JPS6222314A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS6222314A
JPS6222314A JP60160216A JP16021685A JPS6222314A JP S6222314 A JPS6222314 A JP S6222314A JP 60160216 A JP60160216 A JP 60160216A JP 16021685 A JP16021685 A JP 16021685A JP S6222314 A JPS6222314 A JP S6222314A
Authority
JP
Japan
Prior art keywords
thin film
insulating
metal
coated
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60160216A
Other languages
Japanese (ja)
Other versions
JPH0467724B2 (en
Inventor
笠谷 昌史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP60160216A priority Critical patent/JPS6222314A/en
Priority to GB08617904A priority patent/GB2178064A/en
Priority to KR1019860005952A priority patent/KR920000590B1/en
Priority to DE19863624772 priority patent/DE3624772A1/en
Publication of JPS6222314A publication Critical patent/JPS6222314A/en
Publication of JPH0467724B2 publication Critical patent/JPH0467724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Insulating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオンシレーティング法、スノ母ツタリング
法等の物理蒸着法により所要の部材の表面に絶縁性薄膜
を被着形成するための薄膜製造方法に関するものである
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a thin film for forming an insulating thin film on the surface of a required member by a physical vapor deposition method such as an ion silating method or a silting method. This relates to a manufacturing method.

(従来の技術) 例えば、金属の表面に薄膜絶縁層の如き薄膜層を形成す
ることがしばしば要求されるが、このような薄膜層を製
造する従来方法として、金属−ガス化合物膜を反応性の
コーティング手段で金属の表面に形成する方法が英国公
開公報第2123441号に開示されている。
(Prior Art) It is often required to form a thin film layer, such as a thin insulating layer, on the surface of a metal. Conventional methods for producing such a thin film layer include forming a metal-gas compound film into a reactive material. A method for forming metal surfaces by means of coating is disclosed in British Publication No. 2,123,441.

(発明が解決しようとする問題点) しかし、この開示された方法では、母材である金属と生
成薄膜との間の密着性を良好に保持することが難しい。
(Problems to be Solved by the Invention) However, in this disclosed method, it is difficult to maintain good adhesion between the base metal and the produced thin film.

すなわち、熱膨張率の差に起因して母材と被着薄膜との
間に働く応力又は機械的な外力により薄膜が剥離しやす
いからである。
That is, the thin film is likely to peel off due to stress or mechanical external force acting between the base material and the adhered thin film due to the difference in coefficient of thermal expansion.

一般に、イオングレーティング法の如き物理蒸着法によ
って薄膜の形成を行なう場合には、薄膜を形成すべき母
材に印加する電圧を高くすることによシ被着物のイオン
の衝突エネルギーが高められ、薄膜と母材との間の密着
力が高くなるとされている。しかし、絶縁性薄膜を被着
する場合には、その印加電圧を高くすると母材表面での
絶縁破壊によシ高品質の絶縁膜を形成することができず
、したがって、絶縁性薄膜を良好な密着性をもって所要
の母材上に形成することが困難であった。
Generally, when forming a thin film by a physical vapor deposition method such as the ion grating method, the collision energy of ions on the adherend is increased by increasing the voltage applied to the base material on which the thin film is to be formed. It is said that the adhesion between the material and the base material increases. However, when depositing an insulating thin film, if the applied voltage is increased, a high-quality insulating film cannot be formed due to dielectric breakdown on the surface of the base material. It was difficult to form it on the required base material with good adhesion.

本発明の目的は、母材の表面に耐剥離性に優れた絶縁性
薄膜を形成することができる薄膜製造方法を提供するこ
とにある。
An object of the present invention is to provide a thin film manufacturing method that can form an insulating thin film with excellent peeling resistance on the surface of a base material.

(問題点を解決するための手段) 上記目的を達成するための本発明の構成は、所要の被コ
ーティング部材の表面上に物理蒸着法によシ絶縁性薄膜
を設けるようにした薄膜製造方法において、被コーティ
ング部材が置かれている反応室内で、所定の金属のイオ
ン化蒸気とこの金属と反応して所定の絶縁性化合物を形
成する所定の反応ガスとを反応させ、上記金属の蒸気の
分圧と上記反応ガスの分圧との比をその反応の間に徐々
に変化させると共に、上記反応室内のイオン化物質を蒸
着法によって上記被コーティング部材に被着するため、
上記被コーティング部材に印加されている電圧の大きさ
を上記絶縁性化合物が形成されるに従って低下させるよ
うにした点に特徴を有する。
(Means for Solving the Problems) To achieve the above object, the present invention provides a thin film manufacturing method in which an insulating thin film is provided on the surface of a required member to be coated by physical vapor deposition. , in a reaction chamber in which the member to be coated is placed, the ionized vapor of a predetermined metal is reacted with a predetermined reaction gas that reacts with the metal to form a predetermined insulating compound, and the partial pressure of the vapor of the metal is reduced. and the partial pressure of the reaction gas is gradually changed during the reaction, and the ionized substance in the reaction chamber is deposited on the member to be coated by a vapor deposition method,
The present invention is characterized in that the magnitude of the voltage applied to the member to be coated is reduced as the insulating compound is formed.

(作用) 所要の金属蒸気と該金属と反応し所要の絶縁性化合物を
形成するガスとを反応室内に導入すると、その金属蒸気
の少なくとも一部が所定のイオン化手段によってイオン
化される。該金属として、被コーティング部材と密着性
のよい材料が選ばれ、最初、反応ガスの分圧を零とする
ことにより、被コーティング部材の表面に先ず金属層が
形成される。この場合には、被コーティング部材に印加
される電圧は比較的高く設定され、金属イオンが被コー
ティング部材表面に高いエネルギーで衝突し、金属層が
高い被着力をもって被コーティング部材表面に形成され
る。この場合、高電圧印加により、イオンの打込み効果
も期待することができる。    □しかる後、反応ガ
スの分圧を徐々に上昇させ、上述の如く下地処理として
形成された金属層の上に、金属蒸気と反応ガスとにより
生成された不定比性化合物を形成し、最終的には、金属
と反応ガスとの化合によシ得られる所要の絶縁性化合物
が生成されるのに充分な圧力にまで反応ガスの分圧が高
められる。反応ガスの分圧を上昇させるのと同時に、被
コーティング部材に印加する電圧のレベルを徐々に低下
せしめ、これにより絶縁性化合物が低い電圧で被コーテ
ィング部材に金属層を介して被着される。
(Function) When a required metal vapor and a gas that reacts with the metal to form a required insulating compound are introduced into the reaction chamber, at least a portion of the metal vapor is ionized by a predetermined ionization means. A material having good adhesion to the member to be coated is selected as the metal, and a metal layer is first formed on the surface of the member to be coated by first reducing the partial pressure of the reaction gas to zero. In this case, the voltage applied to the member to be coated is set relatively high, the metal ions collide with the surface of the member to be coated with high energy, and a metal layer is formed on the surface of the member to be coated with high adhesion. In this case, an ion implantation effect can also be expected by applying a high voltage. □Then, the partial pressure of the reaction gas is gradually increased, and a non-stoichiometric compound generated by the metal vapor and the reaction gas is formed on the metal layer formed as a base treatment as described above, and the final In this step, the partial pressure of the reactant gas is increased to a pressure sufficient to produce the desired insulating compound resulting from the combination of the metal and the reactant gas. At the same time as the partial pressure of the reactant gas is increased, the level of the voltage applied to the member to be coated is gradually lowered, whereby the insulating compound is deposited on the member to be coated via the metal layer at a low voltage.

この結果、下地処理のための金属層は高い電圧を用いて
被コーティング部材に強固に被着され、所要の絶縁性化
合物はこの金属層に不定比性化合物層を介して比較的低
い電圧の印加によ多形成される。したがって、被コーテ
ィング部材に対する絶縁性化合物の密着性を保ちつつ絶
縁性化合物の品質を損うことなしに絶縁性薄膜の形成を
行なうことができる。
As a result, the metal layer for base treatment is firmly adhered to the member to be coated using a high voltage, and the required insulating compound is applied to this metal layer via the non-stoichiometric compound layer with a relatively low voltage. Formed in polymorphism. Therefore, an insulating thin film can be formed while maintaining the adhesion of the insulating compound to the member to be coated and without degrading the quality of the insulating compound.

(実施例) 第1図には、弁体が対応する弁座に着座したときにオン
となるオン−オフスイッチが構成された燃料噴射弁の弁
体絶縁膜を本発明の製造方法にょ多形成した燃料噴射弁
の一実施例を示す一部断面図が示されている。燃料噴射
弁1は、ノズルホルダ2、グレート部材3及びノズル4
を備え、これらはすべてスリーブナツト5にねじ込まれ
ている。
(Example) FIG. 1 shows a valve body insulating film of a fuel injection valve configured with an on-off switch that is turned on when the valve body is seated on a corresponding valve seat, which is formed by the manufacturing method of the present invention. A partial cross-sectional view showing an embodiment of a fuel injection valve is shown. The fuel injection valve 1 includes a nozzle holder 2, a grate member 3, and a nozzle 4.
, all of which are screwed into the sleeve nut 5.

ノズル4は、ノズルホルダ6と該ノズルメディ6内に形
成された案内孔7に滑動自在に受は入れられて案内支持
されている針弁8とから成っている。・針弁8の先端に
は弁体として働く円錐体9が形成されておシ、この円錐
体9に対応した形状に形成された弁座10がノズルボデ
ィ6に形成されている。弁座10の上側に形成された油
溜り11は、燃料通路12に連通している。
The nozzle 4 consists of a nozzle holder 6 and a needle valve 8 which is slidably received and guided in a guide hole 7 formed in the nozzle medium 6. - A conical body 9 that functions as a valve body is formed at the tip of the needle valve 8, and a valve seat 10 formed in a shape corresponding to this conical body 9 is formed on the nozzle body 6. An oil reservoir 11 formed above the valve seat 10 communicates with a fuel passage 12.

針弁8はスチールから作られ、燃料噴射弁1が閉状態に
あるとき、針弁8は、導電性の一ン13を介して導電性
のばね受け14と電気的に接続される。
The needle valve 8 is made of steel, and when the fuel injection valve 1 is in the closed state, the needle valve 8 is electrically connected via a conductive pin 13 to a conductive spring receiver 14 .

ノズルホルダ2内のばね室15内には加圧コイルばね1
6が収納されており、このコイルばね16は、一方で絶
縁スリーブ17に嵌め込まれた電極18の下端円板部1
9を介してばね室15の肩部20に支えられており、他
方では、ばね受け14に支えられている。
A pressurized coil spring 1 is placed in the spring chamber 15 in the nozzle holder 2.
6 is housed, and this coil spring 16 is connected to the lower end disk portion 1 of the electrode 18 fitted in the insulating sleeve 17 on the one hand.
9 on the shoulder 20 of the spring chamber 15 and, on the other hand, on the spring receiver 14 .

絶縁スリーブ17は、導電性材料から成るノズルホルダ
2と電極18との間の電気的絶縁を保つだめのものであ
り、ノズルホルダ2の孔21に圧入されていてもよいし
、孔21内に遊嵌状態に挿入されていてもよい。符号2
2.23で示されるのは油密状態を保つためのOリング
である。
The insulating sleeve 17 is for maintaining electrical insulation between the nozzle holder 2 made of a conductive material and the electrode 18, and may be press-fitted into the hole 21 of the nozzle holder 2, or may be press-fitted into the hole 21. It may be inserted in a loosely fitted state. code 2
2.23 is an O-ring to maintain an oil-tight condition.

加圧コイルばね16もまた、スチールの如き適宜の導電
性材料から成っておシ、従って、電極18と針弁8とは
、ピン13、ばね受け14及びコイルばね16を介して
導電状態にある。尚1、符号24で示されるのは、コイ
ルばね16がノズルホルダ2と電気的接触状態となるの
を防止するための絶縁スリーブであり、特に小型の燃料
噴射弁ではコイルばね16とばね室15の壁面との間が
せまいため必要となる。尚、ノズルホルダ6、プレート
部材3、スリーブネット5及びノズルホルダ2もまた全
て導電性材料から作られている。
The pressure coil spring 16 is also made of a suitable electrically conductive material, such as steel, so that the electrode 18 and the needle valve 8 are electrically conductive through the pin 13, the spring receiver 14, and the coil spring 16. . 1. Reference numeral 24 indicates an insulating sleeve for preventing the coil spring 16 from coming into electrical contact with the nozzle holder 2. Particularly in a small fuel injection valve, the coil spring 16 and the spring chamber 15 This is necessary because the space between it and the wall is narrow. Note that the nozzle holder 6, plate member 3, sleeve net 5, and nozzle holder 2 are also all made of conductive materials.

ノズルホルダ6の案内孔7の内周面と、これに対向する
針弁8の外周面8aとの間の電気的絶縁性を保つため、
針弁8の外周面8aには、本発明の製造方法によシ形成
される薄膜26が形成されている。
In order to maintain electrical insulation between the inner peripheral surface of the guide hole 7 of the nozzle holder 6 and the outer peripheral surface 8a of the needle valve 8 facing thereto,
A thin film 26 is formed on the outer peripheral surface 8a of the needle valve 8 by the manufacturing method of the present invention.

本実施例では、薄膜26はZrO□−エで示される化合
物であり、ここで、Xはその表面近くにおける零から針
弁8の近くで2にまで変化する。すなわち、薄膜26は
外表面近くでは酸化ジルコニウム(ZrO□)であり、
中間領域では酸素量θが内に向かうにつれて次第に減少
するZrの化合物から成シ、針弁8の近くでは単にZr
となっている。このことが第2図に図解してあり、薄膜
26は、針弁8の表面のt=Qから1=1.までの領域
■においては単なる金属(Zr)から成シ、t=t2か
らその外表面である1 = 18までの領域■において
はZrO□から成っている。
In this embodiment, the membrane 26 is a compound of ZrO□-E, where X varies from zero near its surface to 2 near the needle valve 8. That is, the thin film 26 is zirconium oxide (ZrO□) near the outer surface;
In the intermediate region, the oxygen content θ gradually decreases as it goes inward, and in the vicinity of the needle valve 8 it is simply composed of Zr.
It becomes. This is illustrated in FIG. 2, where the membrane 26 extends from t=Q to 1=1 on the surface of the needle valve 8. The region (2) up to is made of simple metal (Zr), and the region (2) from t=t2 to its outer surface 1=18 is made of ZrO□.

領域I、IIの間は1.(1(12によって定められる
領域■である。領域■においては、薄膜26はZrO□
−エによって示される不定比性化合物から成やており、
ここで、Xは2から0まで変化する。この結果、薄膜2
6の電気抵抗は、針弁8からの距離が増加するに従って
次第に高くなり、案内孔7に近いところまで増加する。
1 between areas I and II. (1(12). In the region ■, the thin film 26 is ZrO□
- It is composed of a non-stoichiometric compound represented by D,
Here, X varies from 2 to 0. As a result, thin film 2
The electrical resistance of the needle valve 6 gradually increases as the distance from the needle valve 8 increases, and increases until it is close to the guide hole 7.

薄膜26を第2図に示す如き構造とすると、金属層であ
る領域■は金属である弁体8に非常に強度の密着性をも
って被着し且つ領域■は弁体8とノズルホルダ6との間
の絶縁性を確保し、且つ耐摩耗性をも確保することがで
きる。そして、遷移領域■によシ、性質が異なる領域1
.IIを強固に結びつけることができるので、結局、耐
剥離性及び耐摩耗性に富む薄膜26を形成することがで
き、耐久性に優れたスイッチ付燃料噴射弁を構成するこ
とができる。更に遷移領域■熱膨張率は、領域1、II
の中間の値となり、且つその値は厚み方向に沿って徐々
に変化するので、加熱時に生じる熱ショックに対する薄
膜の耐剥離性も良好となる利点を有している。
When the thin film 26 has a structure as shown in FIG. 2, the metal layer region (2) adheres to the metal valve body 8 with very strong adhesion, and the region (2) forms a bond between the valve body 8 and the nozzle holder 6. It is possible to ensure insulation between the two and also ensure wear resistance. Then, in transition region ■, region 1 has different properties.
.. Since II can be firmly bonded, it is possible to form a thin film 26 that is highly resistant to peeling and abrasion, and a fuel injection valve with a switch having excellent durability can be constructed. Furthermore, the transition region ■ The coefficient of thermal expansion is region 1, II
, and the value gradually changes along the thickness direction, which has the advantage that the peeling resistance of the thin film against thermal shock that occurs during heating is also good.

次に、第2図に示される如き断面構造を有する薄膜26
を弁体8の表面に形成する具体的方法について、第3図
を参照しながら説明する。
Next, a thin film 26 having a cross-sectional structure as shown in FIG.
A specific method for forming the surface of the valve body 8 will be explained with reference to FIG.

真空容器31内に配置された針弁8は可変直流高圧源3
2の負極にスイッチSWを介して接続されている。真空
容器31内の仕切板33に設けられている蒸発源34は
直流高圧源32の正極に接続されている。符号41で示
されるのは、ル−ティング速度を調節するためのイオン
化電極であシ、蒸発源34と被コーティング材である弁
体8との間に配置されたイオン化電極41は、その正極
がアースされている他の可変直流電源42の負極に接続
されている。したがって、蒸発源34内に載置されたZ
rが電子銃35からの電子によシ溶融されて蒸発する際
、可変直流電源42の電圧を調節することにより、イオ
ン化電極410作用によシ、ブレーティング速度の調節
を行なうことができる。真空容器31内は真空ポンプ3
6により真空引きされ、所要の真空度が保たれるように
なっている。
A needle valve 8 arranged in a vacuum container 31 is connected to a variable DC high pressure source 3.
It is connected to the negative electrode of No. 2 via a switch SW. An evaporation source 34 provided on a partition plate 33 within the vacuum container 31 is connected to a positive electrode of a DC high pressure source 32. Reference numeral 41 indicates an ionization electrode for adjusting the routing speed. It is connected to the negative pole of another variable DC power supply 42 that is grounded. Therefore, Z placed in the evaporation source 34
When r is melted and evaporated by electrons from the electron gun 35, the blating speed can be adjusted by adjusting the voltage of the variable DC power supply 42 by the action of the ionization electrode 410. Inside the vacuum container 31 is the vacuum pump 3
6 to maintain the required degree of vacuum.

真空容器31内が所要の真空度となると、コック39を
開いてデンペ40からArガスが導入される。スイッチ
sw6閉じて弁体8と蒸発源34との間に直流電圧全印
加し、グロー放電を真空容器31内に生せしめ、容器内
の清浄化を行なう。清浄化が終了したのち、zrを蒸発
せしめ、このとき弁体8に印加される負の高圧によって
イオン化したZrが弁体8の表面にル−ティングされ、
これによシ、領域■の形成が行なわれる。領域■の形成
に際しては、金属層である領域It−よ)強固に針弁8
に被着させるため、可変直流高圧源32はその出力電圧
が大きくなるように調節され、zrイオンが高エネルギ
ーにて針弁8の所要の外周面に衝突し、zr金属層を針
弁8に良好に被着させることができる。
When the inside of the vacuum container 31 reaches a required degree of vacuum, the cock 39 is opened and Ar gas is introduced from the vacuum chamber 40. The switch sw6 is closed to apply a full DC voltage between the valve body 8 and the evaporation source 34, and a glow discharge is generated in the vacuum container 31, thereby cleaning the inside of the container. After the cleaning is completed, the Zr is evaporated, and the ionized Zr is routed to the surface of the valve body 8 by the negative high pressure applied to the valve body 8.
As a result, region (2) is formed. When forming region (3), firmly press the needle valve (8) onto the region (It-) which is a metal layer.
In order to deposit the ZR metal layer on the needle valve 8, the variable DC high voltage source 32 is adjusted to increase its output voltage, and the ZR ions collide with the desired outer peripheral surface of the needle valve 8 with high energy, thereby depositing the ZR metal layer on the needle valve 8. Good adhesion can be achieved.

領域■の厚みが所定値にまで達したならば、コック37
を開き、反応ガスである酸素を♂ンペ38から真空容器
31内に徐々に流入せしめ、これにより、酸素の分圧を
徐々に増大させる。この結果、領域■の上には、zrO
□−エで示される遷移領域■が形成されはじめる。真空
容器31内の反応ガス(酸素ガス)の分圧が時間の経過
に従って除徐に上昇することにより、第2図に示す酸素
量勾配を有する遷移領域mの形成が行なわれる。酸素ガ
スの分圧比が大きくなるにつれ、生成される化合物の物
理的性質が、導電性から絶縁性に変化する。既に述べた
ように、蒸着すべき物質が絶縁性の場合には、印加電圧
が高いと被コーティング部材の表面での絶縁破壊のため
に、被着された薄膜の絶縁膜としての品質が低下するこ
とになる。これを避けるため、酸素ガスの分圧比が大き
くなるにつれて可変直流高圧源32の出力電圧を徐々に
低下せしめ、これにより被コーティング部材である針弁
8の表面で絶縁破壊が発生することがないように、各可
変直流高圧源32.42の調節を行なう: このようにして、最終的にはZ rO2が針弁8の表面
での絶縁破壊現象が生じないようにして生成される状態
とし、遷移領域■の上にZ rO2から成る絶縁性の領
域■を所望の厚さだけ形成する。
When the thickness of the area ■ reaches a predetermined value, the cock 37
is opened to allow oxygen, which is a reactive gas, to gradually flow into the vacuum container 31 from the female pump 38, thereby gradually increasing the partial pressure of oxygen. As a result, above the area ■, zrO
A transition region ■ indicated by □-D begins to be formed. By gradually increasing the partial pressure of the reaction gas (oxygen gas) in the vacuum container 31 over time, a transition region m having an oxygen content gradient shown in FIG. 2 is formed. As the partial pressure ratio of oxygen gas increases, the physical properties of the resulting compound change from conductive to insulating. As already mentioned, when the material to be deposited is insulating, high applied voltage will cause dielectric breakdown on the surface of the member to be coated, reducing the quality of the deposited thin film as an insulating film. It turns out. In order to avoid this, the output voltage of the variable DC high pressure source 32 is gradually lowered as the partial pressure ratio of oxygen gas increases, thereby preventing dielectric breakdown from occurring on the surface of the needle valve 8, which is the member to be coated. Then, each variable DC high pressure source 32, 42 is adjusted: In this way, a state is finally reached in which ZrO2 is generated without causing a dielectric breakdown phenomenon on the surface of the needle valve 8, and a transition is made. An insulating region (2) made of ZrO2 is formed on the region (2) to a desired thickness.

このように、従来のイオングレーティングの方法を用い
、反応ガスの分圧を制御するだけで、第2図に示した構
造の薄膜26を容易に形成するととができる上に、針弁
8に印加される高電圧の値を、反応ガスの分圧制′御と
共に上述の如く変化させたので、薄膜26の表面の絶縁
部の品質を高品質にすることができ、堅牢で耐摩耗性に
優れた絶縁膜を形成することができる。
In this way, the thin film 26 having the structure shown in FIG. 2 can be easily formed by simply controlling the partial pressure of the reaction gas using the conventional ion grating method. By changing the value of the high voltage applied as described above together with the partial pressure control of the reactant gas, the quality of the insulating part on the surface of the thin film 26 can be made high, and it is robust and has excellent wear resistance. An insulating film can be formed.

上述の製造方法によれば、薄膜26の内側が、金属との
密着性が良好な低酸素量状態又は金属そのものであり、
薄膜の金属層部分(Zr層部分)が、金属である被コー
ティング部材の表面に強力に被着されるので、薄膜と被
コーティング部材との間の密着性が極めて良好であり、
この金属層部分に高品質の絶縁層部分が遷移層を介して
強固に固着されるので、結局、高品質の絶縁性薄膜を極
めて強力な被着力をもって針弁8の表面に形成すること
ができる。
According to the above manufacturing method, the inside of the thin film 26 is in a low oxygen content state with good adhesion to metal or is made of metal itself,
Since the metal layer portion (Zr layer portion) of the thin film is strongly adhered to the surface of the metal member to be coated, the adhesion between the thin film and the member to be coated is extremely good.
Since the high-quality insulating layer is firmly attached to this metal layer through the transition layer, a high-quality insulating thin film can be formed on the surface of the needle valve 8 with extremely strong adhesion. .

尚、上記実施例では、蒸発物質としてZrを用い、反応
ガスとしては0□を用いたが、との被着層の材質はこれ
に限定されるものではなく、他の無機絶縁物とすること
ができる。従って、蒸発物質として、At、 Cr 、
 Si等を用い、一方、反応ガスとしてN2.C2H2
等を用いることができる。
In the above example, Zr was used as the evaporation substance and 0□ was used as the reaction gas, but the material of the adhesion layer is not limited to these, and other inorganic insulating materials may be used. I can do it. Therefore, as evaporated substances, At, Cr,
Si, etc. were used, while N2. C2H2
etc. can be used.

しかし、蒸発物質と被コーティング部材の金属とともに
性質の急変する金属化合物を形成するような蒸発金属の
使用を避ける必要がある。また、蒸発物質と作用する化
合物を生成し、蒸発物質である金属又は生成された化合
物のいずれかの物性を急変させるような金属と反応ガス
との組合せは避けなければならない。
However, it is necessary to avoid using evaporated metals that, together with the evaporated substance and the metal of the member to be coated, form metal compounds whose properties change rapidly. Furthermore, it is necessary to avoid combinations of metals and reactive gases that produce compounds that interact with the evaporated substance and abruptly change the physical properties of either the evaporated metal or the produced compound.

更に、上記友施例では、金属ガスを、真空容器31内に
配設された蒸発源34から供給する構成が示されている
が、所要の金属ガスは、真空容器31外から真空容器3
1内に導入するようにしてもよく、蒸着法としては、イ
オングレーティング法のほか、スノJ?ツタリング法等
の他の物理的蒸着法を用いてもよい。
Further, in the above embodiment, a configuration is shown in which the metal gas is supplied from the evaporation source 34 disposed inside the vacuum vessel 31, but the required metal gas is supplied from outside the vacuum vessel 31 to the vacuum vessel 3.
In addition to the ion grating method, the ion grating method as well as the Suno J? Other physical vapor deposition methods such as tuttering may also be used.

イオンシレーティング法によシ被着層26を形成すると
、処理中の温度が低くて済むので(550℃以下)、熱
処理をすでに施しである弁体8に材料歪が生じ、成るい
は焼戻しが行なわれることがなく、更に密閉容器内での
ドライシステムであるため公害の心配もない。
When the adhesion layer 26 is formed by the ion silating method, the temperature during the treatment can be low (550°C or less), so material distortion occurs in the valve body 8 which has already been heat treated, or tempering occurs. Furthermore, since it is a dry system in a closed container, there is no need to worry about pollution.

(効果) 本発明の製造方法によれば、上述の如く、反応ガスの分
圧を制御することによシ、所望の被コーティング部材の
表面にその組成が厚み方向に徐々に変化する薄膜を形成
し、これによシその薄膜の表面を所要の絶縁性化合物と
するので、機械的。
(Effects) According to the manufacturing method of the present invention, as described above, by controlling the partial pressure of the reaction gas, a thin film whose composition gradually changes in the thickness direction is formed on the surface of the desired member to be coated. However, since the surface of the thin film is coated with the required insulating compound, it is mechanically resistant.

熱的なショックに対して極めて高い耐剥離性を有する絶
縁性薄膜を形成することができる上に、この構成の薄膜
を物理的蒸着法で形成する際に被コーティング部材に印
加する電圧をガスの分圧制御に応じて調節し、薄膜の絶
縁領域の形成時にはその電圧全像くするようにしたので
、薄膜の絶縁特性を極めて高品質のものとすることがで
きる優れた効果を奏する。
In addition to being able to form an insulating thin film that has extremely high peeling resistance against thermal shock, when forming a thin film with this structure using a physical vapor deposition method, the voltage applied to the member to be coated is controlled by the gas. Since the voltage is adjusted according to the partial voltage control and the entire voltage is applied when forming the insulating region of the thin film, an excellent effect is achieved in that the insulating properties of the thin film can be made of extremely high quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弁体の絶縁膜を本発明の製造方法にょシ設けた
燃料噴射弁の一実施例を示す断面図、第2図は第1図に
示した弁体表面の薄膜の組成構造。 を示すグラフ、第3図は第1図に示した薄膜全形成する
ためのイオンブレーティング装置の構成図である。 8・・・針弁、26・・・薄膜、31・・・真空容器、
32・・・可変直流高圧源、34・・・蒸発源、35・
・・電子銃、36・・・真空ポンダ。 特許出願人  ヂーゼル機器株式会社 代理人 弁理士   高  野  昌  漬菜1図 第2図 A片林面p・5のgM 第3図 手続補正書(自発)   6 昭和61年lO月7日
FIG. 1 is a sectional view showing an embodiment of a fuel injection valve in which an insulating film of a valve body is provided by the manufacturing method of the present invention, and FIG. 2 is a compositional structure of the thin film on the surface of the valve body shown in FIG. FIG. 3 is a block diagram of the ion blating apparatus for forming the entire thin film shown in FIG. 1. 8... Needle valve, 26... Thin film, 31... Vacuum container,
32... variable DC high pressure source, 34... evaporation source, 35...
...electron gun, 36...vacuum ponder. Patent applicant: Diesel Kiki Co., Ltd. Agent Patent attorney: Masa Takano Pickles 1 Figure 2 A Katabayashi side p. 5 gM Figure 3 Procedural amendment (voluntary) 6 October 7, 1986

Claims (1)

【特許請求の範囲】[Claims] 1、被コーティング部材の表面に絶縁性薄膜を形成する
ための薄膜製造方法において、被コーティング部材が置
かれている反応室内で、所定の金属のイオン化蒸気とこ
の金属と反応して所定の絶縁性化合物を形成する所定の
反応ガスとを反応させ、前記金属の蒸発の分圧と前記反
応ガスの分圧との比をその反応の間に徐々に変化させる
とともに、前記反応室内のイオン化物質を蒸着法によっ
て前記被コーティング部材に被着するため前記被コーテ
ィング部材に印加する電圧の大きさを前記絶縁性化合物
が形成されるに従って低下させることを特徴とする薄膜
製造方法。
1. In a thin film manufacturing method for forming an insulating thin film on the surface of a member to be coated, in a reaction chamber in which the member to be coated is placed, ionized vapor of a predetermined metal reacts with this metal to achieve a predetermined insulating property. reacting with a predetermined reaction gas that forms a compound, gradually changing the ratio of the partial pressure of vaporization of the metal to the partial pressure of the reaction gas during the reaction, and evaporating the ionized substance in the reaction chamber; A method for producing a thin film, characterized in that the magnitude of the voltage applied to the member to be coated is reduced as the insulating compound is formed.
JP60160216A 1985-07-22 1985-07-22 Manufacture of thin film Granted JPS6222314A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60160216A JPS6222314A (en) 1985-07-22 1985-07-22 Manufacture of thin film
GB08617904A GB2178064A (en) 1985-07-22 1986-07-22 Producing a thin film by reactive evaporation
KR1019860005952A KR920000590B1 (en) 1985-07-22 1986-07-22 Method for producing thin film
DE19863624772 DE3624772A1 (en) 1985-07-22 1986-07-22 METHOD FOR PRODUCING A THIN FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160216A JPS6222314A (en) 1985-07-22 1985-07-22 Manufacture of thin film

Publications (2)

Publication Number Publication Date
JPS6222314A true JPS6222314A (en) 1987-01-30
JPH0467724B2 JPH0467724B2 (en) 1992-10-29

Family

ID=15710240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160216A Granted JPS6222314A (en) 1985-07-22 1985-07-22 Manufacture of thin film

Country Status (4)

Country Link
JP (1) JPS6222314A (en)
KR (1) KR920000590B1 (en)
DE (1) DE3624772A1 (en)
GB (1) GB2178064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303054A (en) * 1987-06-04 1988-12-09 Toyota Motor Corp Formation of multilayered film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726731A1 (en) * 1987-08-11 1989-02-23 Hartec Ges Fuer Hartstoffe Und METHOD FOR APPLYING COATS TO OBJECTS BY MEANS OF MAGNETIC FIELD SUPPORTED CATHODE SPRAYING IN A VACUUM
DE3737404A1 (en) * 1987-11-04 1989-05-18 Bartl Josef Franz Process and appliance for generating strongly adhering vacuum coatings
GB9005321D0 (en) * 1990-03-09 1990-05-02 Matthews Allan Modulated structure composites produced by vapour disposition
JPH04368A (en) * 1990-04-17 1992-01-06 Riken Corp Wear resistant coating film and production thereof
DE69428253T2 (en) * 1993-11-12 2002-06-27 Ppg Industries Ohio, Inc. Durable metal oxide sputter layer
US5587227A (en) * 1994-10-27 1996-12-24 Kabushiki Kaisha Riken Coating of chromium and nitrogen having good wear resistance properties
US5672386A (en) * 1994-10-27 1997-09-30 Kabushiki Kaisha Riken Process for forming a coating of chromium and nitrogen having good wear resistance properties

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791852A (en) * 1972-06-16 1974-02-12 Univ California High rate deposition of carbides by activated reactive evaporation
JPS5941510B2 (en) * 1979-07-24 1984-10-08 双葉電子工業株式会社 Beryllium oxide film and its formation method
JPS58221271A (en) * 1982-06-18 1983-12-22 Citizen Watch Co Ltd Formation of film by ion plating method
JPS60234965A (en) * 1984-05-04 1985-11-21 Diesel Kiki Co Ltd Manufacture of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303054A (en) * 1987-06-04 1988-12-09 Toyota Motor Corp Formation of multilayered film

Also Published As

Publication number Publication date
DE3624772C2 (en) 1988-07-21
KR870001326A (en) 1987-03-13
JPH0467724B2 (en) 1992-10-29
KR920000590B1 (en) 1992-01-16
GB8617904D0 (en) 1986-08-28
GB2178064A (en) 1987-02-04
DE3624772A1 (en) 1987-01-22

Similar Documents

Publication Publication Date Title
US4784178A (en) Valve unit
EP1619265B1 (en) Method and system for coating internal surfaces of prefabricated process piping in the field
EP2148939B1 (en) Vacuum treatment unit and vacuum treatment process
JPS60234965A (en) Manufacture of thin film
JP5306198B2 (en) Electrical insulation film deposition method
CA1125700A (en) Vacuum deposition method
GB2117009A (en) Process for manufacturing ornamental parts and ion plating apparatus to be used therefor
IE41938B1 (en) A method and apparatus for depositing thin layers of insulating or slightly conductive materials by reactive sputtering in a high-frequency inductive plasma
JPS6222314A (en) Manufacture of thin film
CN113278915B (en) DLC composite film with porous structure running-in layer and preparation process thereof
US5888638A (en) Sealing element, particularly for shut-off and regulating valves, and process for its production
JPS6135401A (en) Reflection mirror
US5927727A (en) Sealing element, particularly for shut-off and regulating valves, and process for its production
JPH07278800A (en) Device for forming coated film and method therefor
GB1229284A (en)
US5631090A (en) Iron-based material having excellent oxidation resistance at elevated temperatures and process for the production thereof
KR101883369B1 (en) Device for coating Multilayer Thin Film
JPS5916972A (en) Preparation of metal or ceramic thin film
RU1808024C (en) Device for vacuum reactive magnetron application of coatings
JPH0673154U (en) Ion plating device
US20080014371A1 (en) Method of Producing a Coated Fishing Hook
JPH0477074B2 (en)
JPS59226176A (en) Ion plating device
KR100779247B1 (en) Manufacturing method of decorative metal plate
EP1713949A1 (en) Method and apparatus for manufacturing a functional layer consisting of at least two components