独溶媒または2種以上の混合
溶媒を主成分とする有機溶媒を使用する。誘電体形成前
駆体溶液の安定性および金属基板への塗布性を考慮する
と、β−ジケトン類の使用が好ましく、さらに好ましく
は、誘電体形成前駆体の塗膜形成性に優れ、安価で入手
が容易なアセチルアセトンを使用する。これらの有機溶
媒に、誘電体形成前駆体溶液の粘度調゛整その他を目□
的として、アルコール系溶媒、芳香族炭化水素系溶媒を
添加使用することができる。また、前記金属化合物がキ
レート化体である場合には、メタノール、エタノール、
インプロパツール、ブタノール等の低級アルコール類を
主成分とする溶媒を用いても同様の効果が得られる。
PbTi0; (OR)j (OCOR')k...
・・・・・・・・・・・・・・・(7) (Here, R and R' represent different and similar monovalent hydrocarbon groups, and j+ = 2.) PZT : Th j and three-component system PZT K, Pb
Ms'(M' 1/3 M"2/3) t Ox
(OR month (0COR') k・・・・・・・・・・・
・・・・・・・・・(8) (Here, MFiTi and Zr M′ are divalent balls, Co, Fe, Cr, Zn, I
vln, Ni or Cd M" is Nb or Ta R and R' represent different and similar monovalent hydrocarbon groups, s+ When t=1 and t≦0.6, t=0, PZT, t
'When Fo(7), the three-component system PZTj + k = 2. ) For PLZT, Pbi-zLazMl-z/402(OR)j (OC
OR')k・・・・・・・・・・・・・・・(9)(2
> (y y k〒4 trigram k 1g7.vR and R'
represents different and similar monovalent hydrocarbon groups, and 2≦0.2 j+=2. ) Lower alcohols such as methanol, ethanol, isopropanol, butanol, β-alcohols such as acetylacetone, benzoylacetone, etc. can be used as a solvent for the dielectric forming precursor consisting of a mixture of the metal compounds or their reaction products.
- diketones, ketonic acids such as acetoacetic acid, propionylbutyric acid, benzoylformic acid, methyl and ethyl ketonic acids,
Lower alkyl nisdels such as propyl and butyl, lactic acid,
1m of a single solvent or a mixed solvent of two or more selected from the group consisting of oxyacids such as glycolic acid, α-oxybutyric acid, and salicylic acid, lower alkyl esters of oxyacids, and oxyketones such as diacetone alcohol and acetoin. An organic solvent containing as the main component is used. Considering the stability of the dielectric forming precursor solution and the applicability to metal substrates, it is preferable to use β-diketones, and more preferably, the dielectric forming precursor has excellent coating film forming properties and is available at low cost. Use easy acetylacetone. These organic solvents are used for purposes such as adjusting the viscosity of the dielectric forming precursor solution.
As a target, an alcohol solvent or an aromatic hydrocarbon solvent can be added. In addition, when the metal compound is a chelate, methanol, ethanol,
A similar effect can be obtained by using a solvent whose main component is a lower alcohol such as Impropatol or butanol.

本発明において、誘電体形成前駆体溶液は、゛前記誘電
体形成前駆体を、前記有機溶媒に溶解してなるが、誘電
体形成前駆体の濃度が低すぎると、1回の塗布、乾燥お
よび焼成で形成する誘電体の薄膜の厚さが薄くなシすぎ
、所望のi厚の薄膜誘電体を得るための塗布、乾燥およ
び焼成の繰シ返し回数が多くなシすぎるので好ましくな
い。また、濃度が高すぎると、1回の塗布で形成される
塗膜が厚くなシすぎ、焼成に際し、ピンホールやクラッ
ク等の薄膜欠陥を生じ易いので好ましくない。
In the present invention, the dielectric-forming precursor solution is prepared by dissolving the dielectric-forming precursor in the organic solvent, but if the concentration of the dielectric-forming precursor is too low, one application, drying and This is undesirable because the dielectric thin film formed by firing is too thin, and the coating, drying, and firing steps must be repeated too many times to obtain a thin film dielectric having the desired i thickness. On the other hand, if the concentration is too high, the coating film formed by one application will be too thick, and thin film defects such as pinholes and cracks will easily occur during baking, which is not preferable.

誘電体形成前駆体溶液の好ましい濃度範囲は、採用する
塗布法によっても異なるが、前駆体溶液に含有する金属
の複合酸化物に換算して、5ないし20重量%である。
The preferred concentration range of the dielectric forming precursor solution varies depending on the coating method employed, but is 5 to 20% by weight in terms of the metal complex oxide contained in the precursor solution.

本発明において、前記誘電体形成前駆体溶液を、金属基
板、特に電極として使用する金属基板に塗布、乾燥して
、誘電体形成前駆体の塗膜を形成し、酸素含有気流中に
おいて、塗膜中の有機物の分解温度以上、誘電体の結晶
化温度以下の温度に加熱保持して仮焼し、さらに、該誘
電体形成前駆体溶液の塗布、乾燥および仮焼金繰シ返し
て、誘電体のアモルファス薄膜を多層に形成した後、誘
電体の結晶化温度以上の温度に加熱して焼成するか、も
しくは、誘電体形成前駆体の塗膜の形成および結晶化温
度以上での焼成を繰返すことによシ、所望の膜厚を有し
導通がなく、強誘電性を示す、誘電体の結晶化薄膜が金
属基板上に形成され、目的と該塗膜形成および焼成の繰
返し操作は、−回の操−ない薄膜の形成に作用する。誘
電体形成前駆体溶液の基板への塗布法は、均一な膜厚の
塗膜が得られ方法であればよく、ディッピング法、スプ
レー法、スピンナー法、ロールコート法、刷毛塗シ法等
を採用できる。特に1.簡単な操作で均一な膜厚の塗膜
が得られ易く、大量処理が容易なディッピング法が好ま
しく採用される。さらに好ましくは、均質で、かつ、均
一な膜厚の塗膜が得られる、前駆体溶液を40ないし9
5℃の温度に加温して基板のディッピングを行うホット
ディッピング法を採用する。仮焼温度は、誘電体形成前
駆体および使用する有機溶媒の種類にょシ異るが、通常
200〜500°の範囲であシ、焼成温度は、誘電体組
成によシ異るが通常450℃以上である。たとえば、前
記した組成式(7)ないしく9)で表される誘電体形成
前駆体のアセチルアセトン溶液を用いる場合、■では仮
焼温度200〜450℃、好ましくは350〜450℃
、焼成温度450℃以上、好ましくは450〜700℃
、PZT テは仮焼温度2oo〜5oo℃、鮮→ I 
、 / 糾J (11N−−B l’l oY’ 柚c
、e aJ #C: A A ’I”以上、好ましくは
500〜700℃、3成分系PZTでは、仮焼温度20
0〜500℃、好ましくは400〜500℃、焼成温度
600℃以上、好ましくは600〜800℃、およびP
LZTでは仮焼温度200〜500℃、好ましくは40
0〜500℃、焼成温度600℃以上好ましくは600
〜800℃の範囲である。誘電体形成前駆体の塗膜形成
および仮焼、もしくは、該塗膜形成および焼成の操作は
、ピンホール、クラック等の薄膜欠陥を補修するために
、少なくとも1回は繰返す必要があり、好ましくは、2
〜30回繰返す。
In the present invention, the dielectric-forming precursor solution is applied to a metal substrate, particularly a metal substrate used as an electrode, and dried to form a coating film of the dielectric-forming precursor. The dielectric is heated and maintained at a temperature above the decomposition temperature of the organic matter and below the crystallization temperature of the dielectric and calcined, and then the dielectric forming precursor solution is applied, dried, and calcined repeatedly to form the dielectric. After forming multiple layers of amorphous thin films, the method involves heating and firing to a temperature higher than the crystallization temperature of the dielectric, or repeating the formation of a coating film of a dielectric forming precursor and firing at a temperature higher than the crystallization temperature. Accordingly, a crystallized dielectric thin film having a desired thickness, no conductivity, and exhibiting ferroelectricity is formed on a metal substrate, and the purpose and repeated operations of coating film formation and baking are - It acts on the formation of a thin film without any manipulation. The dielectric forming precursor solution can be applied to the substrate by any method that provides a coating film of uniform thickness, such as dipping method, spray method, spinner method, roll coating method, brush coating method, etc. can. Especially 1. The dipping method is preferably employed because it is easy to obtain a coating film with a uniform thickness with simple operations and it is easy to process in large quantities. More preferably, the precursor solution is 40 to 9
A hot dipping method is used in which the substrate is heated to a temperature of 5°C and dipped. The calcination temperature varies depending on the dielectric forming precursor and the type of organic solvent used, but is usually in the range of 200 to 500°C, and the firing temperature is usually 450°C, although it varies depending on the dielectric composition. That's all. For example, when using an acetylacetone solution of the dielectric forming precursor represented by the above-mentioned compositional formula (7) to 9), the calcination temperature is 200 to 450°C, preferably 350 to 450°C.
, firing temperature 450°C or higher, preferably 450-700°C
, PZT te has a calcination temperature of 2oo~5oooC, fresh→I
, / 糾J (11N--B l'l oY' Yuc
, e aJ #C: A
0 to 500°C, preferably 400 to 500°C, firing temperature 600°C or higher, preferably 600 to 800°C, and P
For LZT, the calcination temperature is 200 to 500°C, preferably 40°C.
0 to 500℃, firing temperature 600℃ or higher, preferably 600℃
~800°C. The coating film formation and calcination of the dielectric material forming precursor, or the coating film formation and firing operations need to be repeated at least once in order to repair thin film defects such as pinholes and cracks, and are preferably repeated. ,2
Repeat ~30 times.

本発明において、前記構成を採用することによシ、金属
基板、特に金属電極上に、前記した一般式(1)オよび
組成式(2)〜(4)テ表されるPT、 PZT、 3
成分系PZTまたは1.PLZT、(D 0.1〜50
 fimf)導通(Dない強誘電性を有する薄膜を形成
することができ、目的とする薄膜強誘電体を製造するこ
とができ、る。
In the present invention, by employing the above structure, PT, PZT, 3 represented by the general formula (1) and compositional formulas (2) to (4) described above can be formed on a metal substrate, particularly a metal electrode.
Component system PZT or 1. PLZT, (D 0.1~50
It is possible to form a thin film with ferroelectricity (fimf) conductivity (D), and to manufacture the desired thin film ferroelectric material.

また、金属基板に代えて、ガラス基板、セラミック基板
、導電膜たとえばスズをドープした酸化インジウム膜C
ITO膜)、金の蒸着膜等を形成したガラス基板、セラ
ミック基板を用い、金属基板の場合と同様の方法によシ
、薄膜強誘電体を製造することができる。
In addition, instead of a metal substrate, a glass substrate, a ceramic substrate, a conductive film such as a tin-doped indium oxide film C
A thin film ferroelectric material can be manufactured using a glass substrate or a ceramic substrate on which a gold vapor-deposited film (ITO film) or a gold vapor-deposited film is formed in the same manner as in the case of a metal substrate.

〔実施例〕〔Example〕

以下に、本発明をその一態様を示す実施例によル、さら
に詳細に説明する。ただし、本発明の範囲は、下記実施
例によシ何等限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to examples showing one aspect thereof. However, the scope of the present invention is not limited in any way by the following examples.

〔実施例1)PTT膜強誘電体の製造 純度99.0%の酢酸鉛: 8.9 t (40mmo
t)、純度99.0 %のテトラブトキシチタン:13
.6F(40mmot)およびアセチルアセト7:15
0m1lt反応容器に仕込み、加温して還流下に2時間
保持した後アセチルアセトン會留去し、メタノール:1
00mftを加えて、PbTi0.に換算して11.3
wtチ濃度のPT紡電電体形成前駆体溶液調製した。
[Example 1] Production of PTT film ferroelectric material Lead acetate with a purity of 99.0%: 8.9 t (40 mmo
t), 99.0% purity tetrabutoxytitanium: 13
.. 6F (40mmot) and acetylacetate 7:15
The mixture was charged into a 0 ml reaction vessel, heated and kept under reflux for 2 hours, and then distilled off with acetylacetone and methanol: 1
00mft and PbTi0. Converting to 11.3
A PT spindle-forming precursor solution with a wt concentration was prepared.

該溶液全1スピンナーを用い、2QOOOrpmX40
 secの条件で、厚さ10μmの白金箔に塗布、乾燥
し、PTT導体形成前駆体の塗膜を形成し、ついで、1
0℃/m1nの昇温速度で570℃まで加熱し焼成した
後、冷却した。この操作を4回、9回、11回および2
5回結返し、第1表に示す膜厚のPT薄膜強誘、電体を
製造した。
Using one spinner for the solution, 2QOOOrpmX40
It was coated on a platinum foil with a thickness of 10 μm under the conditions of
After heating and firing to 570°C at a temperature increase rate of 0°C/m1n, the product was cooled. Repeat this operation 4 times, 9 times, 11 times and 2 times.
By repeating the process five times, a PT thin film ferroelectric material having the film thickness shown in Table 1 was manufactured.

得られたPTT膜表面に、0.10−の金薄膜をスパッ
タリング法によ多形成し、その上にAgペーストを塗シ
電極とし、誘電特性、強誘電特性および焦電性を測定し
た。
A 0.10-gold thin film was formed on the surface of the obtained PTT film by sputtering, and Ag paste was applied thereon to form an electrode, and the dielectric properties, ferroelectric properties, and pyroelectric properties were measured.

第1表中に周波数:0.1〜1 ’h&IZの交流電界
で測定した誘電特性(比誘電率:εおよび誘電損失: 
tanδ)、印加電圧: 440KV/ 50Hzで測
定した強誘電特性(残留分極:Prおよび抗電界: E
c)ならびに、室温下300KV/ airで10分間
分極後のPrの、温度変化を測定した焦電特性(焦電係
数Pr :貞汀/αT)を示す。
Table 1 shows dielectric properties (relative permittivity: ε and dielectric loss:
ferroelectric properties (remanent polarization: Pr and coercive electric field: E), applied voltage: 440 KV/50 Hz
c) and the pyroelectric properties (pyroelectric coefficient Pr: Teitei/αT) of Pr after polarization for 10 minutes at 300 KV/air at room temperature, measured by temperature change.

薄膜形成の繰返し回数25回で得られたPTT膜強誘電
体の強誘電特性曲線を第1図に、X線回折図を第2図に
示す。
The ferroelectric characteristic curve of the PTT film ferroelectric obtained by repeating the thin film formation 25 times is shown in FIG. 1, and the X-ray diffraction pattern is shown in FIG.

第1表 rr 〔実施例2 ) PZT薄膜強誘電体の製造純度99.
096の酸化鉛: 8.9 t (40mmot)、純
度99.01のテトラブトキシチタン:6.6F(19
mmot) 、純度86.6 %のテトラブトキシジル
七トン:85tを反応容器に入れ、加温して還流下に反
応さセテ、Pb (Ti O,48・Zr O,52)
 03に換算した濃度が12.5wt%のPZT誘電体
形成前駆体溶液を調製した。
Table 1 rr [Example 2] Production purity of PZT thin film ferroelectric material: 99.
096 lead oxide: 8.9 t (40 mmot), purity 99.01 tetrabutoxy titanium: 6.6 F (19
Pb (TiO,48・ZrO,52) was charged with 85t of tetrabutoxydil (mmot), purity 86.6%, into a reaction vessel, heated and reacted under reflux.
A PZT dielectric forming precursor solution having a concentration of 12.5 wt % in terms of 0.03 was prepared.

50〜60℃の温度に保持した該溶液に、厚さ5μmの
ニッケル箔を浸漬し、47 cm/ minの速度で引
上は乾燥し、PZT誘電体形成前駆体の塗膜を形成した
。ついで、570℃の温度に加熱保持した電気炉中に3
0分間保持し焼成した。塗膜形成および焼成を繰返し、
透明なPZT薄膜誘電体を製造した。
A nickel foil with a thickness of 5 μm was immersed in the solution maintained at a temperature of 50 to 60° C., pulled up and dried at a rate of 47 cm/min, and a coating film of the PZT dielectric precursor was formed. Then, 3
It was held for 0 minutes and fired. Repeating coating film formation and firing,
A transparent PZT thin film dielectric was fabricated.

第2表中に、薄膜形成の繰返し回数、膜厚、0.1KH
zの交流電界で測定した誘電特性、印加電圧:250K
V、50Hzの交流電界で測定した強誘電特性および室
温250KV/ airで1o分間分極処理した後の焦
電特性を第2表中に示す。
In Table 2, the number of repetitions of thin film formation, film thickness, 0.1KH
Dielectric properties measured in alternating current electric field of z, applied voltage: 250K
The ferroelectric properties measured in an alternating current electric field of V, 50 Hz and the pyroelectric properties after polarization treatment for 10 minutes at 250 KV/air at room temperature are shown in Table 2.

〔実施例3〕3成分系PZT薄膜強誘電体の製造反応容
器に、純& 99.1 wt%の酢酸鉛:Pb(CH3
COO)216.4 f (50mmot)、純度86
.6wtチのテトラブトキシジルコニウム: Zr (
0C4H11)43、3 f (7,5mmot) 、
純度99w1%のテトラブトTシ キシチタy :h(QC4He )46.Of (17
,5mmot)、純度9&2wt96(D酢酸二y ケ
ル:Ni (CH3COO)23.Of (16,7m
mot)、純度99.99wt%のペンタブトキシニオ
ブ: Nb (0C4Ho )s 15.2 f (3
3,3mmot )およびキシレン309を仕込み、窒
素雰囲気下に攪拌しながら昇温した。反応温度約130
℃からブタノールおよびブチルアセテートが留出し始め
、反応液は当初の白濁し元状態から黄褐色の均一透明な
溶液に変化した。反応液にアセチルアセトン約150P
を加えて加熱還流し、Q、15PbZr03・・・0.
35 PbTiO3−0,500Pb(Nil/3Nb
2/3)03に換算した濃度が10wt%の3成分系P
ZT誘電体形成前駆体溶液を調製した。
[Example 3] Production of ternary PZT thin film ferroelectric
COO) 216.4 f (50 mmot), purity 86
.. 6wt tetrabutoxyzirconium: Zr (
0C4H11) 43,3 f (7,5 mmot),
Tetrabuto-T ciquititay with purity 99w1%:h(QC4He)46. Of (17
,5mmot), purity 9 & 2wt96(Dacetic acid dichloride: Ni (CH3COO)23.Of (16,7m
mot), pentabutoxyniobium with a purity of 99.99 wt%: Nb (0C4Ho )s 15.2 f (3
3,3 mmot ) and xylene 309 were charged, and the temperature was raised while stirring under a nitrogen atmosphere. Reaction temperature approx. 130
Butanol and butyl acetate began to distill out from ℃, and the reaction solution changed from its original white turbid state to a yellow-brown homogeneous and transparent solution. Approximately 150P of acetylacetone is added to the reaction solution.
was added and heated to reflux, Q, 15PbZr03...0.
35 PbTiO3-0,500Pb(Nil/3Nb
2/3) Three-component system P with a concentration of 10 wt% converted to 03
A ZT dielectric forming precursor solution was prepared.

60〜70℃に保持した、前記調製した3成分系誘電体
形成前駆体溶液に、30wnX 50mmXO12調の
白金基板を60℃に加温して浸漬し、47傭/minの
速度で引き上げ該前駆体の被膜を形成した。ついで、5
00℃の温度に加熱した電気炉中に30分間保持して仮
焼成した。前駆体溶液へのディッピングおよび仮焼成を
繰シ返した後、さらに700℃に加熱した電気炉中に3
0分間保持して本焼成し形成された薄膜の結晶化を行っ
た。
A platinum substrate of 30wn x 50mm x O12 tone was heated to 60°C and immersed in the above-prepared three-component dielectric forming precursor solution maintained at 60 to 70°C, and pulled up at a rate of 47 min/min to remove the precursor. A film was formed. Then, 5
Temporary firing was carried out by holding the sample in an electric furnace heated to a temperature of 00° C. for 30 minutes. After repeating dipping in the precursor solution and calcining, it was placed in an electric furnace heated to 700°C.
The main firing was held for 0 minutes, and the formed thin film was crystallized.

得られた薄膜のX線回折の結果、0.15 PbZrO
3の組成の3成分系PZTの薄膜であることが確認され
た。薄膜形成回数13回の繰返しで得られた膜厚は1,
7μmであシ、比誘電率:εは408、誘電損失: t
anδは6elbであった。印加電圧250KV/an
で測定し九強誘電特性は、残留分極:I’r=22.5
μc/cri=および抗電界: Ec = 75 KV
/ cmであった。
As a result of X-ray diffraction of the obtained thin film, 0.15 PbZrO
It was confirmed that the film was a thin film of three-component PZT having composition No. 3. The film thickness obtained by repeating the thin film formation 13 times is 1,
Dielectric constant: ε is 408, dielectric loss: t
anδ was 6elb. Applied voltage 250KV/an
The nine ferroelectric properties measured with remanent polarization: I'r = 22.5
μc/cri= and coercive electric field: Ec = 75 KV
/cm.

〔実施例4)PLZT薄膜強誘電体の製造純度99.1
wt%の酢酸鉛: 15.2 f (46,5mmot
) 、純度95.6wt−の酢酸ランタン:1.169
 (3,5mmot)、純度86.6wt%のテトラブ
トキシジルコニウム: 14..1 t、純度99.1
wt%のテトラブトキシチタン: 5.9 t (17
,2mmot)お30℃からブタノールおよびブチルア
セテートが留出し始め、反応液は当初の白濁した状態か
ら黄かっ色の均一透明な溶液に変化した。
[Example 4] Production purity of PLZT thin film ferroelectric material: 99.1
wt% lead acetate: 15.2 f (46,5 mmot
), lanthanum acetate with purity 95.6wt: 1.169
(3.5 mmot), tetrabutoxyzirconium with a purity of 86.6 wt%: 14. .. 1 t, purity 99.1
wt% tetrabutoxytitanium: 5.9 t (17
, 2 mmot) Butanol and butyl acetate began to distill out from 30° C., and the reaction solution changed from its initial cloudy state to a yellowish-brown homogeneous transparent solution.

減圧下に、キシレン:25fを留去シ、ついで、還流下
に反応させ、PbO,93LaO,07(ZrO,65
Ti0.350.9830iに換算した濃度が10wt
%のアメ色のPLZT誘電体形成前駆体溶液を調整した
Under reduced pressure, xylene: 25f was distilled off, and then reacted under reflux to form PbO,93LaO,07(ZrO,65
Concentration converted to Ti0.350.9830i is 10wt
% amber-colored PLZT dielectric forming precursor solution was prepared.

60〜70C:に保持した、前記調製したPLZT誘電
体形成前駆体溶液に、30 rrrm X 50 th
em X 0.2 vanの白金基板を60℃に加温し
て浸漬し、47m、/minの速度で引き上げ該前駆体
の被膜を形成したついで、500℃の温度に加熱した。
60~70C: 30 rrrm x 50 th
A platinum substrate of em X 0.2 van was heated to 60°C, immersed, pulled up at a speed of 47 m/min to form a film of the precursor, and then heated to 500°C.

電気炉中に30分間保持し仮焼成した。前駆体溶液への
ディッピングおよび仮焼成を繰シ返した後、さらに75
0℃に加熱した電気炉中に30分間保持して本焼成し形
成された薄膜の結晶化を行った。
It was held in an electric furnace for 30 minutes to perform temporary firing. After repeating dipping in the precursor solution and calcining, an additional 75
The resulting thin film was crystallized by main firing by holding it in an electric furnace heated to 0° C. for 30 minutes.

得られた薄膜のX線回折の結果、PLZTの薄膜である
ことが確認された。
As a result of X-ray diffraction of the obtained thin film, it was confirmed that it was a PLZT thin film.

第3表中に、薄膜形成の繰返し回数、膜厚、o、IKH
zの交流電界で測定した誘電特性および印加電圧120
KN’/d、50 KHzの交流電界で測定し九強誘電
特性を示す。
Table 3 shows the number of repetitions of thin film formation, film thickness, o, IKH.
Dielectric properties measured in an alternating electric field of z and applied voltage 120
KN'/d, measured in an alternating current electric field of 50 KHz and exhibits nine ferroelectric properties.

) 〔参考例1〕 実施例4でlIl製したPLOT誘電体形成前駆体溶液
を60〜70℃の温度に保持した中に、Snをドープし
た酸化インジウム透明導電膜(ITO膜)を被覆したパ
イレックス基板(30m X 50 m X IWII
ll)を浸漬し、以下実施例4と同様に処理して、薄膜
形成回数が13回で、膜厚が1.7μmの透光性のPL
ZT薄膜を形成した。波長600nmの光の直入透過率
は481で、ε=540、tanδ= 5.2 %であ
シ、印加電圧12KV/i、50Hzの交流電界で測定
したPr= 10.2 μc/ a/l、Ec==3K
V4nであった。
) [Reference Example 1] Pyrex coated with Sn-doped indium oxide transparent conductive film (ITO film) in which the PLOT dielectric forming precursor solution prepared in Example 4 was kept at a temperature of 60 to 70°C. Board (30m x 50m x IWII
ll) and then treated in the same manner as in Example 4 to form a transparent PL film 13 times and with a film thickness of 1.7 μm.
A ZT thin film was formed. The direct transmittance of light with a wavelength of 600 nm is 481, ε = 540, tan δ = 5.2%, Pr = 10.2 μc/a/l, measured with an applied voltage of 12 KV/i and an AC electric field of 50 Hz. Ec==3K
It was V4n.

〔発明の効果〕〔Effect of the invention〕

本発明において、前記実施例に示すごとく金ことができ
、誘電特性および強誘電特性に優れた目的とする薄膜強
誘電体を製造することができる。
In the present invention, as shown in the above embodiments, gold can be used to produce the desired thin film ferroelectric material having excellent dielectric properties and ferroelectric properties.

第1図および各実施例に示す如く、製造された薄膜形成
体の強誘電特性は、誘電体形成前駆体およびその溶媒の
選択彦らびに多層薄膜形成法の採用の相乗的な効果とし
て得られる。特に、−金属基板上への薄膜の密着性は、
溶媒の選択に負うところが大きい。
As shown in FIG. 1 and each example, the ferroelectric properties of the produced thin film formed body are obtained as a synergistic effect of the selection of the dielectric forming precursor and its solvent, and the adoption of the multilayer thin film forming method. . In particular, - the adhesion of the thin film to the metal substrate is
Much depends on the choice of solvent.

本発明において、金属基板上へPb系誘電体の薄膜を形
成する方法を規定するが、前記参考例1に示すごとく透
明導電膜を被覆した透光性基板たとえばガラス基板等上
にも同種の薄膜を形成することができ、特にPLZTの
場合には透光性の薄膜強誘電体明において、薄膜強誘電
体の製造方法は、溶液法であるため、ストイッキオメト
リ制御が容易であるため所望の組成すなわち所望の性能
の薄膜強誘電体を製造することができる利点を有するば
かシでなく、その製造設備は簡単なものでよく、操作も
簡単であるため製造コストも低い利点がある。
In the present invention, a method for forming a Pb-based dielectric thin film on a metal substrate is specified, but as shown in Reference Example 1, the same type of thin film can also be formed on a transparent substrate coated with a transparent conductive film, such as a glass substrate. In particular, in the case of PLZT, the thin film ferroelectric material is manufactured using a solution method, which makes it easy to control the stoic geometry, making it desirable. In other words, the present invention has the advantage of being able to produce a thin film ferroelectric having the desired performance, and also has the advantage of low production costs because the production equipment is simple and the operation is simple.

本発明の方法で製造される薄膜強誘電体は、その優れた
誘電特性、強誘電特性および/または焦電特性を利用し
て、薄膜コンデンサー、圧電体、焦電体等への応用が期
待できる。
The thin film ferroelectric material produced by the method of the present invention can be expected to be applied to thin film capacitors, piezoelectric materials, pyroelectric materials, etc. by utilizing its excellent dielectric properties, ferroelectric properties, and/or pyroelectric properties. .

本発明は、ストイッキオメトリ制御が困難であり、かつ
、導通が生じ易いことで製造が困難とされていたPb系
薄膜強誘電体を、溶液法という簡便な方法で製造する方
法を提供するものであシ、その産業的意義は極めて大き
い。
The present invention provides a method for manufacturing Pb-based thin film ferroelectric materials, which have been considered difficult to manufacture due to difficult stoichiometry control and easy conduction, using a simple method called a solution method. However, its industrial significance is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 実施例1−4で得られたPT薄膜強誘電体のヒ
ステリシス曲線 電体の薄膜のX線回折図 特許出願人 日本曹達株式会社 代理人(6286)伊藤晴之 (7125)横山吉美 第1図
Fig. 1 Hysteresis curve of the PT thin film ferroelectric obtained in Example 1-4 X-ray diffraction diagram of the electric thin film Patent applicant Nippon Soda Co., Ltd. Agent (6286) Haruyuki Ito (7125) Yoshimi Yokoyama No. 1 figure

Claims (1)

【特許請求の範囲】 1、チタン酸鉛(FT) 、チタンジルコン酸鉛(FA
T)、第3成分添加チタンジルコン酸鉛(3成分系PZ
T)およびランタン含有チタンジルコン酸鉛(PLZT
)よシなる群から選ばれる1種の誘電体の形成前駆体を
、低級アルコール類、β−ジケトン類、ケトン酸類、ケ
トエステル類、オキシ酸類、オキシ酸エステル類および
オキシケトy類よシなる群から選ばれる少なくとも1種
を主成分とする有機溶媒に溶解してなる銹電2体形成前
駆体溶液を、金属基板に塗布、乾燥して誘電体形成前駆
体の塗膜を形成した後、該塗膜中の有機物の分解温度以
上、誘電体の結晶化温度以下の温度で仮焼し、さらに該
誘電体形成前駆体溶液の塗布、乾燥および仮焼を繰返し
、次いで誘電体の結晶化温度以上の温度で焼成するか、
もしくは、金尋基板への該誘電体形成前駆体溶液の塗布
、乾燥および誘電体の結晶化温度以上の温度での焼成を
繰返すことによシ、金 ゛属基板上にチタン酸鉛(PT
) 、チタンジルコン酸鉛(PZT)、第3成分添加チ
タンジルコン酸鉛(3成分系PZT )およびランタン
含有チタンジルコン酸鉛(PLZT)よシなる群から選
ばれる1sの薄膜を2層以上形成することを特徴とする
薄膜強訴電体の製造方法◇ 2、誘電体の形成前駆体が、下記(a)、(b)、(c
)および(d) (a)有機チタニウム化合物および鉛化合物の混合物も
しくはそれらの反応生成物。 (b)有機チタニウム化合物、有機ジルコニウム化合物
および鉛化合物の混合物もしくはそれらの反応生成物。 (C)マグネシウム化合物、コバルト化合物、鉄化合物
、り皇ム化合物、亜鉛化合物、マンガン化金物、ニッケ
ル化合物およびカドミウム化合物よシなる群から選はれ
る1種、タンタル化合物またはニオブ化合物、有機チタ
ニウム化合物、有機ジ □ルコ二つム化合物ならびに鉛
化合物の混合物もしくはそれらの反応生成物。 (d)ランタン化合物、有機チタニウム化合物、有機ジ
ルコニウム化合物ならびに鉛化合物の混合物もしくはそ
れらの反応生成物。 よシなる群から選ばれる1種である特許請求の範囲第1
項記載の薄膜強誘電体の製造方法。
[Claims] 1. Lead titanate (FT), lead titanium zirconate (FA)
T), third component added titanium lead zirconate (three component system PZ
T) and lanthanum-containing titanium lead zirconate (PLZT)
) a dielectric forming precursor selected from the group consisting of lower alcohols, β-diketones, ketonic acids, ketoesters, oxyacids, oxyacid esters and oxyketones; A dielectric formation precursor solution prepared by dissolving in an organic solvent containing at least one selected one as a main component is applied to a metal substrate and dried to form a coating film of the dielectric formation precursor. Calcination is performed at a temperature above the decomposition temperature of the organic matter in the film and below the crystallization temperature of the dielectric, and the application, drying, and calcination of the dielectric forming precursor solution are repeated, and then the temperature above the crystallization temperature of the dielectric is repeated. Baking at temperature or
Alternatively, lead titanate (PT) can be formed on a metal substrate by repeatedly applying the dielectric formation precursor solution on a metal substrate, drying it, and firing it at a temperature higher than the crystallization temperature of the dielectric.
), forming two or more 1s thin films selected from the group consisting of lead titanium zirconate (PZT), third component-added lead titanium zirconate (ternary component PZT), and lanthanum-containing lead titanium zirconate (PLZT). ◇ 2. The dielectric formation precursor is one of the following (a), (b), (c)
) and (d) (a) A mixture of an organic titanium compound and a lead compound or a reaction product thereof. (b) A mixture of an organic titanium compound, an organic zirconium compound and a lead compound or a reaction product thereof. (C) one compound selected from the group consisting of magnesium compounds, cobalt compounds, iron compounds, iron compounds, zinc compounds, manganese metal compounds, nickel compounds, and cadmium compounds, tantalum compounds or niobium compounds, organic titanium compounds, Mixtures of organic dihydroxide compounds and lead compounds or their reaction products. (d) A mixture of a lanthanum compound, an organic titanium compound, an organic zirconium compound, and a lead compound or a reaction product thereof. Claim 1 which is one type selected from the group
A method for producing a thin film ferroelectric material as described in 2.
JP9367684A 1984-05-10 1984-05-10 Method of producing thin film ferrodielectric material Pending JPS60236404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9367684A JPS60236404A (en) 1984-05-10 1984-05-10 Method of producing thin film ferrodielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9367684A JPS60236404A (en) 1984-05-10 1984-05-10 Method of producing thin film ferrodielectric material

Publications (1)

Publication Number Publication Date
JPS60236404A true JPS60236404A (en) 1985-11-25

Family

ID=14089005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9367684A Pending JPS60236404A (en) 1984-05-10 1984-05-10 Method of producing thin film ferrodielectric material

Country Status (1)

Country Link
JP (1) JPS60236404A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119285A (en) * 1985-11-19 1987-05-30 Mitsui Toatsu Chem Inc Adhesive composition
JPH01253113A (en) * 1988-03-31 1989-10-09 Sumitomo Chem Co Ltd Thin film-shaped dielectric substance and manufacture thereof
US5198269A (en) * 1989-04-24 1993-03-30 Battelle Memorial Institute Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
US5217754A (en) * 1987-07-27 1993-06-08 Trustees Of The University Of Pennsylvania Organometallic precursors in conjunction with rapid thermal annealing for synthesis of thin film ceramics
US7059709B2 (en) 2002-09-20 2006-06-13 Canon Kabushika Kaisha Composition for forming piezoelectric, method for producing piezoelectric film, piezoelectric element and ink jet recording head
WO2009145272A1 (en) 2008-05-28 2009-12-03 三菱マテリアル株式会社 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
JP2010206148A (en) * 2008-12-24 2010-09-16 Mitsubishi Materials Corp Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
JP2010206150A (en) * 2009-01-20 2010-09-16 Mitsubishi Materials Corp Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
WO2011027833A1 (en) 2009-09-02 2011-03-10 三菱マテリアル株式会社 Method for forming dielectric thin film, and thin film capacitor comprising the dielectric thin film
WO2011089748A1 (en) * 2010-01-21 2011-07-28 株式会社ユーテック Pbnzt ferroelectric film, sol-gel solution, film forming method, and method for producing ferroelectric film
EP2402982A1 (en) 2010-07-01 2012-01-04 STMicroelectronics (Tours) SAS Method for manufacturing thin film capacitor and thin film capacitor obtained by the same
JP2012009800A (en) * 2010-05-24 2012-01-12 Mitsubishi Materials Corp Ferroelectric thin film and thin film capacitor using the same
JP2012043858A (en) * 2010-08-16 2012-03-01 Mitsubishi Materials Corp Method for manufacturing thin film capacitor and thin film capacitor made thereby
EP2426684A1 (en) 2010-09-02 2012-03-07 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
JP2012080066A (en) * 2010-10-04 2012-04-19 National Cheng Kung Univ Method of producing oxide film
EP2608219A1 (en) 2011-12-20 2013-06-26 Mitsubishi Materials Corporation Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method
EP2642510A2 (en) 2011-11-28 2013-09-25 Mitsubishi Materials Corporation Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, ferroelectric thin film, and complex electronic component
EP2706049A1 (en) 2012-09-11 2014-03-12 Mitsubishi Materials Corporation Composition for forming ferroelectric thin film, method for forming thin film and thin film formed using the same method
EP2760029A1 (en) 2013-01-28 2014-07-30 Mitsubishi Materials Corporation Dielectric thin film-forming composition and method of forming dielectric thin film using the same
EP2784178A1 (en) 2013-03-25 2014-10-01 Mitsubishi Materials Corporation Method of producing ferroelectric thin film-forming composition and application of the same
US9834853B2 (en) 2016-01-22 2017-12-05 Ricoh Company, Ltd. PZT precursor solution, method for producing PZT precursor solution, method for producing PZT film, method for producing electromechanical transducer element, and method for producing liquid discharge head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119285A (en) * 1985-11-19 1987-05-30 Mitsui Toatsu Chem Inc Adhesive composition
US5217754A (en) * 1987-07-27 1993-06-08 Trustees Of The University Of Pennsylvania Organometallic precursors in conjunction with rapid thermal annealing for synthesis of thin film ceramics
JPH01253113A (en) * 1988-03-31 1989-10-09 Sumitomo Chem Co Ltd Thin film-shaped dielectric substance and manufacture thereof
US5198269A (en) * 1989-04-24 1993-03-30 Battelle Memorial Institute Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
US7059709B2 (en) 2002-09-20 2006-06-13 Canon Kabushika Kaisha Composition for forming piezoelectric, method for producing piezoelectric film, piezoelectric element and ink jet recording head
EP2343268A1 (en) 2008-05-28 2011-07-13 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US9502636B2 (en) 2008-05-28 2016-11-22 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
EP2436661A1 (en) 2008-05-28 2012-04-04 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
US9005358B2 (en) 2008-05-28 2015-04-14 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
WO2009145272A1 (en) 2008-05-28 2009-12-03 三菱マテリアル株式会社 Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
US8859051B2 (en) 2008-05-28 2014-10-14 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film and ferroelectric thin film formed by the method thereof
US8790538B2 (en) 2008-05-28 2014-07-29 Mitsubishi Materials Corporation Composition for ferroelectric thin film formation, method for forming ferroelectric thin film, and ferroelectric thin film formed by the method thereof
JP2010206148A (en) * 2008-12-24 2010-09-16 Mitsubishi Materials Corp Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
JP2010206150A (en) * 2009-01-20 2010-09-16 Mitsubishi Materials Corp Composition for ferroelectric thin film formation, method for ferroelectric thin film formation, and ferroelectric thin film formed by the method
US8891227B2 (en) 2009-09-02 2014-11-18 Mitsubishi Materials Corporation Process of forming dielectric thin film and thin film capacitor having said dielectric thin film
WO2011027833A1 (en) 2009-09-02 2011-03-10 三菱マテリアル株式会社 Method for forming dielectric thin film, and thin film capacitor comprising the dielectric thin film
US9431242B2 (en) 2010-01-21 2016-08-30 Youtec Co., Ltd. PBNZT ferroelectric film, sol-gel solution, film forming method and method for producing ferroelectric film
JP5903578B2 (en) * 2010-01-21 2016-04-13 株式会社ユーテック PBNZT ferroelectric film and method for manufacturing ferroelectric film
US9966527B2 (en) 2010-01-21 2018-05-08 Youtec Co., Ltd. PBNZT ferroelectric film, sol-gel solution, film forming method and method for producing ferroelectric film
WO2011089748A1 (en) * 2010-01-21 2011-07-28 株式会社ユーテック Pbnzt ferroelectric film, sol-gel solution, film forming method, and method for producing ferroelectric film
JP2012009800A (en) * 2010-05-24 2012-01-12 Mitsubishi Materials Corp Ferroelectric thin film and thin film capacitor using the same
EP2402982A1 (en) 2010-07-01 2012-01-04 STMicroelectronics (Tours) SAS Method for manufacturing thin film capacitor and thin film capacitor obtained by the same
US8648992B2 (en) 2010-07-01 2014-02-11 Mitsubishi Materials Corporation Method for manufacturing thin film capacitor and thin film capacitor obtained by the same
US8501560B2 (en) 2010-07-01 2013-08-06 Mitusbishi Materials Corporation Method for manufacturing thin film capacitor and thin film capacitor obtained by the same
JP2012043858A (en) * 2010-08-16 2012-03-01 Mitsubishi Materials Corp Method for manufacturing thin film capacitor and thin film capacitor made thereby
EP2431986A1 (en) 2010-09-02 2012-03-21 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
US9595393B2 (en) 2010-09-02 2017-03-14 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
EP2426684A1 (en) 2010-09-02 2012-03-07 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
JP2012080066A (en) * 2010-10-04 2012-04-19 National Cheng Kung Univ Method of producing oxide film
EP2642510A2 (en) 2011-11-28 2013-09-25 Mitsubishi Materials Corporation Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, ferroelectric thin film, and complex electronic component
US9018118B2 (en) 2011-12-20 2015-04-28 Mitsubishi Materials Corporation Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method
EP2608219A1 (en) 2011-12-20 2013-06-26 Mitsubishi Materials Corporation Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method
EP2706049A1 (en) 2012-09-11 2014-03-12 Mitsubishi Materials Corporation Composition for forming ferroelectric thin film, method for forming thin film and thin film formed using the same method
EP2760029A1 (en) 2013-01-28 2014-07-30 Mitsubishi Materials Corporation Dielectric thin film-forming composition and method of forming dielectric thin film using the same
EP2784178A1 (en) 2013-03-25 2014-10-01 Mitsubishi Materials Corporation Method of producing ferroelectric thin film-forming composition and application of the same
US9093198B2 (en) 2013-03-25 2015-07-28 Mitsubishi Materials Corporation Method of producing ferroelectric thin film-forming composition and application of the same
US9834853B2 (en) 2016-01-22 2017-12-05 Ricoh Company, Ltd. PZT precursor solution, method for producing PZT precursor solution, method for producing PZT film, method for producing electromechanical transducer element, and method for producing liquid discharge head

Similar Documents

Publication Publication Date Title
JPS60236404A (en) Method of producing thin film ferrodielectric material
US4636908A (en) Thin-film dielectric and process for its production
US4963390A (en) Metallo-organic solution deposition (MOSD) of transparent, crystalline ferroelectric films
Tu et al. Processing and characterization of Pb (Zr, Ti) O3 films, up to 10 μm thick, produced from a diol sol-gel route
JPH0845781A (en) Electronic thin film part and its manufacture
KR19990081803A (en) Ferroelectric Thin Films and Solutions: Compositions and Methods
JP4329287B2 (en) PLZT or PZT ferroelectric thin film, composition for forming the same and method for forming the same
AU5548290A (en) Preparation of thin film ceramics by sol gel processing
JP2001233604A (en) Application solution for forming thin oxide film, method for producing the same and method for producing thin oxide film
JP4329289B2 (en) SBT ferroelectric thin film, composition for forming the same, and method for forming the same
JPH0449721B2 (en)
JPH0585704A (en) Production of ferroelectric thin film
JP4329288B2 (en) BLT or BT ferroelectric thin film, composition for forming the same and method for forming the same
JP3865442B2 (en) Multilayer oxide thin film element and method for manufacturing the same
JP3446461B2 (en) Composition for forming Ba1-xSrxTiyO3 thin film, method for forming Ba1-xSrxTiyO3 thin film, and method for manufacturing thin-film capacitor
JP4329237B2 (en) Method for producing solution for forming ferroelectric thin film and solution for forming ferroelectric thin film
JP2783158B2 (en) Manufacturing method of oxide thin film
EP3041032B1 (en) Lanio3 thin-film-forming composition, and method for forming lanio3 thin-film in which said composition is used
JPH08183605A (en) Production of metal oxide film by coating
JPH0414516B2 (en)
JPH04184808A (en) Manufacture of ferroelectric thin film
JPS61285609A (en) Lead titanate ferrodielectric thin film and manufacture thereof
JPS59220913A (en) Titanium zirconate lead dielectric thin film and method of producing same
JPH07133198A (en) Production of electric conductive thin film having orientation property
JP3116428B2 (en) Thin film dielectric and manufacturing method thereof