JPS59220913A - Titanium zirconate lead dielectric thin film and method of producing same - Google Patents

Titanium zirconate lead dielectric thin film and method of producing same

Info

Publication number
JPS59220913A
JPS59220913A JP9484083A JP9484083A JPS59220913A JP S59220913 A JPS59220913 A JP S59220913A JP 9484083 A JP9484083 A JP 9484083A JP 9484083 A JP9484083 A JP 9484083A JP S59220913 A JPS59220913 A JP S59220913A
Authority
JP
Japan
Prior art keywords
thin film
lead
titanium zirconate
titanium
dielectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9484083A
Other languages
Japanese (ja)
Other versions
JPH0318281B2 (en
Inventor
吉原 仁夫
一郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP9484083A priority Critical patent/JPS59220913A/en
Priority to EP19840900646 priority patent/EP0134249A4/en
Priority to PCT/JP1984/000027 priority patent/WO1984003003A1/en
Priority to US06/662,295 priority patent/US4636908A/en
Publication of JPS59220913A publication Critical patent/JPS59220913A/en
Publication of JPH0318281B2 publication Critical patent/JPH0318281B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、誘電体薄膜、特に厚さが1000〜1500
0人のチタンジルコン酸鉛誘電体薄膜およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides dielectric thin films, particularly those having a thickness of 1000 to 1500 mm.
This invention relates to a lead titanium zirconate dielectric thin film and a method for producing the same.

誘電体膜は、従来粉粒体状の誘電体組成物を加圧成型、
焼結して製造しているが、該方法においては優れた薄膜
コンデンサーの条件である厚さが十数ミクロン以下と薄
く、かつ高比誘電率を有する薄膜を製造することは極め
て困難であり、また焼結温度が極めて高いため電極とし
て高価な金属を使用しなければならない。優れた薄膜コ
ンデンサーに適した誘電体薄膜の製造方法として、スパ
ックリング法、真空蒸着法、気相反応法等が検討されて
いるが、これらの方法においてはストインチオメトリ制
御が極めて困難であるばかりでなく、膜厚が極めて薄い
ものしか得られないため導通を生じ易いことにより実用
化されていない。これらの方法とはべつに、有機金属化
合物を含有する溶液をガラス基板上に滴下法またはディ
ッピング法により塗布し、常温空気中で30分間、さら
に110℃の恒温槽中において30分間乾燥して加水分
解反応を終了させた後、電気炉中において強制的に水蒸
気を送入しながら200°C〜800°Cの温度で加熱
焼成して誘電体薄膜を製造する方法が特開昭56−28
408号公報に提案されている。しかしながら、該方法
においては例示される有機金属化合物溶液が大気中の水
分を吸収して容易に加水分解され極めて不安定であるた
め、均質な塗膜を得ることが困難である。また、加水分
解時および加熱焼成時における雰囲気、特に水蒸気分圧
の制御が極めて困難であることにより、形成された薄膜
にクランク、ピンホール等の欠陥が発生し導通を生ずる
ため、良好な電気特性、特に誘電特性を有する誘電体薄
膜を得ることは困難であり、該公報には電気特性の具体
的な記載はない。
Dielectric films are conventionally made by pressure molding a powdery dielectric composition.
Although it is manufactured by sintering, it is extremely difficult to manufacture a thin film with a thickness of less than 10 microns and a high dielectric constant using this method, which is a condition for an excellent thin film capacitor. Furthermore, since the sintering temperature is extremely high, expensive metals must be used as electrodes. Spackling method, vacuum evaporation method, gas phase reaction method, etc. are being considered as methods for manufacturing dielectric thin films suitable for excellent thin film capacitors, but it is extremely difficult to control the stochiometry with these methods. Furthermore, since only extremely thin films can be obtained, electrical conduction is likely to occur, so that this method has not been put to practical use. Apart from these methods, a solution containing an organometallic compound is applied onto a glass substrate by a dropping method or a dipping method, and is then dried in air at room temperature for 30 minutes and then in a constant temperature bath at 110°C for 30 minutes for hydrolysis. After the reaction is completed, a method of manufacturing a dielectric thin film by heating and baking at a temperature of 200°C to 800°C while forcibly introducing water vapor in an electric furnace is disclosed in JP-A-56-28.
This is proposed in Publication No. 408. However, in this method, it is difficult to obtain a homogeneous coating film because the exemplified organometallic compound solution absorbs moisture in the atmosphere and is easily hydrolyzed and is extremely unstable. In addition, because it is extremely difficult to control the atmosphere during hydrolysis and heating and baking, especially the water vapor partial pressure, defects such as cranks and pinholes occur in the formed thin film, resulting in conduction, resulting in poor electrical properties. In particular, it is difficult to obtain a dielectric thin film having dielectric properties, and the publication does not specifically describe the electrical properties.

一般に、高い比誘電率を得るためには、誘電体組成を結
晶化させる必要があるが、薄膜の場合、薄膜組成の結晶
化により結晶粒界に起因する導通が生ずるため、高い比
誘電率を有する誘電体薄膜は得られないとするのが通説
となっている。
Generally, in order to obtain a high relative permittivity, it is necessary to crystallize the dielectric composition, but in the case of thin films, conduction due to grain boundaries occurs due to crystallization of the thin film composition, so a high relative permittivity is required. It is generally accepted that it is not possible to obtain a dielectric thin film with the same characteristics.

本発明は、高い比誘電率を有し、膜厚が1000人〜1
5000人の均質な、かつ透明なチタンジルコン酸鉛誘
電体薄膜およびその製造方法を提供することを、その目
的とする。
The present invention has a high dielectric constant and a film thickness of 1000 to 1
The object of the present invention is to provide a homogeneous and transparent lead titanium zirconate dielectric thin film and a method for manufacturing the same.

本発明者等は、前記目的を達成すべく鋭意研究した結果
、チタニウム−ジルコニウム−鉛複合有機金属化合物の
アセチルアセトン溶液を、チタンジルコン酸鉛形成の前
駆体溶液として耐熱性基板上に塗布して加熱焼成し、そ
の塗布および加熱焼成を繰り返すことにより得られたチ
タンジルコン酸鉛薄膜の積層体が、高比誘電率を有する
ことを見いだし本発明を完成した。
As a result of intensive research to achieve the above object, the present inventors applied an acetylacetone solution of a titanium-zirconium-lead composite organometallic compound onto a heat-resistant substrate as a precursor solution for forming lead titanium zirconate and heated it. The inventors have completed the present invention by discovering that a laminate of lead titanium zirconate thin films obtained by firing, repeating coating and heating and firing has a high dielectric constant.

本発明は、組成式 %式%(1) ) で表されるチタンジルコン酸鉛薄膜を、耐熱性基板上に
多層に積層せしめてなることを特徴とするチタンジルコ
ン酸鉛誘電体薄膜およびその製造方法である。
The present invention relates to a lead titanium zirconate dielectric thin film, characterized in that it is formed by laminating a lead titanium zirconate thin film represented by the compositional formula % (1) in multiple layers on a heat-resistant substrate, and its production. It's a method.

本発明において、チタンジルコン酸鉛誘電体薄膜は、一
層の厚さが数100ないし3000人の組成式txtP
b (Zrx’ Tiy )  03−・”=”’ (
1)(ここに、Xは0.7〜0.45 yは0.3〜0.55であり かつx+y=lである) で表されるチタンジルコン酸鉛薄膜を、耐熱性基板上に
2〜10層に積層せしめてなる、合計厚さが1000〜
15000Aの透明な薄膜体であり、積層数および合計
厚さにより異なるが、比誘電率:εが450〜550で
あり、誘電…失: tanδが0.05〜O,Iテあり
、かつ比抵抗が10“0Ω■オーダーの電気特性を有す
る。チタンジルコン酸鉛薄膜の組成が前記した範囲外の
場合には、前記した電気特性が得られないので好ましく
ない。
In the present invention, the titanium lead zirconate dielectric thin film has a composition formula of txtP with a thickness of several hundred to three thousand people.
b (Zrx' Tiy) 03-・"="' (
1) (where X is 0.7 to 0.45, y is 0.3 to 0.55, and x+y=l) A lead titanium zirconate thin film expressed as ~The total thickness is 1000~ by laminating 10 layers.
It is a transparent thin film body of 15,000A, and although it varies depending on the number of laminated layers and total thickness, the relative dielectric constant: ε is 450 to 550, the dielectric loss: tan δ is 0.05 to O, Ite, and the specific resistance is has electrical properties on the order of 10"0 Ω. If the composition of the lead titanium zirconate thin film is outside the above range, it is not preferable because the above electrical properties cannot be obtained.

本発明において、チタンジルコン酸鉛誘電体薄膜は、有
機チタン化合物と有機ジルコニウム化合物および鉛化合
物とを、所定の比率で混合した混合物のβ−ジケトン溶
液、またはこれらを反応させて得られる複合有機金属化
合物のβ−ジケトン溶液をチタンジルコン酸鉛生成の前
駆体溶液として、耐熱性基板上に塗布した後、加熱焼成
してチタンジルコン酸鉛IJ膜を形成し、該前駆体溶液
の塗布および加熱焼成を繰り返すことにより製造する。
In the present invention, the titanium lead zirconate dielectric thin film is produced by a β-diketone solution of a mixture of an organic titanium compound, an organic zirconium compound, and a lead compound in a predetermined ratio, or a composite organic metal obtained by reacting these. A β-diketone solution of the compound is applied as a precursor solution for producing lead titanium zirconate on a heat-resistant substrate, and then heated and baked to form a lead titanium zirconate IJ film, and the precursor solution is applied and heated and baked. Manufactured by repeating.

有機チタン化合物としては、β−ジケトンに可溶性のも
のであればいかなる化合物をも使用できる。たとえば、
テトラエトキシチタン、テトライソプロポキシチタン、
テトラブトキシチタン ルコキシド類およびその加水分解により生成する重合体
類、チタンアルコキシドのアルコキシ基の一部または全
部をアセチルアセトン、ヘンジイルアセトンなどのβ−
ジケトン類、アセ1−酢酸,プロピオニル酪酸,ベンゾ
イル蟻酸などのケトン酸類、該ケトン酸の低級アルキル
エステル類、乳酸,グリコール酸。
As the organic titanium compound, any compound can be used as long as it is soluble in β-diketone. for example,
Tetraethoxytitanium, tetraisopropoxytitanium,
Tetrabutoxytitanium alkoxides and polymers produced by their hydrolysis, some or all of the alkoxy groups of titanium alkoxides are replaced with β-acetylacetone, hendiylacetone, etc.
diketones, ketone acids such as ace1-acetic acid, propionylbutyric acid, and benzoylformic acid, lower alkyl esters of said ketone acids, lactic acid, and glycolic acid.

α−オキシ酪酸.サリチル酸などのオキシ酸類、該オキ
シ酸の低級アルキルエステル類、ジアセトンアルコール
、アセI・インなどのオキシケトン類、グリシン、アラ
ニンなどのα−アミン酸類、アミノエチルアルコールな
どのアミノアルコール類等のキレート化剤の残基で置換
したチタンアルコキシド誘導体類を挙げることができる
。また、有機ジルコニウム化合物として、有機チタン化
合物と同種の置換基ををする化合物が使用できる。鉛化
合物としては、酸化鉛、水酸化鉛、塩化鉛等の無機化合
物類、酢酸鉛等のカルボン酸鉛類が使用できる。
α-oxybutyric acid. Chelation of oxyacids such as salicylic acid, lower alkyl esters of the oxyacids, oxyketones such as diacetone alcohol and acetate, α-amic acids such as glycine and alanine, amino alcohols such as aminoethyl alcohol, etc. Mention may be made of titanium alkoxide derivatives substituted with residues of agents. Further, as the organic zirconium compound, a compound having the same type of substituent as the organic titanium compound can be used. As the lead compound, inorganic compounds such as lead oxide, lead hydroxide, and lead chloride, and lead carboxylates such as lead acetate can be used.

本発明において、前記した有機チタン化合物と有機ジル
コニウム化合物および鉛化合物とを、所定の比率で混合
したβ−ジケトン、たとえばアセチルアセトン、ベンゾ
イルアセトン等の溶液、または有機チタン化合物と有機
ジルコニウム化合物および鉛化合物とを、所定の比率で
反応させて得られる鉛含有複合有機金属化合物、好まし
くは、本出願人が特開昭58−41723号で提案した
、チタンアルコキシドとジルコニウムアルコキシドおよ
びカルボン酸鉛を反応させて得られる、組成式(2)%
式%(2) (ここに、 門はチタンおよびジルコニウム原子Rおよ
びR゛は同種または異種のアルキル基またはアリール基
を表し、 mおよびnは0.1または2であり、かつm+nは2で
ある。) で表される鉛含有複合有機金属化合物の、前記β−ジケ
トン溶液をチタンジルコン酸鉛生成の前駆体溶液として
使用する。該前駆体溶液中の金属化合物の濃度は、複合
金属酸化物すなわちチタンジルコン酸鉛に換算して5〜
20重景%である。金属化合物濃度が低過ぎると、1回
の塗布、加熱焼成で形成されるチタンジルコン酸鉛薄膜
の厚さが薄くなり過ぎ、塗布、加熱焼成の繰り返し回数
を増加させなければならず、また高過ぎると、1回の塗
布で形成される前駆体の塗膜厚さが厚くなり、加熱焼成
時にクラックが発生し易いので好ましくない。
In the present invention, a solution of β-diketone, such as acetylacetone or benzoylacetone, which is a mixture of the above-described organic titanium compound, an organic zirconium compound, and a lead compound in a predetermined ratio, or a solution of an organic titanium compound, an organic zirconium compound, and a lead compound, such as acetylacetone, benzoylacetone, etc. A lead-containing composite organometallic compound obtained by reacting the following in a predetermined ratio, preferably a lead-containing complex organometallic compound obtained by reacting titanium alkoxide, zirconium alkoxide, and lead carboxylate as proposed by the present applicant in JP-A-58-41723. compositional formula (2)%
Formula % (2) (wherein, the gates are titanium and zirconium atoms R and R represent the same or different alkyl or aryl groups, m and n are 0.1 or 2, and m+n is 2 The β-diketone solution of the lead-containing complex organometallic compound represented by .) is used as a precursor solution for producing lead titanium zirconate. The concentration of the metal compound in the precursor solution is 5 to 5 in terms of complex metal oxide, that is, lead titanium zirconate.
The ratio is 20%. If the concentration of the metal compound is too low, the thickness of the lead titanium zirconate thin film formed by one coating and heating and baking will be too thin, and the number of repetitions of coating and heating and baking will have to be increased, and it will also be too high. This is not preferable because the coating thickness of the precursor formed by one application becomes thick and cracks are likely to occur during heating and baking.

溶媒として、β−ジケトン以外にメタノール、エフノー
ル。
In addition to β-diketone, methanol and efnol were used as solvents.

イソプロパツール、ブタノール等の低級アルコール類、
蟻酸メチル、酢酸メチル、酢酸エチル、アセト酢酸メチ
ル、アセト酢酸メチル等の低級エステル類も使用できる
が、前駆体溶液の安定性からβ−ジケトンが好ましく、
特にアセチルアセトンが好ましい。
Lower alcohols such as isopropanol and butanol,
Lower esters such as methyl formate, methyl acetate, ethyl acetate, methyl acetoacetate, and methyl acetoacetate can also be used, but β-diketones are preferred from the viewpoint of stability of the precursor solution.
Particularly preferred is acetylacetone.

本発明において、チタンジルコン酸鉛薄膜形成の対象と
なる耐熱性基板として、ガラス板、セラミ・ツク板、導
電性i膜で被覆したガラス板またはセラミ・ツク板、金
属板、金属箔等を使用できる。該耐熱性基板上に前記前
駆体溶液を塗布する方法として、ディッピング法、スプ
レー法、スピンナー法、印刷法、刷毛塗法等の公知の塗
布法の何れをも使用できるが、一定の厚さの均質な塗膜
の得られ易いディッピング法が好ましく、前駆体溶液の
温度を40〜95℃に保持してディッピングを行うホy
 l・ディッピング法がさらに好ましい。前駆体溶液を
塗布した耐熱性基板の加熱焼成温度は、前駆体溶液中の
金属化合物の種類、濃度、溶媒の種類、耐熱性基板の種
類等により異なるが、チタンジルコン酸鉛の結晶化温度
以上の温度に加熱する必要があり、450〜800℃、
好ましくは500〜700℃である。
In the present invention, a glass plate, a ceramic plate, a glass plate coated with a conductive i-film, a metal plate, a metal foil, etc. are used as the heat-resistant substrate on which the lead titanium zirconate thin film is formed. can. Any known coating method such as a dipping method, a spray method, a spinner method, a printing method, or a brush coating method can be used to apply the precursor solution onto the heat-resistant substrate. A dipping method is preferred because it can easily produce a homogeneous coating film, and dipping is performed while maintaining the temperature of the precursor solution at 40 to 95°C.
The dipping method is more preferred. The heating and firing temperature of the heat-resistant substrate coated with the precursor solution varies depending on the type and concentration of the metal compound in the precursor solution, the type of solvent, the type of the heat-resistant substrate, etc., but is at least the crystallization temperature of lead titanium zirconate. It is necessary to heat to a temperature of 450-800℃,
Preferably it is 500-700°C.

本発明のチタンジルコン酸鉛誘電体薄膜は、前記した前
駆体溶液の塗布および加熱焼成を複数回繰り返すことに
より、所定の合計厚さを有するものが製造される。塗布
および加熱焼成の繰り返し回数は、2〜10回、好まし
くは5〜10回である。
The lead titanium zirconate dielectric thin film of the present invention is manufactured to have a predetermined total thickness by repeating the application of the precursor solution and heating and baking a plurality of times. The number of repetitions of coating and heating and baking is 2 to 10 times, preferably 5 to 10 times.

1回の塗布および加熱焼成では、ピンホール等の薄膜欠
陥が残留して導通を生じ、また10回以上の繰り返しは
、それ以上の電気特性の向上が認められないので好まし
くない。
If the coating is applied and fired once, thin film defects such as pinholes remain and conduction occurs, and if the coating is repeated 10 times or more, no further improvement in electrical properties is observed, which is not preferable.

本発明のチタンジルコン酸鉛誘電体薄膜は、前記した如
き電気特性を有しており、薄膜コンデンサーとして使用
できるばかりでなく、焦電拐料および圧電材料としても
使用できる。
The titanium lead zirconate dielectric thin film of the present invention has the electrical properties described above and can be used not only as a thin film capacitor but also as a pyroelectric material and a piezoelectric material.

本発明のチタンジルコン酸鉛誘電体薄膜が、高比誘電率
を有する理由は、驚くべきことにチタンジルコン酸鉛結
晶の結晶軸が、一定方向に配向しており、かつチタンジ
ルコン酸鉛薄膜を多層に形成させたことにより、ピンホ
ール等の薄膜欠陥が補修され、また同時に結晶粒界を通
しての導通も防止されることによるものである。
The reason why the lead titanium zirconate dielectric thin film of the present invention has a high dielectric constant is that, surprisingly, the crystal axes of the lead titanium zirconate crystals are oriented in a certain direction, and the lead titanium zirconate thin film has a high dielectric constant. This is because forming multiple layers repairs thin film defects such as pinholes, and at the same time prevents electrical conduction through grain boundaries.

本発明は、優れた電気特性を有し、かつ従来製造が困難
とされている厚さのチタンジルコン酸鉛誘電体薄膜およ
びその製造方法を提供するものであり、その産業的意義
は極めて大きい。
The present invention provides a lead titanium zirconate dielectric thin film having excellent electrical properties and a thickness that has conventionally been considered difficult to manufacture, and a method for manufacturing the same, and has extremely great industrial significance.

以下、本発明を、実施例によりさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

ただし、本発明の範囲は、下記実施例により何等限定さ
れるものではない。
However, the scope of the present invention is not limited in any way by the following examples.

実施例1 チタンジルコン酸鉛前駆体溶液の調製:酸化鉛F  p
boとジルコニウムアセチルアセトナート:zr ・(
CI13 GOCIICOC1+3 ) 4およびテト
ラブトキシヂクン:Ti  ・ (OC411g ) 
4とを、PbTiO3/ PbZr0.モル比が451
55となる如く、それぞれを秤取してアセチルアセトン
中において、 100〜110℃の温度に加熱し反応さ
せ、複合金属酸化物換算濃度として12.5重量%のチ
タンジルコン酸鉛前駆体溶液を調製した。
Example 1 Preparation of lead titanium zirconate precursor solution: lead oxide F p
bo and zirconium acetylacetonate: zr ・(
CI13 GOCIICOC1+3) 4 and tetrabutoxydicune:Ti ・ (OC411g)
4 and PbTiO3/PbZr0. Molar ratio is 451
55, and heated and reacted in acetylacetone at a temperature of 100 to 110°C to prepare a lead titanium zirconate precursor solution with a concentration of 12.5% by weight in terms of composite metal oxide. .

調製した前駆体溶液を加熱して溶媒をドライアップした
後、500℃の温度において加熱分解し黄色粉末を得た
。得られた黄色粉末のX線回折を行った結果、チタンジ
ルコン酸鉛の結晶であることが)確認された。得られた
黄色粉末のX線回折図を、第1図に示す。
After drying up the solvent by heating the prepared precursor solution, it was thermally decomposed at a temperature of 500°C to obtain a yellow powder. As a result of performing X-ray diffraction on the obtained yellow powder, it was confirmed that it was a crystal of lead titanium zirconate. The X-ray diffraction pattern of the obtained yellow powder is shown in FIG.

チタンジルコン酸鉛誘電体薄膜の製造:錫をドープした
酸化インジウム透明導電膜(ITO欣)を被覆したガラ
ス基板を、50〜60℃に保持した前記調製したチタン
ジルコン酸鉛前駆体溶液中に浸漬し、47cm/min
の速度で引き上げチタンジルコン酸鉛前駆体の塗膜を形
成した。次いで、 500℃の温度に加熱した電気炉中
において、30分間保持して加熱焼成した。このディッ
ピングおよび加熱焼成を繰り返し、透明な薄膜体を得た
Production of lead titanium zirconate dielectric thin film: A glass substrate coated with a tin-doped indium oxide transparent conductive film (ITO) is immersed in the prepared lead titanium zirconate precursor solution maintained at 50 to 60°C. 47cm/min
A coating film of lead titanium zirconate precursor was formed by pulling at a speed of . Next, it was heated and fired in an electric furnace heated to a temperature of 500°C for 30 minutes. This dipping and heating and baking were repeated to obtain a transparent thin film body.

得られた薄膜体のX線回折を行った結果、チタンジルコ
ン酸鉛の薄膜体であることが確認された。
As a result of performing X-ray diffraction on the obtained thin film body, it was confirmed that it was a thin film body of lead titanium zirconate.

得られたチタンジルコン酸鉛薄膜体の、ディッピング−
加熱焼成の繰り返し回数と電気特性を第1表に示す。ま
た、得られたチタンジルコン酸鉛薄膜体のX線回折図を
第2図に示す。
Dipping of the obtained lead titanium zirconate thin film
Table 1 shows the number of repetitions of heating and firing and the electrical properties. Moreover, the X-ray diffraction pattern of the obtained lead titanium zirconate thin film body is shown in FIG.

実施例2 鉛含有複合有機金属化合物の合成: プロピオン酸鉛: Pb (OCOC21に#) 2と
テトラブトキシジルコニウム: Zr (OC4119
) 4およびテトラブトキシチタン:Ti(OC411
9) 4とを、PbTiO3/ PbTioiモル比が
50150となる如く秤取し、デカリン中において13
0〜140℃の温度に加熱して反応させた。減圧下に低
沸物を留去し、粉末状の反応生成物を得た。1.R分析
、  Pb、 Ti+ Zrの元素分析およびブタノー
ルならびにブチルアセテートの留出量より、得られた反
応生成物の平均組成は、Pb−’h、、; Zr、、;
  02  (OC4+19 )t、((OCOC2I
I()。6であることを認めた。
Example 2 Synthesis of lead-containing composite organometallic compound: Lead propionate: Pb (# in OCOC21) 2 and tetrabutoxyzirconium: Zr (OC4119)
) 4 and tetrabutoxytitanium: Ti (OC411
9) 4 was weighed out so that the PbTiO3/PbTioi molar ratio was 50150, and 13
The reaction was carried out by heating to a temperature of 0 to 140°C. Low-boiling substances were distilled off under reduced pressure to obtain a powdery reaction product. 1. From the R analysis, the elemental analysis of Pb, Ti + Zr, and the distilled amounts of butanol and butyl acetate, the average composition of the obtained reaction product is Pb-'h, ; Zr, ;
02 (OC4+19)t, ((OCOC2I
I(). I admitted that it was 6.

得られた反応生成物粉末を、600℃の温度において加
熱分解して得られた粉末をX線回折した結果、チタンジ
ルコン酸鉛であることが確認された。
The resulting reaction product powder was thermally decomposed at a temperature of 600° C., and the resulting powder was subjected to X-ray diffraction, which confirmed that it was lead titanium zirconate.

チタンジルコン酸鉛誘電体薄膜の製造:前記得られた鉛
含有複合有機金属化合物粉末を、アセチルアセトンに熔
解し、複合酸化物換算濃度12.5重量%のチタンジル
コン酸鉛形成前駆体溶液を開裂した。
Production of lead titanium zirconate dielectric thin film: The lead-containing composite organometallic compound powder obtained above was dissolved in acetylacetone, and a lead titanium zirconate forming precursor solution having a concentration of 12.5% by weight in terms of composite oxide was cleaved. .

50〜60℃の温度に加熱保持した前記開裂したチタン
ジルコン酸鉛形成前駆体溶液に、実施例りと同一の条件
において、 ITO膜を被覆したガラス基板をディッピ
ングして該前駆体を塗布した後、500℃の温度に30
分間保持して加熱焼成を行い、以下ディッピング−加熱
焼成を4回繰り返し5層の積層薄膜体を得た得られた積
層薄膜体の電気特性は、下記の通りであった。
After applying the precursor by dipping a glass substrate coated with an ITO film under the same conditions as in the example, the cleaved lead titanium zirconate forming precursor solution heated and maintained at a temperature of 50 to 60 ° C. , 30 to a temperature of 500℃
After heating and baking, dipping and heating were repeated four times to obtain a 5-layer laminated thin film body.The electrical properties of the obtained laminated thin film body were as follows.

膜厚:  d  6,000人   静電容量;C0,
71μF/cd比誘電率:ε  480    誘電損
失:  tanδ 0.054比抵抗:   4X10
” 比較例1 実施例1で調製したチタンジルコン酸鉛形成前駆体溶液
に、実施例1と同一の条件でTTOIIQを被覆したガ
ラス基板をディッピングし加熱焼成して、チタンジルコ
ン酸鉛の単層薄膜体を得た。
Film thickness: d 6,000 people Capacitance: C0,
71μF/cd Specific dielectric constant: ε 480 Dielectric loss: tan δ 0.054 Specific resistance: 4X10
Comparative Example 1 A glass substrate coated with TTOIIQ was dipped in the lead titanium zirconate formation precursor solution prepared in Example 1 under the same conditions as in Example 1, and heated and baked to form a single-layer thin film of lead titanium zirconate. I got a body.

得られた薄膜体の電気特性は、導通があり測定できなか
った
The electrical properties of the obtained thin film could not be measured due to conductivity.

【図面の簡単な説明】 第1図 実施例1で得られたチタンジルコン酸鉛粉末の
X線回折図 第2図 実施例1で得られたチタンジルコン酸鉛薄膜体
のX線回折図 特許出願人 日本曹達株式会社 代理人伊藤晴之 横山吉美 第1図 IQ’      30’      50°    
 70°     90゜第2図
[Brief explanation of the drawings] Figure 1 X-ray diffraction diagram of lead titanium zirconate powder obtained in Example 1 Figure 2 X-ray diffraction diagram of lead titanium zirconate thin film obtained in Example 1 Patent application Person Nippon Soda Co., Ltd. Agent Haruyuki Ito Yoshimi Yokoyama Figure 1 IQ'30' 50°
70° 90° Figure 2

Claims (1)

【特許請求の範囲】 1 組成式 %式%(1) ) ある特許請求の範囲第4項記載のチタンジルコン酸鉛誘
電体薄膜の製造方法 11 前駆体溶液を塗布した耐熱性基板の加熱焼成温度
が、450〜800℃、好ましくは500〜700℃で
ある特許請求の範囲第4項記載のチタンジルコン酸鉛誘
電体薄膜の製造方法
[Claims] 1 Composition formula % Formula % (1)) Method for producing a lead titanium zirconate dielectric thin film according to claim 4 11 Heating and firing temperature of a heat-resistant substrate coated with a precursor solution The method for producing a lead titanium zirconate dielectric thin film according to claim 4, wherein the temperature is 450 to 800°C, preferably 500 to 700°C.
JP9484083A 1983-01-31 1983-05-31 Titanium zirconate lead dielectric thin film and method of producing same Granted JPS59220913A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9484083A JPS59220913A (en) 1983-05-31 1983-05-31 Titanium zirconate lead dielectric thin film and method of producing same
EP19840900646 EP0134249A4 (en) 1983-01-31 1984-01-31 Process for the production of a thin-film dielectric.
PCT/JP1984/000027 WO1984003003A1 (en) 1983-01-31 1984-01-31 Thin-film dielectric and process for its production
US06/662,295 US4636908A (en) 1983-01-31 1984-01-31 Thin-film dielectric and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9484083A JPS59220913A (en) 1983-05-31 1983-05-31 Titanium zirconate lead dielectric thin film and method of producing same

Publications (2)

Publication Number Publication Date
JPS59220913A true JPS59220913A (en) 1984-12-12
JPH0318281B2 JPH0318281B2 (en) 1991-03-12

Family

ID=14121234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9484083A Granted JPS59220913A (en) 1983-01-31 1983-05-31 Titanium zirconate lead dielectric thin film and method of producing same

Country Status (1)

Country Link
JP (1) JPS59220913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147312A (en) * 1980-04-15 1981-11-16 Citizen Watch Co Ltd Method of manufacturing ferrodielectric thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147312A (en) * 1980-04-15 1981-11-16 Citizen Watch Co Ltd Method of manufacturing ferrodielectric thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200403A (en) * 1984-03-24 1985-10-09 日本曹達株式会社 Thin film dielectric unit and method of producing same
JPH0449721B2 (en) * 1984-03-24 1992-08-12 Nippon Soda Co

Also Published As

Publication number Publication date
JPH0318281B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
JPS60236404A (en) Method of producing thin film ferrodielectric material
US4636908A (en) Thin-film dielectric and process for its production
EP0327311B1 (en) A coating fluid for forming an oxide coating
KR100432621B1 (en) Composition For Forming Ba1-xSrxTiyO3 Thin Films And Method For Forming Ba1-xSrxTiyO3 Thin Films
EP0524630A2 (en) Composition for use in a transparent and electrically conductive film and a method for making the film
Sriprang et al. Processing and Sol Chemistry of a Triol‐Based Sol–Gel Route for Preparing Lead Zirconate Titanate Thin Films
JPS59220913A (en) Titanium zirconate lead dielectric thin film and method of producing same
JP3865442B2 (en) Multilayer oxide thin film element and method for manufacturing the same
JPH0585704A (en) Production of ferroelectric thin film
JP3446461B2 (en) Composition for forming Ba1-xSrxTiyO3 thin film, method for forming Ba1-xSrxTiyO3 thin film, and method for manufacturing thin-film capacitor
JP4329237B2 (en) Method for producing solution for forming ferroelectric thin film and solution for forming ferroelectric thin film
EP3041032B1 (en) Lanio3 thin-film-forming composition, and method for forming lanio3 thin-film in which said composition is used
JP2676775B2 (en) Thin film dielectric and method of manufacturing the same
JPH0449721B2 (en)
US5637346A (en) Process for preparing a thin ferroelectric or para-dielectric oxide film
JP2783158B2 (en) Manufacturing method of oxide thin film
WO2007007561A1 (en) Composition for formation of paraelectric thin-film, paraelectric thin-film and dielectric memory
JPH025005B2 (en)
JPS61285609A (en) Lead titanate ferrodielectric thin film and manufacture thereof
JPS6197159A (en) Solution for manufacturing piezoelectric thin film and manufacture of film
JP2955293B2 (en) Manufacturing method of dielectric thin film
JP3116428B2 (en) Thin film dielectric and manufacturing method thereof
JPH02317B2 (en)
JPS63252301A (en) Manufacture of thin film-like dielectric material
JPS59181413A (en) Tantalum oxide transparent conductor film and method of producing same