JPS60235492A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS60235492A
JPS60235492A JP9350684A JP9350684A JPS60235492A JP S60235492 A JPS60235492 A JP S60235492A JP 9350684 A JP9350684 A JP 9350684A JP 9350684 A JP9350684 A JP 9350684A JP S60235492 A JPS60235492 A JP S60235492A
Authority
JP
Japan
Prior art keywords
active layer
layer
layers
oscillation
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9350684A
Other languages
Japanese (ja)
Inventor
Kazumasa Mitsunaga
光永 一正
Masahiro Nunoshita
布下 正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9350684A priority Critical patent/JPS60235492A/en
Publication of JPS60235492A publication Critical patent/JPS60235492A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Abstract

PURPOSE:To improve luminous efficiency, and to lower oscillation value currents by forming an active layer held by clad layers in quantum well type potential structure and flowing electrons and holes in the direction parallel with boundary surfaces among the clad layers and the active layer. CONSTITUTION:When well layers 50 are made shorter than the de Broglie wavelength of carriers in a semiconductor, injecting carrier density required for laser oscillation reduces due to a quantum size effect, and oscillation value currents are minimized largely. When differences among the band gaps of barrier layers 9 and the well layers 50 are formed in large values in order to inject carriers in parallel with boundary surfaces among clad layers 4, 6 and an active layer 5, current injection efficiency is not deteriorated, couplings among the well layers can be reduced sufficiently, a quantum level can be made sufficiently higher than the band gaps of the well layers without increasing oscillation value currents, and laser oscillation at short wavelengths is facilitated. Since quantum well type potential structure is formed, gain spectral width is reduced to one several-th of conventional devices, thus resulting in easy single longitudinal mode oscillation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体1ノ−ザ、とくに横方向電流注入型半
導体レーザの高性能化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improving the performance of a semiconductor laser, particularly a lateral current injection type semiconductor laser.

〔従来技術〕[Prior art]

従来この種の装置として第1図に示すものがあった。 A conventional device of this type is shown in FIG.

第1図は従来の半導体レーザの主要部を示す断面図であ
り、図において、(1)はp@電極、(2)はn側電極
、(3)はn型キャップ層で例えばGaAs よりなる
。(4)はn型クラッド層でA/xGa + −xAs
 よりなる。15)はn型活性層でApyGa + −
yAs (y(x) テある。
FIG. 1 is a cross-sectional view showing the main parts of a conventional semiconductor laser. In the figure, (1) is a p@ electrode, (2) is an n-side electrode, and (3) is an n-type cap layer made of, for example, GaAs. . (4) is the n-type cladding layer A/xGa + -xAs
It becomes more. 15) is an n-type active layer with ApyGa + −
yAs (y(x) There is.

(6)はn型クラッド層で、クラッド層(4)と同様A
/xGa +−xAsよりなり、(7)はGaAs よ
りなる半絶縁性基板、(8)は亜鉛(Zn)を二重拡散
してp型とした領域(斜線部)である。
(6) is an n-type cladding layer, and like cladding layer (4), A
/xGa + -xAs, (7) is a semi-insulating substrate made of GaAs, and (8) is a region (shaded area) made p-type by double diffusion of zinc (Zn).

(イ)は二重拡散により形成した領域(8)よりp型の
濃度が低くなった領域と活性層15)との交叉領域で、
この領域(801よりレーザ発振を生じる。
(a) is the intersection region between the active layer 15) and the region where the p-type concentration is lower than the region (8) formed by double diffusion;
Laser oscillation occurs from this region (801).

次に動作について説明する。Next, the operation will be explained.

p側電極(1)からnaut極(2)へp−n接合に順
方向に電流を流すと、活性層(5)とクラッド層14+
 、 +61との拡散電位差の為にほとんどの電流は活
性層15)にのみ集中して横方向、即ち、クラッド層+
41 、 +61と活性@ I51との境界面に平行な
方向に流れる。このとき活性層(5)のp−n接合部付
近、即ち交叉領域(801において担体の発光再結合が
生じる。この交叉領域(80)は紙面に垂直方向にスト
ライプ状に形成されており、この半導体レーザを切り出
したときの両端のへき開面ではさまれた上記ストライプ
状の活性層(5)内において共振器を構成し、また横方
向には前記p層及びn層、縦方向にはクラッド層14i
 (61にはさまれた活性層が周囲より屈折率の大きい
先導波層となって光がとじ込められ、効率のよいレーザ
発振を生じる。
When a current is passed in the forward direction through the p-n junction from the p-side electrode (1) to the naut electrode (2), the active layer (5) and the cladding layer 14+
, +61, most of the current is concentrated only in the active layer 15) in the lateral direction, that is, in the cladding layer +
41, flows in a direction parallel to the interface between +61 and active @I51. At this time, radiative recombination of carriers occurs near the p-n junction of the active layer (5), that is, in the cross region (801). A resonator is formed in the striped active layer (5) sandwiched between the cleavage planes at both ends when the semiconductor laser is cut out, and the p-layer and n-layer are formed in the horizontal direction, and the cladding layer is formed in the vertical direction. 14i
(The active layer sandwiched between the layers 61 becomes a leading wave layer having a higher refractive index than the surroundings, trapping light and producing efficient laser oscillation.

このような構成の従来の横方向電流注入型半導体レーザ
においては、活性層厚の減少と比例して発振 値電流は
減少する。しかし活性層厚が〜1oooA と薄くなる
と導波光のクラッド層+41161への光のもれが大き
くなり、更に活性層厚が減少すると逆に 値電流は増大
してしまうことから従来の半導体レーザの活性層(5)
の層厚は1500A程りにされており、 値電流に下限
値が存在した。
In a conventional lateral current injection type semiconductor laser having such a configuration, the oscillation value current decreases in proportion to the decrease in the active layer thickness. However, when the active layer thickness is reduced to ~1oooA, the leakage of guided light to the cladding layer increases, and when the active layer thickness is further reduced, the value current increases, so the activity of conventional semiconductor lasers is Layer (5)
The layer thickness was set to about 1500A, and there was a lower limit to the current value.

〔発明の概要〕[Summary of the invention]

、この発明は上記のような従来のものの欠点を除去する
ためになされたもので、クラッド層ではさんだ活性層を
量子井戸型ポテンシャル構造で形成し、上記クラッド層
と上記活性層との境界面に平行な方向に、電子及び正孔
を流すようにすることにより、発光効率を上げて従来よ
り発振 値電流を下げることができる半導体レーザを提
供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the active layer sandwiched between cladding layers is formed with a quantum well type potential structure, and the interface between the cladding layer and the active layer is The object of the present invention is to provide a semiconductor laser that can increase the luminous efficiency and lower the oscillation value current than the conventional laser by causing electrons and holes to flow in parallel directions.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図(a) (b)は各々従来の半導体レーザの断面
図及び活性層付近の拡大断面図、第3図(a)(6)は
各々この発明の一実施例に係る活性層のコンダクション
バンド構造を示す図及び活性層付近の拡大断面図である
。図において、(ハ)は拡大箇所であり、活性層(5)
付近を拡大する。
2(a) and 2(b) are a sectional view and an enlarged sectional view of the vicinity of the active layer of a conventional semiconductor laser, respectively, and FIGS. 3(a) and 3(6) are a sectional view of an active layer according to an embodiment of the present invention. FIG. 2 is a diagram showing a duction band structure and an enlarged cross-sectional view of the vicinity of an active layer. In the figure, (c) is the enlarged area, and the active layer (5)
Enlarge the vicinity.

矢印(ト)はエネルギーレベルを矢印(qは厚み方向を
示している。ωはクラッド層+41 +61よりバンド
ギャップの狭い井戸層であり、注入された担体が溜まる
部分である。(9)は井戸層■よりバンドギャップの広
い障壁層である。活性層(5)はこれら井戸層■及び障
壁層(9)よりなり、多重量子井戸型ポテンシャル構造
をなしている。井戸層霞と障壁層(9)の厚さは各々敬
白Å以下であり、各々の暦数は厚さ方向の光閉じ込めの
程度により最適化されるが、井戸層団と障壁層(9)の
総層敬は約1oooA となるようにする。各層の材料
としては例えば、井戸層(5o)をn型GaAs、障壁
層(9)及びクラッド層14+ +6)をn型A/Ga
Asで形成し、活性層(5)に電流を流すために領域t
s+をp型ドーパントの拡散又はイオン注入し° て横
方向にp−n接合を形成し、横方向電流注入型の半導体
レーザとする。
The arrow (g) indicates the energy level (q indicates the thickness direction. ω is a well layer with a narrower band gap than the cladding layer +41 +61, and is the part where the injected carriers accumulate. (9) is the well layer This is a barrier layer with a wider bandgap than the layer (2).The active layer (5) is composed of the well layer (2) and the barrier layer (9), and has a multi-quantum well type potential structure.The well layer haze and the barrier layer (9) ) are each less than 1 Å thick, and each number is optimized depending on the degree of optical confinement in the thickness direction, but the total thickness of the well layer group and barrier layer (9) is approximately 100 Å. As for the material of each layer, for example, the well layer (5o) is made of n-type GaAs, and the barrier layer (9) and cladding layer 14+ +6) are made of n-type A/Ga.
A region t is formed of As, and a region t is formed in order to pass a current through the active layer (5).
A p-type dopant is diffused or ion-implanted into the s+ layer to form a pn junction in the lateral direction, resulting in a lateral current injection type semiconductor laser.

また、活性層(5)は井戸層団をノンドープ、障壁層を
n型ドーピングしたいわゆる変調ドーピングしたもので
形成してもよい。
Further, the active layer (5) may be formed of a so-called modulation doped structure in which the well layer group is non-doped and the barrier layer is n-type doped.

以上のような構成の半導体レーザにおいては、井戸層(
5olが半導体内での担体(電子、正孔)のド・ブロイ
波長より短くなると量子サイズ効果のためにレーザ発振
に必要な注入担体密度が減って発振 値電流が大幅に減
少する。更に上記横方向電流注入型半導体レーザにおい
ては、クラッド層と活性層との境界面に平行に担体を注
入する為に障壁層と井戸層のバンドギャップ差を大きく
とっても電流注入効率が下がることはない。従って井戸
層間での結合が充分小さく出来るので 値電流の上昇を
伴なわずに量子レベルを井戸層のバンドギャップよりも
充分引き上げることが可能であり短波長でのレーザ発振
が容易になる。又、量子井戸型ポテンシャル構造にする
ことでゲインスペクトル幅が従来型の数分の1になるた
めに単−縦モード発振しやすくなる特徴をも有する。
In the semiconductor laser having the above configuration, the well layer (
When 5ol becomes shorter than the de Broglie wavelength of carriers (electrons, holes) in the semiconductor, the injection carrier density necessary for laser oscillation decreases due to the quantum size effect, and the oscillation value current decreases significantly. Furthermore, in the above-mentioned lateral current injection semiconductor laser, the carriers are injected parallel to the interface between the cladding layer and the active layer, so the current injection efficiency does not decrease even if the band gap difference between the barrier layer and the well layer is large. . Therefore, since the coupling between the well layers can be made sufficiently small, the quantum level can be sufficiently raised above the bandgap of the well layers without increasing the value current, and laser oscillation at a short wavelength becomes easy. Furthermore, by using a quantum well type potential structure, the gain spectrum width becomes a fraction of that of a conventional type, so that it has the characteristic of facilitating single-longitudinal mode oscillation.

なお上記実施例では活性層領域に多重量子井戸構造を適
用したが、これを単純化し第4図に示すように活性層即
ち井戸層ω)を単層にして、単−量子井戸型ポテンシャ
ル構造としてもよい。このとき量子サイズ効果を出すた
めに層厚を数百λ以下にすると光閉じ込めか弱くなるの
で活性層(5)の両側に、クラッド層14+ +6+と
活性層(5)の中間のバンドギャップを有する光導波層
α〔を設けている。この場合、光導波層00)の混晶組
成は一定である。なお、この先導波層口0)はクラッド
@ 14+ +61の一部をなし、光波と電子の閉じ込
め効果を分離している。
In the above embodiment, a multi-quantum well structure was applied to the active layer region, but this was simplified and the active layer (well layer ω) was made into a single layer as shown in FIG. 4, resulting in a single-quantum well type potential structure. Good too. At this time, if the layer thickness is set to several hundred λ or less in order to produce a quantum size effect, the optical confinement becomes weak, so a light guide having a band gap between the cladding layer 14+ +6+ and the active layer (5) is placed on both sides of the active layer (5). A wave layer α is provided. In this case, the mixed crystal composition of the optical waveguide layer 00) is constant. Note that this leading wave layer opening 0) forms a part of the cladding @14+ +61, and separates the light wave and electron confinement effects.

また、第5図(a) (b)は、各々この発明の他の実
施例に係る活性層のコンダクションバンド構造を示す図
及び活性層付近の拡大断面図であり、光導波層(10)
の混晶組成に傾斜を放物線形につけたものである。即ち
、活性層(5)を単−量子井戸型ポテンシャル構造とし
、活性層の両側に、クラッド層+41 +61と活性層
(4)の中間でバンドギャップの大きさに傾斜をもつ光
導波層i]0)を形成することにより光閉じ込めを第4
図の場合より強くすることができる。
Moreover, FIGS. 5(a) and 5(b) are diagrams showing the conduction band structure of the active layer and an enlarged sectional view of the vicinity of the active layer according to other embodiments of the present invention, respectively, and show the optical waveguide layer (10).
The composition of the mixed crystal has a parabolic slope. That is, the active layer (5) has a single-quantum well type potential structure, and on both sides of the active layer, there are optical waveguide layers (i) having a gradient in bandgap size between the cladding layer +41 +61 and the active layer (4). 0) to achieve optical confinement as the fourth
It can be made stronger than the case shown in the figure.

また、第6図はこの発明の他の実施例を示すもので、活
性層+51を多重量子井戸型ポテンシャル構造とし、さ
らにこの活性層(5)の両側に先導波層00)を設けて
光波と電子の閉じ込めを行ったものである。
FIG. 6 shows another embodiment of the present invention, in which the active layer 51 has a multi-quantum well potential structure, and leading wave layers 00) are provided on both sides of the active layer 5 to generate light waves. It confines electrons.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば活性層を量子井戸型ポ
テンシャル構造で形成し、クラッド層と活性層との境界
面に平行な方向にフチ及び正孔を流すように溝成したの
で、発振 値電流の低減等が可能となり高性能の半導体
レーザが得られる効果がある。
As described above, according to the present invention, the active layer is formed with a quantum well type potential structure, and the grooves are formed so that the edges and holes flow in a direction parallel to the interface between the cladding layer and the active layer. This has the effect of making it possible to reduce the value current, etc., and obtaining a high-performance semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザの主要部を示す断面図、第
2図は従来の半導体レーザの断面図及びその活性層付近
の拡大断面図、第3図はこの発明の一実施例に係る活性
層のコンダクションバンド構造を示す図及び活性層付近
の拡大断面図、第4図、第5図および第6図は、この発
明の他の実施例に係る活性層のコンダクションバンド構
造を示す図及び活性層付近の拡大断面図である。 +41 、 +61・・・クラッド1.151・・・活
性層、Cl0)・・・光導波層 なお、図中、同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第1図 第3図 第5図 第6図 丁 粘“、 袖 止 11:(自発) 1、事件の表示 fMi昭よ?−かφ〆了2 発明の名
称 半導体レーザー 3 補正をする省 事件との関係 1−1許出願人 代表者片山仁へ部 4代理人 5、補正の対象 明細書の発明の詳細な説明及び図面の簡単な説の欄 6、補正の内容 (1)明細書第8頁第12行〜第18行の「ではさまれ
た上記ストライプ状の活性層(5)内において」を1が
」に訂正する。 (2)同第8頁第20行の「発振値」を1発振1餠値」
に訂正する。 (3)同第4頁第8行、第5行及び第12行の「値電流
」をそれぞれ「閾値電流」に訂正する。 (4)同第4頁第20行〜第5頁第1行の「活性層コン
ダクション」を1活性層付近の」に訂正す(5)同第5
頁第11行の「白A」を「百A」に訂する。 (6)同第6頁第7行の「振値電流」を「振闇値電」に
訂正する。 、7)同第7頁第11行の「活性層のコンダクショ」を
「活性層付近の」に訂正する。 (8)同第8頁第7行の「発振値電流」を「発振關値電
流」に訂正する。 (9)同第8頁第14行及び第17行の[活性層のコン
ダクションJをそれぞれ「活性層付近の」に訂正する。 以 上
FIG. 1 is a cross-sectional view showing the main parts of a conventional semiconductor laser, FIG. 2 is a cross-sectional view of a conventional semiconductor laser and an enlarged cross-sectional view of the vicinity of its active layer, and FIG. A diagram showing the conduction band structure of the layer and an enlarged sectional view of the vicinity of the active layer, FIGS. 4, 5, and 6 are diagrams showing the conduction band structure of the active layer according to other embodiments of the present invention. and an enlarged cross-sectional view of the vicinity of the active layer. +41, +61...Clad 1.151...Active layer, Cl0)...Optical waveguide layer In the drawings, the same reference numerals indicate the same - or equivalent parts. Agent: Masuo Oiwa, Figure 1, Figure 3, Figure 5, Figure 6. Relationship with the Ministry case 1-1 Representative of the applicant Hitoshi Katayama Department 4 Attorney 5 Column 6 for detailed explanation of the invention and brief explanation of drawings in the specification subject to amendment, Contents of amendment (1) In the specification, page 8, lines 12 to 18, "within the striped active layer (5) sandwiched between" is corrected to "1". (2) "Oscillation value" on page 8, line 20 of the same page "1 oscillation, 1 value"
Correct. (3) Correct "value current" in lines 8, 5, and 12 of page 4 to "threshold current", respectively. (4) Correct "active layer conduction" from page 4, line 20 to page 5, line 1 to read "around 1 active layer" (5)
"White A" on the 11th line of the page is corrected to "100 A". (6) In the same page, page 6, line 7, "oscillation value current" is corrected to "oscillation value electric current". , 7) On page 7, line 11, "conduction of the active layer" is corrected to "near the active layer." (8) Correct "oscillation value current" in line 7 of page 8 to "oscillation value current". (9) [Correct the conduction J of the active layer in lines 14 and 17 of page 8 to ``near the active layer,'' respectively. that's all

Claims (5)

【特許請求の範囲】[Claims] (1)クラッド層ではさんだ活性層を量子井戸型ポテン
シャル構造で形成し1.上記クラッド層と上記活性層と
の境界面に平行な方向に電子及び正孔を流すように構成
した半導体レーザ。
(1) The active layer sandwiched between cladding layers is formed with a quantum well type potential structure.1. A semiconductor laser configured to allow electrons and holes to flow in a direction parallel to an interface between the cladding layer and the active layer.
(2)量子井戸型ポテンシャル構造は多重量子井戸型ポ
テンシャル構造とした特許請求の範囲第1項記載の半導
体レーザ。
(2) The semiconductor laser according to claim 1, wherein the quantum well type potential structure is a multi-quantum well type potential structure.
(3)量子井戸型ポテンシャル構造は単一量子井戸型ポ
テンシャル構造とした特許請求の範囲第1項記載の半導
体レーザ。
(3) The semiconductor laser according to claim 1, wherein the quantum well type potential structure is a single quantum well type potential structure.
(4)活性層の両側に、クラッド層と上記活性層の中間
のバンドギャップを有する先導波層を形成した特許請求
の範囲第1項ないし第3項のいずれかに記載の半導体レ
ーザ。
(4) The semiconductor laser according to any one of claims 1 to 3, wherein a waveguide layer having a band gap intermediate between that of the cladding layer and the active layer is formed on both sides of the active layer.
(5)活性層の両側に、クラッド層と上記活性層の中間
でバンドギャップの大きさに傾斜をもつ光導波層を形成
した特許請求の範囲第1項ないし第3項のいずれかに記
載の半導体レーザ。
(5) The optical waveguide layer according to any one of claims 1 to 3, wherein an optical waveguide layer having a bandgap with a slope between the cladding layer and the active layer is formed on both sides of the active layer. semiconductor laser.
JP9350684A 1984-05-08 1984-05-08 Semiconductor laser Pending JPS60235492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9350684A JPS60235492A (en) 1984-05-08 1984-05-08 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9350684A JPS60235492A (en) 1984-05-08 1984-05-08 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60235492A true JPS60235492A (en) 1985-11-22

Family

ID=14084231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9350684A Pending JPS60235492A (en) 1984-05-08 1984-05-08 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60235492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787089A (en) * 1986-02-13 1988-11-22 Sharp Kabushiki Kaisha Quantum well semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787089A (en) * 1986-02-13 1988-11-22 Sharp Kabushiki Kaisha Quantum well semiconductor laser device

Similar Documents

Publication Publication Date Title
JP2008135786A (en) High power semiconductor laser diode
JPH0143472B2 (en)
US6603785B2 (en) Semiconductor laser device
US4313125A (en) Light emitting semiconductor devices
US4916709A (en) Semiconductor laser device
JP2778454B2 (en) Semiconductor laser
US6078602A (en) Separate confinement heterostructured semiconductor laser device having high speed characteristics
US7103080B2 (en) Laser diode with a low absorption diode junction
US5329135A (en) Light emitting device for achieving high luminous efficiency and high saturation level of light output
US5388116A (en) Semiconductor laser device
JPS60235492A (en) Semiconductor laser
JPH0815229B2 (en) Embedded semiconductor laser
JPS61164287A (en) Semiconductor laser
US20020171919A1 (en) Monolithic optically pumped high power semiconductor lasers and amplifiers
JPH09129969A (en) Semiconductor laser
US4796268A (en) Heterostructure semiconductor laser diode
JP3708758B2 (en) Semiconductor photo detector
JPS6356977A (en) Semiconductor laser
JPS59227177A (en) Semiconductor laser
US4794610A (en) Heterostructure semiconductor laser diode
JPH04162483A (en) Semiconductor laser
JP2005079541A (en) Semiconductor optical amplifier and its manufacturing method
JPS61194790A (en) Lateral current injection type semiconductor laser
JPH0227829B2 (en)
JPS5916432B2 (en) Composite semiconductor laser device