JPS60233851A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPS60233851A
JPS60233851A JP59075782A JP7578284A JPS60233851A JP S60233851 A JPS60233851 A JP S60233851A JP 59075782 A JP59075782 A JP 59075782A JP 7578284 A JP7578284 A JP 7578284A JP S60233851 A JPS60233851 A JP S60233851A
Authority
JP
Japan
Prior art keywords
groove
photoelectric conversion
light
solid
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075782A
Other languages
Japanese (ja)
Inventor
Atsushi Yusa
遊佐 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP59075782A priority Critical patent/JPS60233851A/en
Priority to DE19853513196 priority patent/DE3513196A1/en
Publication of JPS60233851A publication Critical patent/JPS60233851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain the titled device of high resolution and high sensitivity by a method wherein a groove narrow and deep is provided by surrounding a photoelectric conversion element, and an isolating region is formed by covering the groove wall with an insulation film and filling with a transparent dielectric, so as to prevent the leakage of light charges. CONSTITUTION:Photoelectric conversion elements 23 and 24 are constructed by superposing P<+> epitaxial layers on an N type Si substrate 21, and then surrounded by the groove 25 narrow and deep. The groove wall is coated with an SiO2 film 26, and the groove is filled with transparent alumina 27 or the like by the CVD method. Then, the whole surface is covered with an SiO2 28. This construction enables the increase in effective photo receiving area of the elements 24 and 25 because of the small width of the groove 25. Besides, a light 29 incident to the isolated region passed through and reaches the substrate 21, thus causing light charges 30 and yielding high sensitivities. The light charges 30 are completely interrupted from lateral migration by an insulation film 26, and do not flow into the adjacent elements. Therefore, crosstalks are well reduced, and image signals of high resolution can be obtained.

Description

【発明の詳細な説明】 技術分野 本発明は複数のフォトダイオードやフォトトランジスタ
のような光電変換素子を同一チップに二次元的に配列し
、これら光電変換素子から入射光に対応した光電荷信号
を順次取出して画像信号を得る固体イメージセンサに関
するものである。
[Detailed Description of the Invention] Technical Field The present invention arranges a plurality of photoelectric conversion elements such as photodiodes and phototransistors two-dimensionally on the same chip, and generates photocharge signals corresponding to incident light from these photoelectric conversion elements. The present invention relates to a solid-state image sensor that sequentially extracts image signals to obtain image signals.

従来技術 上述した構成の固体イメージセンサにおいては、光を受
けていない光電変換素子に、光を受けた光電変換素子か
ら光電荷が流れ込み、光を受けていない光電変換素子が
あたがも受光したかのような現象、すなわちり四ストー
クが生ずると、解像度が低下し、著しい場合には再生画
像中にブルーミングやスミャが現われる。したがって固
体イメージセンサにおいては、このようなりロストーク
を軽減するために隣接する光電変換素子間に分離領域を
設けてアイソレーションを行なうのが常であるO 第1図は従来の固体イメージセンサの構造を示すもので
あり、アイソレーションは高不純物濃度領域を光電変換
素子間に形成して行なっている。
Prior Art In the solid-state image sensor having the above-mentioned configuration, photoelectric charges flow from the photoelectric conversion element that receives light into the photoelectric conversion element that does not receive light, and the photoelectric conversion element that does not receive light receives light as well. When such a phenomenon, ie, four-stalk occurs, the resolution decreases, and in severe cases, blooming or smear appears in the reproduced image. Therefore, in solid-state image sensors, in order to reduce such losstalk, isolation regions are usually provided between adjacent photoelectric conversion elements to achieve isolation. Figure 1 shows the structure of a conventional solid-state image sensor. The isolation is performed by forming a high impurity concentration region between the photoelectric conversion elements.

すなわち、N形基板lの表面にr形表面層2を形成し、
このP+形衣表面層表面からN+形分離領域8を拡散形
成することにより、分離領域によって相互に分離された
PNフォトダイオード4,5を形成している。なお、表
面層2および分離領域8の表面には絶縁膜6が形成され
ている。また1形拡散分離領域8は平面図においてフォ
トダイオード4,5を完全に囲むように形成されている
That is, an r-type surface layer 2 is formed on the surface of an N-type substrate l,
By diffusing and forming an N+ type isolation region 8 from the surface of this P+ type layer, PN photodiodes 4 and 5 are formed which are separated from each other by the isolation region. Note that an insulating film 6 is formed on the surface of the surface layer 2 and the isolation region 8. Further, the type 1 diffusion isolation region 8 is formed so as to completely surround the photodiodes 4 and 5 in a plan view.

このような構成の固体イメージセンサにおいては、入射
光7によってフォトダイオード5で生ずる光電荷8は、
N形不純物を高濃度で添加した分離領域8が作り出す電
位障壁によって隣接するフォトダイオード4へ流れ込ま
ないようにしている。
In a solid-state image sensor having such a configuration, the photocharge 8 generated in the photodiode 5 by the incident light 7 is
The potential barrier created by the isolation region 8 doped with N-type impurities at a high concentration prevents it from flowing into the adjacent photodiode 4.

しかしながら、第1@に示した従来の固体イメージセン
サにおいては、分離領域8を形成する際に、P+形表面
層2の表面の所定の位置から不純物を熱拡散させるため
深さ方向だけでなく、横方、向にも拡がることになる。
However, in the conventional solid-state image sensor shown in No. 1, when forming the separation region 8, impurities are thermally diffused from a predetermined position on the surface of the P+ type surface layer 2, not only in the depth direction. It will also spread laterally and in the direction.

そのため分離領域8を深く形成しようとすると、チップ
の全表面に対して分離領域が占める割合が大きくなり解
像度が低下する欠点がある。さらに分離領域に入射した
光は光電変換作用に殆んど寄与しないので十分高い感度
が得られない欠点もある。一方、チップ全表面に対して
分離領域が占める割合を小さくしようとすると分離領域
が浅くなり、アイソレーション効果が十分に発揮されな
い欠点がある。さらに高不純物濃度の拡散分離領域を用
いる場合には電位障壁だけで光電荷の流れを阻止してい
るため、強い光が入射し、多量の光電荷が発生したとき
は光電荷の一部が隣接する光電変換素子へ洩れるなどの
問題も生じている。さらに分離領域を狭くした場合には
固体イメージセンサに斜めに入射する光は成る光電変換
素子から分離領域を透過して隣接する光電変換素子に″
も入射することになり、解像度が低下することになる。
Therefore, if it is attempted to form the separation region 8 deeply, the separation region occupies a large proportion of the entire surface of the chip, resulting in a disadvantage that the resolution decreases. Furthermore, since the light incident on the separation region hardly contributes to the photoelectric conversion effect, there is also the drawback that sufficiently high sensitivity cannot be obtained. On the other hand, if an attempt is made to reduce the ratio of the isolation region to the entire surface of the chip, the isolation region will become shallower, resulting in a drawback that the isolation effect will not be sufficiently exhibited. Furthermore, when using a diffusion separation region with a high impurity concentration, the flow of photocharges is blocked only by a potential barrier, so when strong light is incident and a large amount of photocharge is generated, some of the photocharges are adjacent to each other. Problems such as leakage to photoelectric conversion elements have also arisen. If the separation area is further narrowed, the light incident obliquely on the solid-state image sensor will pass through the separation area from the photoelectric conversion element to the adjacent photoelectric conversion element.
will also be incident, resulting in a decrease in resolution.

このような欠点は特にカラー固体イメージセンサにおい
ては混色の原因となり、色再現性が低下することになる
Such drawbacks cause color mixture, particularly in color solid-state image sensors, resulting in a decrease in color reproducibility.

、発明の目的 本発明の目的は、深くて幅の狭い分離領域を設けること
によって隣接する光電変換素子間での光電荷の漏洩を抑
止し、クロストークを軽減することができるとともに解
像度および感度の高い固体イメージセンサを提供しよう
とするものである。
OBJECTS OF THE INVENTION An object of the present invention is to prevent leakage of photocharges between adjacent photoelectric conversion elements by providing a deep and narrow separation region, thereby reducing crosstalk and improving resolution and sensitivity. The aim is to provide a high quality solid-state image sensor.

本発明の他の目的は、深くて幅が狭いとともに遮光性を
有する分離領域を設けることによって隣接する光電変換
素子間のクロストークを軽減でき、解像度を−高くでき
るとともに斜めに入射する光が隣接する光電変換素子に
同時に入射しないようにして特に混色を防止することが
できる固体イメージセンサを提供しようとするものであ
る。
Another object of the present invention is to reduce crosstalk between adjacent photoelectric conversion elements by providing a deep, narrow, and light-shielding isolation region, thereby increasing resolution and preventing diagonally incident light from adjacent The object of the present invention is to provide a solid-state image sensor that can particularly prevent color mixture by preventing the light from entering the photoelectric conversion element simultaneously.

発明の概要 本発明の固体イメージセンサは、複数の光電変換素子を
同一チップに二次元的に配列した固体イメージセンサに
おいて、各々の光電変換素子を囲むようにその周囲に表
面から内部に堀った深くてかつ幅の狭い溝を有し、この
溝の壁を絶縁膜で被覆するとともに溝の内部に透明な誘
電体を埋込んで形成した分離領域を設けたことを特徴と
するものである。
Summary of the Invention The solid-state image sensor of the present invention is a solid-state image sensor in which a plurality of photoelectric conversion elements are two-dimensionally arranged on the same chip. It is characterized by having a deep and narrow groove, the walls of the groove being covered with an insulating film, and an isolation region formed by burying a transparent dielectric material inside the groove.

さらに本発明の固体イメージセンサは、複数の光電変換
素子を同一チップに二次元的に配列した固体イメージセ
ンサにおいて、各々の光電変換素子を囲むようにその周
囲に表面から内部に掘った深くてかつ幅の狭い溝を有し
、この溝の壁を絶縁膜で被覆し、さらにこの絶縁膜上に
遮光膜を被覆するとともに溝の内部に誘電体を埋込むか
遮光膜を被覆することなく遮光性の誘電体を埋込んで形
成した分離領域を設けたことを特徴とするものである。
Furthermore, the solid-state image sensor of the present invention is a solid-state image sensor in which a plurality of photoelectric conversion elements are two-dimensionally arranged on the same chip, and a deep and deep groove is dug inward from the surface to surround each photoelectric conversion element. It has a narrow groove, and the walls of this groove are covered with an insulating film, and a light-shielding film is coated on top of this insulating film, and a dielectric material is buried inside the groove, or light-shielding properties can be achieved without covering with a light-shielding film. The device is characterized by providing an isolation region formed by embedding a dielectric material.

本発明の固体イメージセンサは、光変換素子がフォトダ
イオードであるMOS形またはCOD形イメージセンサ
や、光電変換素子がフォトトランジスタである’J F
 E TまたはSITイメージセンサとして構成できる
ものである。
The solid-state image sensor of the present invention is a MOS type or COD type image sensor in which the photoconversion element is a photodiode, or a 'JF type image sensor in which the photoelectric conversion element is a phototransistor.
It can be configured as an ET or SIT image sensor.

実施例 第2図は本発明の固体イメージセンサの一実施例の構成
を示す断面図である。本例では光電変換、素子をP+N
シリコンフォトダイオードを以って構成したものである
。N形シリコン基板21の上にP+形シリコン表面層2
2をエピタキシャル成長させてP”Nシリコンフォトダ
イオード28.24を構成する。各フォトダイオードの
周囲にはそれを囲むように断面7字状の溝25を形成す
る。この溝25は基板21内部の深い所まで形成すると
共にその幅は狭くする。溝25の壁にはシリコン酸化物
や窒化物などの絶縁膜26を被着するとともに溝の内部
には誘電体27をGVD法またはスパッタ蒸着法により
埋込む。
Embodiment FIG. 2 is a sectional view showing the structure of an embodiment of the solid-state image sensor of the present invention. In this example, photoelectric conversion, the element is P+N
It is constructed using silicon photodiodes. A P+ type silicon surface layer 2 is formed on an N type silicon substrate 21.
2 is epitaxially grown to form P''N silicon photodiodes 28 and 24.A groove 25 having a figure 7 cross section is formed around each photodiode so as to surround it. An insulating film 26 made of silicon oxide or nitride is deposited on the walls of the trench 25, and a dielectric material 27 is filled inside the trench by the GVD method or sputter deposition method. It's crowded.

この誘電体27としては、Sin、 、 Ta、O,な
どの酸化物、5i8N、のような窒化物、アルミナ、マ
グネシアなどの透明な誘電体材料を用いる。P+形表面
層22および誘電体27の表面上には絶縁膜28を被着
する。
As the dielectric material 27, transparent dielectric materials such as oxides such as Sin, Ta, O, etc., nitrides such as 5i8N, alumina, and magnesia are used. An insulating film 28 is deposited on the surfaces of the P+ type surface layer 22 and the dielectric 27.

第2図に示した実施例においては、溝25と、その壁に
被着した絶縁膜26と、溝に埋込んだ誘電体27とで分
離領域を形成しているが、溝25の幅は狭いので各フォ
トトランジスタ24.25、の有効受光面積は大きくな
るとともに分離領域に入射した光29もこれを透過して
基板21に達し、光電荷80を発生させることができる
ためきわめて感度の高い固体イメージセンサが得られる
。すなわち、この実施例では分離領域が受光領域を兼ね
ることになるので光電変換効率が向上し、高い感度が得
られることになる。一方、フォトダイオード24.25
で発生した光電荷80は溝25の壁に被着された絶縁膜
26によって横方向の移動は阻止されるが、この溝25
は深く形成されているので、光電荷80が隣接するフォ
トダイオードに流入するのをほぼ完全に阻止することが
できる。
In the embodiment shown in FIG. 2, the isolation region is formed by the groove 25, the insulating film 26 attached to the wall of the groove, and the dielectric material 27 embedded in the groove, but the width of the groove 25 is Because of its narrow size, the effective light-receiving area of each phototransistor 24, 25 becomes large, and the light 29 incident on the separation region also passes through this and reaches the substrate 21, generating a photocharge 80, making it an extremely sensitive solid state. An image sensor is obtained. That is, in this embodiment, the separation region also serves as the light receiving region, so that the photoelectric conversion efficiency is improved and high sensitivity is obtained. On the other hand, photodiode 24.25
The photocharges 80 generated in the groove 25 are prevented from moving in the lateral direction by the insulating film 26 deposited on the walls of the groove 25.
Since the photoelectric charges 80 are formed deeply, it is possible to almost completely prevent the photocharges 80 from flowing into adjacent photodiodes.

したがって隣接するフォトダイオード間のクロストーク
を十分低減することができ、高解像度の画像信号を得る
ことができる。
Therefore, crosstalk between adjacent photodiodes can be sufficiently reduced, and a high-resolution image signal can be obtained.

このように各光電変換素子の周囲にこれを囲むように深
くて幅の狭い溝25を形成し、この溝の壁を絶縁膜z6
で被覆し、溝の内部に透明な誘電体27を埋込んで分離
領域を形成することにより、クロストークがなく、かつ
受光感度が高い固体イ、メージセンサを得ることができ
る。このような分離領域の構成は、解像度よりも感度を
重視する高感度白黒固体イメージセンサに適用するのが
特に好適である。
In this way, a deep and narrow groove 25 is formed around each photoelectric conversion element so as to surround it, and the walls of this groove are covered with an insulating film z6.
By covering the groove with a transparent dielectric material 27 and forming a separation region, a solid-state image sensor with no crosstalk and high light-receiving sensitivity can be obtained. Such a configuration of the separation region is particularly suitable for application to a high-sensitivity black-and-white solid-state image sensor in which sensitivity is more important than resolution.

第8図は本発明の固体イメージセンサの他の実施例を示
す断面図である。本例でもN形シリコン基板81の表面
上に1形シリコン表面層82をエピタキシャル成長させ
てP”Nシリコンフォトダイオード88.84を形成す
る。基板81および表面層82より成る半導体チップの
表面から内部へ向は深くて幅の狭い断面7字状の溝85
を各フォトダイオード88.84を囲むように形成する
FIG. 8 is a sectional view showing another embodiment of the solid-state image sensor of the present invention. In this example as well, a type 1 silicon surface layer 82 is epitaxially grown on the surface of an N type silicon substrate 81 to form a P''N silicon photodiode 88,84. A groove 85 with a 7-shaped cross section is deep and narrow in the opposite direction.
are formed to surround each photodiode 88, 84.

この溝85の壁にシリコン酸化物の絶縁膜86を被覆す
るとともにその上に遮光膜87を被着する。
A silicon oxide insulating film 86 is coated on the wall of this groove 85, and a light shielding film 87 is deposited thereon.

この遮光膜は、No l Or 、 Wなどの高融点金
属またはそれらのシリサイドをOVD法またはスパッタ
蒸着法などの薄膜製造法を用いて被着形成することがで
きる。さらに溝85の内部にはポリシリコンのように高
融点金属との密着性のよい誘電体88を埋込んで分離領
域を構成する。1形表面層82および分離領域の表面に
はシリコン酸化物より成る絶縁膜89を被着する。ポリ
シリコンは不透明であるが、上述した透明誘電体を用い
ることもできる。
This light-shielding film can be formed by depositing a high melting point metal such as NolOr or W or a silicide thereof using a thin film manufacturing method such as an OVD method or a sputter deposition method. Furthermore, a dielectric material 88 having good adhesion to a high melting point metal, such as polysilicon, is buried inside the trench 85 to form an isolation region. An insulating film 89 made of silicon oxide is deposited on the surface of the type 1 surface layer 82 and the isolation region. Although polysilicon is opaque, the transparent dielectrics mentioned above can also be used.

本例の固体イメージセンサでは分離領域に遮光膜87を
設けたため、フォトダイオード84に斜めから入射する
光40は、絶縁膜86と遮光膜87との界面で反射され
、隣接するフォトダイオード88に入り込むことはない
。もし、この遮光膜87がないと、光40は破線で示す
ように隣接するフォトダイオード88にも入射すること
になり、結果として解像度の低下を招くことになる。
In the solid-state image sensor of this example, since the light shielding film 87 is provided in the separation region, the light 40 incident obliquely on the photodiode 84 is reflected at the interface between the insulating film 86 and the light shielding film 87 and enters the adjacent photodiode 88. Never. If this light shielding film 87 were not present, the light 40 would also be incident on the adjacent photodiode 88 as shown by the broken line, resulting in a decrease in resolution.

カラー用の固体イメージセンサにおいて前面に赤。Red on the front in a color solid-state image sensor.

緑、青色のフィルタを配置したものにおいては、隣接す
る光電変換素子間の信号分離を白黒用の固体イメージセ
ンサより厳密に行なわないと、赤。
In devices with green and blue filters, unless the signal separation between adjacent photoelectric conversion elements is performed more strictly than in black-and-white solid-state image sensors, red will appear.

緑、青色間の混色が生ずることになる。このような混色
は画像色再現性を著しく劣化させるのでカラー固体イメ
ージセンサにとっては致命的な欠点となる。第8図に示
す実施例においては、深い分層領域によって隣接する光
電変換素子間での光電荷の回わり込みを有効に防止する
ことができるとともに遮光膜を設けたために斜めに入射
した光が隣接する光電変換素子に同時に入射することが
なくなるので、上述した混色を抑止することができ鮮明
なカラー画像を得ることができる効果がある。
Color mixture between green and blue will occur. Such color mixture significantly deteriorates image color reproducibility and is a fatal drawback for color solid-state image sensors. In the embodiment shown in FIG. 8, it is possible to effectively prevent the circulation of photocharges between adjacent photoelectric conversion elements by the deep layer separation region, and the provision of the light-shielding film prevents obliquely incident light from occurring. Since the light does not enter adjacent photoelectric conversion elements at the same time, the above-mentioned color mixture can be suppressed and a clear color image can be obtained.

なお、第8図に示した実施例においては、誘電体88は
透明であっても不透明であってもよい。
In the embodiment shown in FIG. 8, the dielectric 88 may be transparent or opaque.

本発明は上述した実施例にのみ限定されるものではなく
、幾多の変形が可能である。例えば上述した実施例では
チップとしてシリコン半導体チップを用いたが、化合物
半導体やアモルファス材料より成るチップを用いること
もできる。また、光電変換素子をフォトダイオードを以
って構成したが、フォトトランジスタを以って構成する
こともできる。さらに、第8図の実施例において、不透
明な誘電体を溝内に埋込む場合には、遮光膜を別個に設
けなくてもよい。また、上述した実施例では溝の断面形
状をV字状としたが、深くて幅の狭いものであればU字
状などの他の形状とすること発明の効果 上述した本発明の固体イメージセンサにおいては、隣接
する光電変換素子を囲むように深くて幅の狭い溝を形成
し、この溝の壁を絶縁膜で被覆するとともに溝内部に透
明な誘電体を埋込んで分離領域を形成したため、隣接す
る光電変換素子間での光電荷の漏洩はなくなり、クロス
トークを抑止することができプルミーングやスミャのな
い鮮明な画像が得られるとともに分離領域の幅が狭いた
めに画素寸法を小さくすることができ、高密度高解像度
の固体イメージセンサが得られる。また、誘電体を透明
とすることによって分離領域も受光領域として利用する
ことができるため、開口率が大きくなり、高感度の固体
イメージセンサが得られる。
The present invention is not limited to the embodiments described above, but can be modified in many ways. For example, in the embodiments described above, a silicon semiconductor chip is used as the chip, but a chip made of a compound semiconductor or an amorphous material may also be used. Further, although the photoelectric conversion element is constructed using a photodiode, it can also be constructed using a phototransistor. Furthermore, in the embodiment of FIG. 8, if an opaque dielectric material is embedded in the groove, it is not necessary to separately provide a light shielding film. Further, in the above-mentioned embodiment, the cross-sectional shape of the groove is V-shaped, but if the groove is deep and narrow, it may be formed into another shape such as U-shape. In this method, deep and narrow grooves were formed to surround adjacent photoelectric conversion elements, the walls of these grooves were covered with an insulating film, and a transparent dielectric material was buried inside the grooves to form an isolation region. Leakage of photocharges between adjacent photoelectric conversion elements is eliminated, crosstalk can be suppressed, and clear images with no pluming or smearing can be obtained, and the narrow width of the separation region makes it possible to reduce pixel dimensions. A high-density, high-resolution solid-state image sensor can be obtained. Furthermore, by making the dielectric transparent, the separation region can also be used as a light-receiving region, which increases the aperture ratio and provides a highly sensitive solid-state image sensor.

さらに、分離領域に遮光性を持たせる場合には画素間で
の光の洩れを防ぐこともできるためカラー固体イメージ
センサに応用した場合に、赤、緑。
Furthermore, if the separation area has a light-shielding property, it can also prevent light from leaking between pixels, so when applied to a color solid-state image sensor, it is useful for red and green.

青色間での混色の少ない鮮明なカラー画像が得ら、れる
効果がある。
A clear color image with less color mixing between blue colors can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の固体イメージセンサの構成を示す断面図
、 第2図は本発明の固体イメージセンサの一実施例の構成
を示す断面図、 第8図は本発明の固体イメージセンサの他の実施例の構
成を示す断面図である。 21、81・・・基板 22.82・・・表面層28、
24.88.84・・・フォトダイオード25、85・
・・溝 26.36・・・絶縁膜27、88・・・誘電
体 87・・・遮光膜28、89・・・絶縁膜 29.
40・・・入射光80・・・光電荷。 第1図 第2図 手 続 補 正 書 昭和60年 6月10日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第75782号 2、発明の名称 固体イメージセンサ 3、補正をする者 事件との関係 特許出願人 (037) オリンパス光学工業株式会社4、代理人 ・1.明細書第7頁第20行の「フォトトランジスタ2
4.254を「フォトダイオード28,24Jに訂正す
る。 2、同第8頁第7〜8行の「フォトダイオード24゜2
5」を「フォトダイオード28.g4Jに訂正する。 8図面中、第8図を別紙のとおりに訂正する。 第3図
FIG. 1 is a sectional view showing the configuration of a conventional solid-state image sensor, FIG. 2 is a sectional view showing the configuration of an embodiment of the solid-state image sensor of the present invention, and FIG. 8 is a sectional view of another solid-state image sensor of the present invention. FIG. 2 is a cross-sectional view showing the configuration of an example. 21, 81...Substrate 22.82...Surface layer 28,
24.88.84...Photodiode 25, 85.
...Groove 26.36...Insulating film 27, 88...Dielectric material 87...Light shielding film 28, 89...Insulating film 29.
40...Incoming light 80...Photocharge. Figure 1 Figure 2 Procedures Amendment Document June 10, 1985 Manabu Shiga, Director General of the Patent Office1, Indication of the incident, Patent Application No. 75782 of 1982, Title of the invention, Solid-state image sensor 3, Amendment. Relationship with the case involving the person who filed the patent application (037) Olympus Optical Industry Co., Ltd. 4, Agent 1. “Phototransistor 2” on page 7, line 20 of the specification
4. Correct 254 to "Photodiode 28, 24J." 2. "Photodiode 24°2" on page 8, lines 7-8.
5" is corrected to "Photodiode 28.g4J. Figure 8 of the 8 drawings is corrected as shown in the attached sheet. Figure 3.

Claims (1)

【特許請求の範囲】 L 複数の光電変換素子を同一のチップに二次元的に配
列した固体イメージセンサにおいて各々の光電変換素子
を囲むようにその周囲に表面から内部に堀った深くてか
つ幅の狭い溝を有し、この溝の壁を絶縁膜で被覆すると
ともに溝の内部に透明な誘電体を埋込んで形成した分離
領域を設けたことを特徴とする固体イメージセンサ。 区 複数の光電変換素子を同一チップに二次元的に配列
した固体イメージセンサにおいて、各々の光電変換素子
を囲むようにその周囲に表面から内部に掘った深くてか
つ幅の狭い溝を有し、この溝の壁を絶縁膜で被覆し、さ
らにこの絶縁膜上に遮光膜を被覆するとともに溝の内部
に誘電体を埋込むか遮光膜を被覆することなく遮光性の
誘電体を埋込んで形成した分離領域を設けたことを特徴
とする固体イメージセンサ。
[Claims] L In a solid-state image sensor in which a plurality of photoelectric conversion elements are two-dimensionally arranged on the same chip, a deep and wide trench is dug from the surface to the inside so as to surround each photoelectric conversion element. 1. A solid-state image sensor comprising a narrow groove, the walls of the groove being covered with an insulating film, and an isolation region formed by burying a transparent dielectric material inside the groove. A solid-state image sensor in which a plurality of photoelectric conversion elements are two-dimensionally arranged on the same chip, having a deep and narrow groove dug inward from the surface so as to surround each photoelectric conversion element, The walls of this groove are coated with an insulating film, and then a light-shielding film is coated on top of this insulating film, and a dielectric is buried inside the groove, or a light-shielding dielectric is buried without covering the light-shielding film. A solid-state image sensor characterized by having a separated region.
JP59075782A 1984-04-17 1984-04-17 Solid-state image sensor Pending JPS60233851A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59075782A JPS60233851A (en) 1984-04-17 1984-04-17 Solid-state image sensor
DE19853513196 DE3513196A1 (en) 1984-04-17 1985-04-12 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075782A JPS60233851A (en) 1984-04-17 1984-04-17 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPS60233851A true JPS60233851A (en) 1985-11-20

Family

ID=13586125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075782A Pending JPS60233851A (en) 1984-04-17 1984-04-17 Solid-state image sensor

Country Status (2)

Country Link
JP (1) JPS60233851A (en)
DE (1) DE3513196A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281001A (en) * 1988-04-30 1989-11-13 Kobashi Kogyo Co Ltd Device for connecting working machine to tractor
JPH0231153U (en) * 1988-08-20 1990-02-27
JPH04369273A (en) * 1991-06-18 1992-12-22 Fujitsu Ltd Infrared ray sensor
KR100670606B1 (en) 2005-08-26 2007-01-17 (주)이엠엘에스아이 Device isolation sturcture of image sensor for decreasing cross-talk and fabrication method thereof
JP2007227750A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Semiconductor device and its manufacturing method
JP2014045198A (en) * 2006-04-25 2014-03-13 Koninklijke Philips Nv METHOD OF MANUFACTURING AVALANCHE PHOTODIODE BY Bi-CMOS PROCESS
JP2015164210A (en) * 2015-04-16 2015-09-10 ソニー株式会社 Solid state image sensor, and electronic apparatus
US9570500B2 (en) 2009-02-10 2017-02-14 Sony Corporation Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2017168869A (en) * 2017-06-19 2017-09-21 ソニー株式会社 Solid imaging device and electronic apparatus
CN108695399A (en) * 2017-04-04 2018-10-23 浜松光子学株式会社 Optical semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914301A (en) * 1987-04-21 1990-04-03 Kabushiki Kaisha Toshiba X-ray detector
DE4116694C2 (en) * 1990-05-31 2001-10-18 Fuji Electric Co Ltd Semiconductor device provided with a photodiode and method for its production
JP2817703B2 (en) * 1996-04-25 1998-10-30 日本電気株式会社 Optical semiconductor device
TWI251931B (en) * 2004-12-29 2006-03-21 Advanced Chip Eng Tech Inc Imagine sensor with a protection layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0067566A3 (en) * 1981-06-13 1985-08-07 Plessey Overseas Limited Integrated light detection or generation means and amplifying means

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281001A (en) * 1988-04-30 1989-11-13 Kobashi Kogyo Co Ltd Device for connecting working machine to tractor
JPH0231153U (en) * 1988-08-20 1990-02-27
JPH04369273A (en) * 1991-06-18 1992-12-22 Fujitsu Ltd Infrared ray sensor
KR100670606B1 (en) 2005-08-26 2007-01-17 (주)이엠엘에스아이 Device isolation sturcture of image sensor for decreasing cross-talk and fabrication method thereof
JP2007227750A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Semiconductor device and its manufacturing method
JP4584159B2 (en) * 2006-02-24 2010-11-17 セイコーインスツル株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2014045198A (en) * 2006-04-25 2014-03-13 Koninklijke Philips Nv METHOD OF MANUFACTURING AVALANCHE PHOTODIODE BY Bi-CMOS PROCESS
US9570500B2 (en) 2009-02-10 2017-02-14 Sony Corporation Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US9647025B2 (en) 2009-02-10 2017-05-09 Sony Corporation Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US9799698B2 (en) 2009-02-10 2017-10-24 Sony Corporation Solid-state imaging device having improved light-collection, method of manufacturing the same, and electronic apparatus
US10141365B2 (en) 2009-02-10 2018-11-27 Sony Corporation Solid-state imaging device having improved light-collection, method of manufacturing the same, and electronic apparatus
US11735620B2 (en) 2009-02-10 2023-08-22 Sony Group Corporation Solid-state imaging device having optical black region, method of manufacturing the same, and electronic apparatus
JP2015164210A (en) * 2015-04-16 2015-09-10 ソニー株式会社 Solid state image sensor, and electronic apparatus
CN108695399A (en) * 2017-04-04 2018-10-23 浜松光子学株式会社 Optical semiconductor device
JP2018181911A (en) * 2017-04-04 2018-11-15 浜松ホトニクス株式会社 Optical semiconductor device
US11088190B2 (en) 2017-04-04 2021-08-10 Hamamatsu Photonics K.K. Optical semiconductor device
JP2017168869A (en) * 2017-06-19 2017-09-21 ソニー株式会社 Solid imaging device and electronic apparatus

Also Published As

Publication number Publication date
DE3513196A1 (en) 1985-10-17

Similar Documents

Publication Publication Date Title
US7166880B2 (en) Vertical color filter sensor group with carrier-collection elements of different size and method for fabricating such a sensor group
US6894265B2 (en) Vertical color filter sensor group and semiconductor integrated circuit fabrication method for fabricating same
US6841816B2 (en) Vertical color filter sensor group with non-sensor filter and method for fabricating such a sensor group
US7760254B2 (en) Single plate-type color solid-state image sensing device
JPS60233851A (en) Solid-state image sensor
US6914314B2 (en) Vertical color filter sensor group including semiconductor other than crystalline silicon and method for fabricating same
JPH09266296A (en) Solid-state image sensing device
JPS61133660A (en) Solid state image sensor
GB1594185A (en) Solid-state imaging devices
CN100573907C (en) Vertical color filter sensor groups and make used semiconductor integrated circuit manufacture method
CN100505321C (en) Non-crystalline silicon vertical color filter sensor set and its manufacture method
US4392154A (en) Solid-state color image sensor
JP2521789B2 (en) Photosensitive unit structure of solid-state imaging device
WO2005119792A1 (en) Vertical color filter sensor group
JPS6242426B2 (en)
US6555855B2 (en) Solid state imaging device
JPH01168059A (en) Solid state image sensor
JP2922688B2 (en) Infrared solid-state image sensor
JPH08227989A (en) Solid state image pickup element
Sakakibara et al. A 1" format 1.5 M pixel IT-CCD image sensor for an HDTV camera system
JPH03190272A (en) Solid-state camera device
JPH01241161A (en) Solid-state image sensing device
JPS60173978A (en) Solid-state image pickup device
JPH01248659A (en) Solid state imaging device
JPS61265865A (en) Solid-state image pickup element