JPS60234965A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS60234965A
JPS60234965A JP59088474A JP8847484A JPS60234965A JP S60234965 A JPS60234965 A JP S60234965A JP 59088474 A JP59088474 A JP 59088474A JP 8847484 A JP8847484 A JP 8847484A JP S60234965 A JPS60234965 A JP S60234965A
Authority
JP
Japan
Prior art keywords
thin film
metal
gas
coated
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59088474A
Other languages
Japanese (ja)
Other versions
JPH0237426B2 (en
Inventor
Masashi Kasatani
笠谷 昌史
Tatsuhiko Abe
阿部 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP59088474A priority Critical patent/JPS60234965A/en
Priority to GB08510576A priority patent/GB2158104A/en
Priority to KR1019850002947A priority patent/KR900009101B1/en
Priority to DE19853515807 priority patent/DE3515807A1/en
Publication of JPS60234965A publication Critical patent/JPS60234965A/en
Publication of JPH0237426B2 publication Critical patent/JPH0237426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To form a thin film having excellent peeling resistance by forming the thin film whose composition is slowly changed on the surface of material to be coated through controlling the partial pressure of reaction gas and thereby making a desired comp. of the surface of the thin layer. CONSTITUTION:The inside of a vacuum vessel 31 is made required degree of vacuum with a vacuum pump 36 and gaseous Ar is introduced therein from a bomb 40 by opening a cock 39. DC voltage is impressed between a valve body 8 and an evaporation source 34 to cause glow discharge and Zr is evaporated, ionized and plated on the surface of the valve body 8 to form the region I. Then, oxygen is slowly introduced into the vacuum vessel 31 from a bomb 38 by opening a cock 37 and the transition region III showed by ZrO2-X is began to be made on the region I. The control is performed so that the partial pressure of the reaction gas in the inside of the vacuum vessel 31 is slowly elevated according to the elapse of time and the insulating region II consisting of ZrO2 is formed with prescribed thickness on the transition region III.

Description

【発明の詳細な説明】 産業上の利用分野 太QBJ1は、イオンデレーティン炊、スフ4フタリン
グ法、CVD法等の物理又は化学蒸着法によυ所要の物
体の表面に薄膜を被着形成するための薄膜製造方法に関
するものである。
[Detailed description of the invention] Industrial application field: Thick QBJ1 is used to deposit and form a thin film on the surface of a desired object by physical or chemical vapor deposition methods such as ion derating, sulfur 4 phthaling, CVD, etc. The present invention relates to a method for manufacturing a thin film.

従来の技術 例えば、金属の表面に薄膜絶縁層の如き薄膜層を形成す
ることがしばしば要求されるが、このような薄膜層を製
造する従来方法として、金属−ガス化合物膜を反応性の
コーティング手段で金属の表面に形成する方法が特開昭
58−221271号公報に開示されている。しかし、
この開示された方法では、母材である金属と生成薄膜と
の間の密着性を良好に保持することが難しく、熱膨張率
の差に起因する応力又は機械的な外力によシ生成薄膜が
剥離しやすいという問題点を有している。
BACKGROUND OF THE INVENTION It is often required to form thin film layers, such as thin film insulating layers, on the surface of metals, and conventional methods for producing such thin film layers include coating metal-gas compound films by reactive coating means. A method for forming a metal surface on a metal surface is disclosed in JP-A-58-221271. but,
In this disclosed method, it is difficult to maintain good adhesion between the base metal and the produced thin film, and the produced thin film is damaged by stress or mechanical external force caused by the difference in coefficient of thermal expansion. It has the problem of being easy to peel off.

発明の目的 本発明の目的は、従って、金属又はその他の材料の表面
に導電性又は絶縁性の薄膜を密着性よ(形成することが
できる薄膜製造方法を提供することにある。
OBJECTS OF THE INVENTION It is therefore an object of the present invention to provide a method for producing a thin film that can form a conductive or insulating thin film on the surface of a metal or other material in an adhesive manner.

発明の構成 本発明によれば、所要の被コーテイング材の表面上に蒸
着法によシ薄膜を設けるようにした薄膜製造方法におい
て、所要の金属の蒸気と該金属と反応し所要の化合物を
形成するガスとを被コーテイング材が配置されている反
応室内で少なくとも一部をイオン化し、被コーテイング
材に与えられている所定の電位によってイオン化されて
いる金属またはその金属とガスとの化合物を被コーテイ
ング材に被着させる際に、金属の蒸気の分圧とガスの分
圧との比が徐々に変化するようガスの分圧を制御し、こ
れにより薄膜の組成が膜厚方向に沿って徐々に変化する
ようにした点に特徴を有する。
Structure of the Invention According to the present invention, in a thin film manufacturing method in which a thin film is provided on the surface of a desired material to be coated by a vapor deposition method, the vapor of a desired metal reacts with the metal to form a desired compound. The gas to be coated is at least partially ionized in a reaction chamber in which the material to be coated is placed, and the ionized metal or the compound of the metal and the gas is coated by a predetermined potential applied to the material to be coated. When depositing on the material, the partial pressure of the gas is controlled so that the ratio of the partial pressure of the metal vapor to the partial pressure of the gas gradually changes, thereby gradually changing the composition of the thin film along the film thickness direction. It is characterized by the fact that it changes.

被コーテイング材が金属の場合には、最初、ガスの分圧
を零とし、被コーテイング材の表面に先ず金属層を形成
し、しかる後、ガスの分圧を徐々に上昇させ、金属蒸気
とガスとの化合によシ生成された不定比性化合物領域を
形成し、最終的には金属とガスとの化合によシ得られる
所要の化合物が生成されるのに充分な圧力にまでガスの
分圧を高める。これによシ、被コーテイング材の表面付
近は金属であるが、外面は所要の金属化合物となってお
り、その間においてはガスの分圧の大きさによシ定まる
中間層となっている薄膜とすることができる。
When the material to be coated is a metal, the partial pressure of the gas is first reduced to zero to form a metal layer on the surface of the material to be coated, and then the partial pressure of the gas is gradually increased to separate the metal vapor and the gas. The gas is heated to a pressure sufficient to form a non-stoichiometric compound region formed by combination with the metal and the gas, and ultimately the desired compound obtained by the combination of the metal and the gas. Increase pressure. With this, the surface area of the material to be coated is made of metal, but the outer surface is made of the required metal compound, and between them there is a thin film that is an intermediate layer determined by the magnitude of the partial pressure of the gas. can do.

この所要の金属化合物を、例えば、絶縁性のものに選べ
ば、金属材料の上に絶縁層を形成することができる。
If this required metal compound is selected to be insulating, for example, an insulating layer can be formed on the metal material.

一方、本発明は、上記金属化合物と同一の材質からなる
被コーテイング材の表面に金属薄膜を形成する場合にも
使用することができる。この場合には、薄膜形成開始時
にガスの分圧を太き(し、所要の金属化合物が形成され
る状態とし、以後、ガスの分圧を徐々に小さくし、形成
される薄膜の表層部分を金属とすることが可能である。
On the other hand, the present invention can also be used when forming a metal thin film on the surface of a material to be coated made of the same material as the above-mentioned metal compound. In this case, the partial pressure of the gas is increased at the start of thin film formation (so that the required metal compound is formed), and then the partial pressure of the gas is gradually decreased to reduce the surface layer of the thin film being formed. It can be made of metal.

この薄膜は、蒸発源から蒸発したイオン化金属、例えば
Zr 、 Cr 、 AL等と反応ガス、例えば0□。
This thin film consists of ionized metals such as Zr, Cr, AL, etc. evaporated from the evaporation source and a reactant gas, such as 0□.

N2.C2H2等を反応させつつ蒸着法(例えばイオン
ブレーティング法)によシその化合物を所要の被コーテ
イング材の表面に被着せしめる場合、反応ガスの濃度を
徐々に高め又は低めるよう、反応ガス濃度の制御を行な
うことによシ簡単に得られるものである。
N2. When a compound such as C2H2 is applied to the surface of a material to be coated by a vapor deposition method (for example, an ion blating method) while reacting, the concentration of the reaction gas is adjusted so as to gradually increase or decrease the concentration of the reaction gas. This can be easily obtained through control.

例えば蒸発物質としてZyを選択し、反応ガスとして0
2を選択する場合、薄膜の形成に際し、先ず容器内を真
空とし、次に、Zrイオンのみの雰囲気でZrを被コー
テイング材の表面にイオンシレーティング法によυ被着
せしめて先ず金属層を形成し、しかる後、時間の経過と
共に02の濃度を所定の比率で上昇せしめ、zrO□□
なる不定比性化合物の状態で更に薄膜の形成を行ない、
最終的に、薄膜の表面付近をZ r O2とする。この
結果、得られた薄膜は、内側から外側に向う膜厚方向に
沿って、酸素量が上昇する特゛性となる。このように、
薄膜の内側が、金属との密着性が良好な低酸素量状態又
は金属そのものであり、薄膜の金属層部分(Zr 層部
分)が、金属である被コーテイング材の表面に被着され
るので、薄膜と被コーテイング材との間の密着性が極め
て良好である。一方、薄膜の外表面は硬い絶縁物となっ
ているので、この薄膜によシ所望の電気的絶縁を充分に
保つことができ、耐摩耗性及び耐剥離性が著しく優れた
薄膜の形成を行なうことができる。
For example, select Zy as the evaporative substance and 0 as the reaction gas.
When selecting option 2, when forming a thin film, the inside of the container is first evacuated, and then Zr is deposited on the surface of the material to be coated using the ion silating method in an atmosphere containing only Zr ions to form a metal layer. After that, the concentration of 02 is increased at a predetermined ratio over time, and zrO□□
Further, a thin film is formed in the state of a non-stoichiometric compound,
Finally, the area near the surface of the thin film is defined as Z r O2. As a result, the obtained thin film has a characteristic that the oxygen content increases along the film thickness direction from the inside to the outside. in this way,
The inside of the thin film is in a low oxygen content state with good adhesion to the metal or is the metal itself, and the metal layer portion (Zr layer portion) of the thin film is adhered to the surface of the metal to be coated. The adhesion between the thin film and the material to be coated is extremely good. On the other hand, since the outer surface of the thin film is a hard insulating material, the thin film can sufficiently maintain the desired electrical insulation and form a thin film with extremely excellent wear resistance and peeling resistance. be able to.

この薄膜は、反応ガスの濃度を調節するほかは、従来の
蒸着法をそOまま用いることができ、製造が簡単で、堅
牢且つ耐久性に富む優れた特性を示すO 実絢例 第1図には、弁体と弁座とによってオン−オフスイッチ
が構成されたスイッチ付燃料噴射弁の弁体の絶縁膜を本
発明の方法により形成した燃料噴射弁の一実施例が一部
断面して示されている。内燃機関用の燃料噴射弁1は、
ノズルホルダ2、中間プレート3及びノズル4を備え、
これらはすべてリテイニングナ、・ト5にねじ込まれて
いる。ノズル4は、ノズルがディ6と該ノズルがディ6
内に形成された案内孔7に滑動自在に設けられ九針弁8
とから成っている。針弁8の先端には弁体として働く円
錐体9が形成されておシ、この円錐体9に対応した形状
に形成された弁座υがノズルデディ6に形成されている
。弁座10の上側に形成された油溜シ11は、燃料通路
12に連通している。針弁8の上端に設けられている加
圧ビン13は噴射弁の不作用状態でばね受け皿14に接
触している。
This thin film can be manufactured using conventional vapor deposition methods, except for adjusting the concentration of the reactant gas, and exhibits excellent properties such as being easy to manufacture, robust, and durable.Example: Figure 1 2 shows a partially cross-sectional view of an embodiment of a fuel injection valve with a switch, in which an on-off switch is configured by a valve body and a valve seat. It is shown. A fuel injection valve 1 for an internal combustion engine is
Comprising a nozzle holder 2, an intermediate plate 3 and a nozzle 4,
All of these are screwed into the retainer 5. Nozzle 4 has nozzle D6 and nozzle D6
A nine-needle valve 8 is slidably provided in a guide hole 7 formed therein.
It consists of. A conical body 9 serving as a valve body is formed at the tip of the needle valve 8, and a valve seat υ formed in a shape corresponding to this conical body 9 is formed on the nozzle body 6. An oil sump 11 formed above the valve seat 10 communicates with a fuel passage 12. A pressure bottle 13 provided at the upper end of the needle valve 8 is in contact with a spring receiver 14 when the injection valve is inactive.

ノズルホルダ2内のばね室15内には加圧コイルばね1
6が収納されておシ、このコイルばね16の一端は、絶
縁スリー ブ17に嵌め込まれた電極18の下端円板部
19を介してばね室15の肩部20に支えられており、
その他端は、ばね受け皿141C支えられている。絶縁
スリーブ17は、雷1極18と導電性材料から成るノズ
ルホルダ2との間の電気的絶縁を保つためのものであシ
、ノズルホルダ2の孔21に圧入されていてもよいし、
孔21内に遊嵌状態に挿入されていてもよい。符号22
.23で示されるのは液密状態を保つためのOリングで
ある。
A pressurized coil spring 1 is placed in the spring chamber 15 in the nozzle holder 2.
One end of this coil spring 16 is supported by the shoulder 20 of the spring chamber 15 via the lower end disk portion 19 of the electrode 18 fitted in the insulating sleeve 17.
The other end is supported by a spring receiver 141C. The insulating sleeve 17 is for maintaining electrical insulation between the lightning pole 18 and the nozzle holder 2 made of a conductive material, and may be press-fitted into the hole 21 of the nozzle holder 2.
It may be inserted into the hole 21 in a loosely fitted state. code 22
.. Reference numeral 23 indicates an O-ring for maintaining a liquid-tight state.

加圧コイルばね16、加圧ビン13、ばね受け皿14及
び針弁8は導電性材料であるスチールから成っておシ、
従って、電極18と針弁8とは、加圧ビン13、ばね受
け皿14及び加圧コイルばね16を介して導電状態にち
る。尚、符号24で示されるのは、加圧コイルばね16
がノズルホルダ2と電気的接触状態となるのを防止する
ための絶縁スリーブであシ、特に小型の燃料噴射弁では
加圧コイルばね16とばね室15の壁面との間がせまい
ため必要となる。一方、ノズルボディ6、中間プレート
3、リテイニングナット5及びノズルホルダ2もまた全
てスチールの如き導電性材料から作られている。
The pressure coil spring 16, the pressure bottle 13, the spring receiver 14, and the needle valve 8 are made of steel, which is a conductive material.
Therefore, the electrode 18 and the needle valve 8 are electrically conductive via the pressure bottle 13, the spring receiver 14, and the pressure coil spring 16. Note that the reference numeral 24 indicates the pressure coil spring 16.
This is an insulating sleeve to prevent electrical contact between the nozzle holder 2 and the nozzle holder 2. This is especially necessary in small fuel injection valves because the space between the pressurizing coil spring 16 and the wall of the spring chamber 15 is narrow. . On the other hand, the nozzle body 6, intermediate plate 3, retaining nut 5 and nozzle holder 2 are also all made of a conductive material such as steel.

針弁8の大径部外周面とノズルボディ6の案内孔7の内
周面との間の電気的絶縁性を保つため、針弁8の外周面
には、本発明の方法によって絶縁層として形成される薄
膜26が設けられている。
In order to maintain electrical insulation between the outer circumferential surface of the large diameter part of the needle valve 8 and the inner circumferential surface of the guide hole 7 of the nozzle body 6, the outer circumferential surface of the needle valve 8 is coated with an insulating layer by the method of the present invention. A thin film 26 is provided to be formed.

本実施例では、この薄膜26の表面付近は酸化ジルコン
(Zr0z )から成っているが、その内部状態は弁体
8の表面に近づくにつれて薄膜26内の酸素量θが小さ
くな夛、弁体8の表面ではZrだけとなる断面構造を有
している。即ち、第2図に示すように、弁体8の表面で
ある1=0から1=11までの領域Iにおいては薄膜2
6の組成はZrのみの金属層であシ、薄膜26の外面で
ある1 = 1゜から1 = 1.までの領域■におい
ては薄膜26の組成は絶縁性のZ r O2となってい
る。そして1、<1<1mの遷移領域においては、薄膜
26の組成はZ ro 2□なる不定比性化合物領域と
なっている。この結果、所要の金属と反応ガスとの化合
物から成る部分の絶縁度は、弁体8の表面側から案内孔
7の壁面側に向けて連続的に高くなっている。
In this embodiment, the area near the surface of the thin film 26 is made of zirconium oxide (Zr0z), but its internal state is such that the oxygen amount θ in the thin film 26 decreases as it approaches the surface of the valve body 8. The surface has a cross-sectional structure consisting of only Zr. That is, as shown in FIG. 2, in the region I from 1=0 to 1=11, which is the surface of the valve body 8,
The composition of No. 6 is a metal layer consisting only of Zr, and the composition is from 1 = 1° which is the outer surface of the thin film 26 to 1 = 1. In the region (2) up to (2), the composition of the thin film 26 is insulating Z r O2. In the transition region of 1, <1<1 m, the composition of the thin film 26 is a non-stoichiometric compound region of Z ro 2□. As a result, the degree of insulation of the portion made of the compound of the required metal and reactive gas increases continuously from the surface side of the valve body 8 toward the wall side of the guide hole 7.

薄膜26を第2図に示す如き構造とすると、金属層であ
る領域Iは金属である弁体8に非常に強度の密着性をも
って被着し且つ領域■は弁体8とノズルボディ6との間
の絶縁性を確保し、且つ対摩耗性をも確保することがで
きる。そして、遷移領域■によシ、性質が異なる領域1
.Ifを強固に結びつけることができるので、結局、耐
剥離性及び耐摩耗性に富む薄膜26を形成することがで
き、耐久性に優れたスイッチ付燃料噴射弁を構成するこ
とができる。更に、遷移領域■の熱膨張率は、領域1.
■の中間の値となり、且つその値は厚み方向に沿って徐
々に変化するので、加熱時に生じる熱シ、ツクに対する
薄膜の耐剥離性も良好となる利点を有している。
When the thin film 26 has a structure as shown in FIG. 2, the metal layer region I adheres to the metal valve body 8 with very strong adhesion, and the region It is possible to ensure insulation between the two and also ensure wear resistance. Then, in transition region ■, region 1 has different properties.
.. Since If can be firmly bonded, it is possible to form a thin film 26 that is highly resistant to peeling and abrasion, and a fuel injection valve with a switch having excellent durability can be constructed. Furthermore, the coefficient of thermal expansion of the transition region (2) is the same as that of the region (1).
Since the value is intermediate between (2) and the value gradually changes along the thickness direction, it has the advantage that the peeling resistance of the thin film against heat shrinkage and scratches that occur during heating is also good.

次に、第2図に示される如き断面構造を有する薄膜26
を弁体8の表面に形成する具体的方法について第3図を
参照しながら説明する。
Next, a thin film 26 having a cross-sectional structure as shown in FIG.
A specific method for forming the surface of the valve body 8 will be explained with reference to FIG.

真空容器31内に配置された弁体8は直流高圧源32の
負極に接続されておシ、真空容器31内の仕切板33に
設けられている蒸発源34が直流高圧源32の正極に接
続されている。蒸発源34内には、Zrが載置されてお
シ、電子銃35からの電子によシ蒸発源34内のZrを
溶融、蒸発させる構成となっている。真空容器31内は
真空ポンプ36によシ真空引きされ、所要の真空度が保
たれるようになっている。
The valve body 8 disposed inside the vacuum container 31 is connected to the negative electrode of the DC high pressure source 32, and the evaporation source 34 provided on the partition plate 33 inside the vacuum container 31 is connected to the positive electrode of the DC high pressure source 32. has been done. Zr is placed in the evaporation source 34, and the Zr in the evaporation source 34 is melted and evaporated by electrons from the electron gun 35. The inside of the vacuum container 31 is evacuated by a vacuum pump 36 to maintain a required degree of vacuum.

真空容器31内が所要の真空度となると、コック39を
開いてIンペ40からArガスを導入し、弁体8と蒸発
源34との間に直流電圧を印加しグロー放電を生ぜしめ
ることによシ容器内の清浄化を行なった後、zrを蒸発
せしめ、このとき弁体8に印加される負の高圧によシイ
オン化したZrが弁体8の表面にブレーティングされ、
これによシ、領域■の形成が行なわれる。尚、図示して
いないが、Zrのイオン化を促進するために、高周波法
又は熱電子法が行なわれる。
When the inside of the vacuum container 31 reaches a required degree of vacuum, the cock 39 is opened to introduce Ar gas from the I-type impeller 40, and a DC voltage is applied between the valve body 8 and the evaporation source 34 to generate a glow discharge. After cleaning the inside of the container, the Zr is evaporated, and the ionized Zr is brated onto the surface of the valve body 8 by the negative high pressure applied to the valve body 8 at this time.
As a result, region (2) is formed. Although not shown, a high frequency method or a thermionic method is performed to promote the ionization of Zr.

領域■の厚みが所定値にまで達したならば、コック37
を開き、反応ガスである酸素をボンベ38から真空容器
31内に徐々に流入せしめる。
When the thickness of the area ■ reaches a predetermined value, the cock 37
is opened, and oxygen, which is a reactive gas, is allowed to gradually flow into the vacuum container 31 from the cylinder 38.

これによシ、領域Iの上には、ZrO2−Xで示される
遷移領域■が形成されはじめる。真空容器31内の反応
ガスの分圧が時間の経過に従って徐々に上昇するように
制御を行ない、第2図に示す酸素量勾配を有する遷移領
域■の形成を行なう。最終的にはZ r O2が生成さ
れる状態とし、遷移領域■の上にZrO7から成る絶縁
性の領域■を所定の厚さだけ形成する。
As a result, a transition region (2) indicated by ZrO2-X begins to be formed on the region I. Control is performed so that the partial pressure of the reaction gas in the vacuum container 31 gradually increases as time passes, and a transition region (2) having an oxygen content gradient shown in FIG. 2 is formed. Finally, a state is reached in which ZrO2 is generated, and an insulating region (2) made of ZrO7 is formed to a predetermined thickness on the transition region (2).

このように、従来のイオンシレーティングの方法を用い
、反応ガスの分圧を制御するだけで、第2図に示した構
造の薄膜26を容易に形成することができる。
In this way, the thin film 26 having the structure shown in FIG. 2 can be easily formed by simply controlling the partial pressure of the reaction gas using the conventional ion silating method.

尚、上記実施例では、蒸発物質としてZrを用い、反応
ガスとしては02を用いたが、薄膜の材質はこれに限定
されるものではなく、他の無機絶縁物とすることができ
る。従って、蒸発物質として、AZ + Cr + S
 i等を用い、一方、反応ガスとしてN2.C2H2等
を用いることができるが、いずれにしても、蒸発物質と
被コーテイング材の金属とは性質の急変する金属間化合
物をもたず、更に、蒸発物質である金属と、蒸発物質で
ある金属と反応ガスによシ生成される化合物との間にも
物性の急変がガいことが要件となる。
In the above embodiment, Zr was used as the evaporation substance and O2 was used as the reaction gas, but the material of the thin film is not limited to these, and other inorganic insulating materials can be used. Therefore, as evaporated substances, AZ + Cr + S
i, etc., while N2. C2H2 etc. can be used, but in any case, the evaporating substance and the metal of the material to be coated do not have any intermetallic compound whose properties change suddenly, and the metal being the evaporating substance and the metal being the evaporating substance It is also required that there be no sudden change in physical properties between the reactant and the compound produced by the reaction gas.

このようなイオンシレーティング法によシ被着層を形成
すると、処理中の温度が低くて済むので(550℃以下
)、熱処理をすでに施しである弁体8に材料歪が生じ、
成るいは焼戻しが行なわれる必要がなく、更に密閉容器
内でのドライシステムであるため公害の心配もないとい
う優れた利点を有している。
When the adhesion layer is formed by such an ion silating method, the temperature during the treatment is low (550° C. or less), so material distortion occurs in the valve body 8 which has already been heat treated.
It has the excellent advantage that there is no need to perform tempering or tempering, and there is no need to worry about pollution because it is a dry system in a closed container.

上記実施例では、金属の表面上に薄膜を形成し、その表
面部分を絶縁層とした場合についで説明したが、本発明
による薄膜製造方法は上記実施例に限定されるものでは
なく、蒸発物質と反応ガスとによって生成される化合物
から成る材料の表面にその蒸発物質の金属を被着させる
場合にも本発明を同様にして適用することができ、同様
の優れた効果を得ることができるものである。
In the above embodiment, a thin film is formed on the surface of a metal, and the surface portion is used as an insulating layer. However, the thin film manufacturing method according to the present invention is not limited to the above embodiment; The present invention can be similarly applied to the case where the metal of the evaporated substance is deposited on the surface of a material consisting of a compound produced by It is.

更に、上記実施例では、金属ガスを、真空容器31内に
配設された蒸発源34から供給する構成が示されている
が、所要の金属ガスは、真空容器31外から真空容器3
1内に導入するようにしてもよい。
Further, in the above embodiment, a configuration is shown in which the metal gas is supplied from the evaporation source 34 disposed inside the vacuum vessel 31, but the required metal gas is supplied from outside the vacuum vessel 31 to the vacuum vessel 3.
1 may be introduced.

このほか、蒸着法としては、イオンブレーティング法以
外に、スパッタリング法、CVD法等の物理的、化学的
蒸着法を使用することができる。
In addition, as a vapor deposition method, physical and chemical vapor deposition methods such as a sputtering method and a CVD method can be used in addition to the ion blasting method.

発明の効果 本発明の製造方法によれば、上述の如く、反応ガスの分
圧を制御することによシ、所望の被コーテイング材の表
面にその組成が徐々に変化する薄膜を形成し、これによ
り薄膜の表面を所要の化合物とするので、仮コーティン
グ材の表面に接する薄膜部分は被コーテイング材と良好
に密着する組成とし、薄膜の中間部分を不定比性化合物
とすることができ、機械的、熱的なショックに対して極
めて高い耐剥離性を有する薄膜を形成することかできる
Effects of the Invention According to the manufacturing method of the present invention, as described above, by controlling the partial pressure of the reaction gas, a thin film whose composition gradually changes is formed on the surface of the desired material to be coated. Since the surface of the thin film is made of the required compound, the part of the thin film in contact with the surface of the temporary coating material has a composition that adheres well to the material to be coated, and the middle part of the thin film can be made of a non-stoichiometric compound. , it is possible to form a thin film that has extremely high peeling resistance against thermal shock.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弁体の絶縁膜を本発明の製造方法によシ設けた
燃料噴射弁の一実施例を示す断面図、第2図は第1図に
示した弁体表面の薄膜の組成構造を示すグラフ、第3図
は第1図に示した薄膜を形成するためのイオンシレーテ
ィング装置の構成図である。 8・・・針弁、26・・・薄膜、31・・・真空容器、
32・・・直流高圧源、34・・・蒸発源、35・・・
電子銃、36・・・真空ポンプ。 特許出願人 ヂーゼル機器株式会社 代理人 弁理士 高 野 昌 俊 第1図 第2図 第3図
FIG. 1 is a sectional view showing an embodiment of a fuel injection valve in which an insulating film of the valve body is provided by the manufacturing method of the present invention, and FIG. 2 is a compositional structure of the thin film on the surface of the valve body shown in FIG. FIG. 3 is a block diagram of an ion silating apparatus for forming the thin film shown in FIG. 1. 8... Needle valve, 26... Thin film, 31... Vacuum container,
32... DC high pressure source, 34... Evaporation source, 35...
Electron gun, 36...vacuum pump. Patent applicant: Diesel Kiki Co., Ltd. Agent: Patent attorney: Masatoshi Takano Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、 所要の被コーテイング材の表面上に蒸着法により
薄膜を設けるようにした薄膜製造方法において、所要の
金属の蒸気と核金属と反応し所要の化合物を形成するガ
スとを前記被コーテイング材が配置されている反応室内
で少なくとも一部をイオン化し、前記被コーテイング材
に与えられている所定の電位によってイオン化されてい
る前記金属又は前記金属と前記ガスとの化合物を前記被
コーテイング材に被着させる際に、前記金属の蒸気の分
圧と前記ガスの分圧との比が徐々に変化するよう前記ガ
スの分圧を制御し、前記薄膜の組成を膜厚方向に沿って
徐々に変化させるようにしたことを特徴とする薄膜製造
方法。
1. In a thin film manufacturing method in which a thin film is provided on the surface of a desired material to be coated by vapor deposition, the material to be coated is exposed to a vapor of the desired metal and a gas that reacts with the nuclear metal to form a desired compound. Applying the metal or a compound of the metal and the gas to the material to be coated, which is at least partially ionized in a reaction chamber in which the material is located, and which is ionized by a predetermined potential applied to the material to be coated. During the process, the partial pressure of the gas is controlled so that the ratio of the partial pressure of the metal vapor to the partial pressure of the gas gradually changes, and the composition of the thin film is gradually changed along the film thickness direction. A thin film manufacturing method characterized by:
JP59088474A 1984-05-04 1984-05-04 Manufacture of thin film Granted JPS60234965A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59088474A JPS60234965A (en) 1984-05-04 1984-05-04 Manufacture of thin film
GB08510576A GB2158104A (en) 1984-05-04 1985-04-25 Method for producing a thin film
KR1019850002947A KR900009101B1 (en) 1984-05-04 1985-05-01 Method for producing a thin film
DE19853515807 DE3515807A1 (en) 1984-05-04 1985-05-02 METHOD FOR PRODUCING A THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088474A JPS60234965A (en) 1984-05-04 1984-05-04 Manufacture of thin film

Publications (2)

Publication Number Publication Date
JPS60234965A true JPS60234965A (en) 1985-11-21
JPH0237426B2 JPH0237426B2 (en) 1990-08-24

Family

ID=13943770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088474A Granted JPS60234965A (en) 1984-05-04 1984-05-04 Manufacture of thin film

Country Status (4)

Country Link
JP (1) JPS60234965A (en)
KR (1) KR900009101B1 (en)
DE (1) DE3515807A1 (en)
GB (1) GB2158104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165759A (en) * 1987-12-22 1989-06-29 Seiko Epson Corp Formation of sputtered film
JP2009280853A (en) * 2008-05-21 2009-12-03 Osg Corp Hard coating film and tool coated with the hard coating film
JP2011256424A (en) * 2010-06-08 2011-12-22 Citizen Holdings Co Ltd Hard decorative member

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8508338D0 (en) * 1985-03-29 1985-05-09 British Aerospace Application of stop-off coating
JPS6222314A (en) * 1985-07-22 1987-01-30 株式会社ボッシュオートモーティブ システム Manufacture of thin film
CH669347A5 (en) * 1986-05-28 1989-03-15 Vni Instrument Inst
US5021365A (en) * 1986-06-16 1991-06-04 International Business Machines Corporation Compound semiconductor interface control using cationic ingredient oxide to prevent fermi level pinning
CA1302807C (en) * 1986-09-25 1992-06-09 Jiinjen Albert Sue Zirconium nitride coated article and method for making same
US4859253A (en) * 1988-07-20 1989-08-22 International Business Machines Corporation Method for passivating a compound semiconductor surface and device having improved semiconductor-insulator interface
USRE34173E (en) * 1988-10-11 1993-02-02 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
US4904542A (en) * 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
GB9005321D0 (en) * 1990-03-09 1990-05-02 Matthews Allan Modulated structure composites produced by vapour disposition
JPH04368A (en) * 1990-04-17 1992-01-06 Riken Corp Wear resistant coating film and production thereof
DE59309018D1 (en) * 1992-07-02 1998-11-05 Balzers Hochvakuum Process for producing a metal oxide layer, vacuum treatment plant therefor and part coated with at least one metal oxide layer
US5587227A (en) * 1994-10-27 1996-12-24 Kabushiki Kaisha Riken Coating of chromium and nitrogen having good wear resistance properties
US5672386A (en) * 1994-10-27 1997-09-30 Kabushiki Kaisha Riken Process for forming a coating of chromium and nitrogen having good wear resistance properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173981A (en) * 1974-12-25 1976-06-26 Ulvac Corp

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1335065A (en) * 1970-06-22 1973-10-24 Optical Coating Laboratory Inc Coated plastics articles and methods of manufacture thereof
US3823995A (en) * 1972-03-30 1974-07-16 Corning Glass Works Method of forming light focusing fiber waveguide
US3791852A (en) * 1972-06-16 1974-02-12 Univ California High rate deposition of carbides by activated reactive evaporation
US3900592A (en) * 1973-07-25 1975-08-19 Airco Inc Method for coating a substrate to provide a titanium or zirconium nitride or carbide deposit having a hardness gradient which increases outwardly from the substrate
DE2605174B2 (en) * 1976-02-10 1978-07-27 Resista Fabrik Elektrischer Widerstaende Gmbh, 8300 Landshut Process for the production of thin-film resistance elements
DE2705225C2 (en) * 1976-06-07 1983-03-24 Nobuo Tokyo Nishida Ornamental part for clocks etc.
JPS5625960A (en) * 1979-08-09 1981-03-12 Mitsubishi Metal Corp Surface-coated high speed steel material for cutting tool
JPS5779169A (en) * 1980-11-06 1982-05-18 Sumitomo Electric Ind Ltd Physical vapor deposition method
DE3507927A1 (en) * 1985-03-06 1986-09-11 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart METHOD AND HAND DEVICE FOR SEMI-MECHANICAL GALVANIZING OF SHEET SURFACES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173981A (en) * 1974-12-25 1976-06-26 Ulvac Corp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165759A (en) * 1987-12-22 1989-06-29 Seiko Epson Corp Formation of sputtered film
JP2009280853A (en) * 2008-05-21 2009-12-03 Osg Corp Hard coating film and tool coated with the hard coating film
JP2011256424A (en) * 2010-06-08 2011-12-22 Citizen Holdings Co Ltd Hard decorative member

Also Published As

Publication number Publication date
GB8510576D0 (en) 1985-05-30
GB2158104A (en) 1985-11-06
DE3515807A1 (en) 1985-11-07
KR900009101B1 (en) 1990-12-22
JPH0237426B2 (en) 1990-08-24
KR850007987A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JPS60234965A (en) Manufacture of thin film
US4784178A (en) Valve unit
EP0818622B1 (en) Using a coated fuel injector and method of making
GB2117009A (en) Process for manufacturing ornamental parts and ion plating apparatus to be used therefor
EP0048542A2 (en) Coating infra red transparent semiconductor material
US4253931A (en) Electrode sputtering process for exhaust gas oxygen sensor
CN102011102B (en) Normal-temperature deposition equipment for high-interfacial strength diamond film materials and method thereof
US5441235A (en) Titanium nitride coated valve and method for making
US4815962A (en) Process for coating synthetic optical substrates
CN113278915B (en) DLC composite film with porous structure running-in layer and preparation process thereof
JPS6222314A (en) Manufacture of thin film
US6274257B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
US5888638A (en) Sealing element, particularly for shut-off and regulating valves, and process for its production
JPH045750B2 (en)
FR2596775A1 (en) Hard multilayer coating produced by ion deposition of titanium nitride, titanium carbonitride and i-carbon
US5927727A (en) Sealing element, particularly for shut-off and regulating valves, and process for its production
JPH0561502B2 (en)
US3505094A (en) Titanium-iron eutectic metalizing
GB2227755A (en) Improving the wear resistance of metallic components by coating and diffusion treatment
CN112831769B (en) Composite antireflection film for infrared optical product and preparation method thereof
CA1124679A (en) Electrode sputtering process for exhaust gas oxygen sensor
JPH06116711A (en) Formation of alumina film
RU1808024C (en) Device for vacuum reactive magnetron application of coatings
Wielonski et al. The Effect of Temperatures Developed During Sputter Ion Plating on the Microstructure and Microhardness of AISI 4340 Steel
PLATING THE EFFECT OF TEMPERATURES DEVELOPED DURING SPUTTER ION PLATING ON THE MICROSTRUCTURE AND MICROHARDNESS OF AISI 4340 STEEL