JPS60233838A - Semiconductor ic device - Google Patents

Semiconductor ic device

Info

Publication number
JPS60233838A
JPS60233838A JP59087782A JP8778284A JPS60233838A JP S60233838 A JPS60233838 A JP S60233838A JP 59087782 A JP59087782 A JP 59087782A JP 8778284 A JP8778284 A JP 8778284A JP S60233838 A JPS60233838 A JP S60233838A
Authority
JP
Japan
Prior art keywords
layer
unit cell
well
integrated circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59087782A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kuwata
和彦 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59087782A priority Critical patent/JPS60233838A/en
Publication of JPS60233838A publication Critical patent/JPS60233838A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the IC device difficult in latch-up by a method wherein an N<+> layer is provided in a wiring region where P-channel element regions are opposed to each other, and is then connected to the power source; then, a P<+> layer and a P-well are provided in a wiring region where N-channel element regions are opposed to each other, and the P<+> layer is grounded. CONSTITUTION:The N<+> layer 14' is formed in the P type element region 6' where unit cell arrays 4' and 4'' are arranged on an N type Si substrate and opposed to each other, and is then connected to an adjacent power source 12 for the power supply VDD. On the other hand, the P-well 10' and the P<+> layer 15' are formed in a wiring region 6''. The P-well 10' is connected to an adjacent N<+> layer 9, and the P<+> layer 15' is connected to an adjacent ground electrode. Since the electrodes 12 are connected to each other, even when a large current flows to one electrode instantaneously, the other electrode buffers it and reduces internal noises due to the power supply VDD and the potential swing at the ground. Contrarily, the phenomenon of impact ionization becomes less influenced by the substrate current because of the enlargement of the P-well 10', N<+> layer 14', and P<+> layer 15'; accordingly, latch-up is difficult to occur.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体集積回路装置、特にマスタヌライス方式
によるマスタチップとして用いられる半導体集積回路装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit device, and particularly to a semiconductor integrated circuit device used as a master chip according to a master nulling method.

〔発明の技術的背景〕[Technical background of the invention]

少量多品糧の集積回路を効率よく開発するために、拡散
工程までは各品種に共通なマスクパターンを設計し共通
プロセスでメJ造しておき、西−線パターンのみを各品
種ごとに設計製造するマスタスライス方式は、従来から
広く採用されている。従来の相補型MO8FET を用
いたマスタスライス方式によるマスタチップの上面図を
第1図に示す。
In order to efficiently develop integrated circuits for small quantities and many products, a mask pattern common to each product is designed and fabricated using a common process up to the diffusion process, and only the west line pattern is designed for each product. The master slice method for manufacturing has been widely adopted. FIG. 1 shows a top view of a master chip using a master slice method using conventional complementary MO8FETs.

パッド、入力保砕回路等で構成される入出力回路1の集
合である入出力回路列2がチップの周囲に配される。ま
た、相補型MO8FBTによって構成される単位セル3
を並べた単位セル列4がチップ中央部の単位セル集合体
領域5に配される。各単位セル列4の間には配線領域6
が設けられる。第1図のマスタチップを切断輻X−Xで
切断した断面の一部分を第2図に示す。ここでvI域巳
およびbは第11’、21の領域&およびbに対応する
。N型基板7上に設けられたP+拡散領域8はPチャネ
ルMO8FET を構成する。このFETのソース、ゲ
ート、ドレインは第2図で紙面に垂直な方向に並んでい
るため、図にはソースまたはドレインの一方+ のみしか表わされてい表い。N 拡散領域9およびP型
ウェル1.01dNチャネルMO日FIT l構成する
。このPETも図ではソースまたはドレインの一方のみ
しか表わされていない。これら2つのNETKよって相
補型MO8FETが構成されることになる。N型基板7
上には絶縁層11が形成され、これに−17タ?トホー
ルが開けられてアルミニウムの重接12および13が形
成される。奄′@1.12には電源vDDが接続され、
電極13は接地される。電極12の下にtIiN+拡散
領域14が、イ嘩13の下にはP+拡散領域15がそれ
ぞれガードリングとして設けられる。第3図は第1図の
部分拡大図である。図中の2分よびNはそれぞれPチャ
ネルMO8FET を構成するP型飴域およびNチャネ
ルMO81+’BT を構成するN型領域を示す。以上
のような構成のマスタチップの電位セル列4と配線領域
6に配線パターンが形成され、各品種ごとのチップが得
られる。
An input/output circuit array 2, which is a set of input/output circuits 1 including pads, input protection circuits, etc., is arranged around the chip. In addition, unit cell 3 constituted by complementary MO8FBT
A unit cell row 4 in which . A wiring area 6 is provided between each unit cell column 4.
is provided. FIG. 2 shows a portion of the cross section of the master chip shown in FIG. 1 taken along the cutting radius X--X. Here, vI region and b correspond to the 11', 21st region & and b. P+ diffusion region 8 provided on N type substrate 7 constitutes a P channel MO8FET. Since the source, gate, and drain of this FET are arranged in a direction perpendicular to the plane of the paper in FIG. 2, only one of the source and drain is shown in the figure. N diffusion region 9 and P type well 1.01dN channel MO day FIT l constitute. This PET also shows only one of the source and drain in the figure. These two NETKs constitute a complementary MO8FET. N-type substrate 7
An insulating layer 11 is formed on top, and -17 ta? Holes are drilled to form aluminum welds 12 and 13. Power supply vDD is connected to 奄′@1.12,
Electrode 13 is grounded. A tIiN+ diffusion region 14 is provided under the electrode 12, and a P+ diffusion region 15 is provided below the insulator 13 as a guard ring. FIG. 3 is a partially enlarged view of FIG. 1. 2 and N in the figure indicate the P-type region constituting the P-channel MO8FET and the N-type region constituting the N-channel MO81+'BT, respectively. A wiring pattern is formed in the potential cell array 4 and the wiring area 6 of the master chip configured as described above, and chips for each type are obtained.

〔背景技術の問題点〕[Problems with background technology]

上述した従来の半導体集積回路装置においては、電極1
2および13を多数のFETが共用しておシ、多数のゲ
ート類が同時スイッチングした場合等に、瞬時に大電流
が流れ、電源vDDや接地点の電位に揺らぎが生じ内部
雑音が発生する。また、インパクトイオン化現象により
、ホットエレクトロンや基板電流が10(LSI)内に
生じる。これら′眠源ラインの内部雑音や基板電流等は
ラッチアップの原因となる。
In the conventional semiconductor integrated circuit device described above, the electrode 1
When 2 and 13 are shared by a large number of FETs and a large number of gates switch simultaneously, a large current flows instantaneously, causing fluctuations in the potential of the power supply vDD and the ground point, causing internal noise. Furthermore, due to the impact ionization phenomenon, hot electrons and substrate current are generated within the LSI. Internal noise and substrate current in these 'sleep source lines' cause latch-up.

即ち、相補型MO3FET 内に形成される寄生トラン
ジスタが、内部雑音や基板電流等によってターンオンし
、工0 (7J S x )の誤動作やrJl壊f引起
す現象が生ずる(例えば電子通毎学会論文誌J61(1
978)P、 106)。
In other words, the parasitic transistor formed in the complementary MO3FET is turned on due to internal noise, substrate current, etc., resulting in malfunction of 0 (7J S x ) and failure of rJ1 (e.g., J61(1
978) P, 106).

〔発明の目的〕[Purpose of the invention]

そこで本発明は、ラッチアップ現象の生ずることのない
マスタスライス方式のマスタチップとして用いられる半
導体集積回路装置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor integrated circuit device that is used as a master chip in a master slice method and is free from latch-up phenomena.

〔発明の概要〕[Summary of the invention]

本発明の%νシば、相補型MO8FET 金柑いたマス
タスライス方式による半導体集積回路装置において、隣
接する単位セル列の囲いあう末子領域が同じ導電型の素
子領域となるように各単位セル列を配置し、各単位セル
列間の配線領域のうち、Pチャネル光子領域か向いあう
配線領域にはN 不純物拡散を行い、Nチャネル朱子領
域が向いあう配線領域にはP 不純物拡散およびPウェ
ル形成と行In、N 不純物拡散1鍔に雷神を接続し、
P1不純物拡散層を接#紐に接続するようにして、電源
および接地線の電位の揺らぎを減少させ、また、インパ
クトイオン化現象により生ずるポットエレクトロン、基
板電流の影響を減少させることにより、ラッチアップ現
脈が生じないようにした点にある。
According to the present invention, in a semiconductor integrated circuit device using a complementary MO8FET master slicing method, each unit cell row is arranged such that the terminal regions of adjacent unit cell rows are element regions of the same conductivity type. Of the wiring regions between each unit cell column, N impurity diffusion is performed in the wiring region facing the P channel photon region, and P impurity diffusion and P well formation are performed in the wiring region facing the N channel satin region. In, N Impurity diffusion 1 Connect the thunder god to the tsuba,
By connecting the P1 impurity diffusion layer to the connecting cord, the fluctuations in the potential of the power supply and ground lines are reduced, and the effects of pot electrons and substrate current caused by the impact ionization phenomenon are reduced, thereby preventing latch-up. The reason is that the pulse is not generated.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図示する実施例に基づいて詳述する。第4
圀は本発明に係る半導体集積回路装置の上面図で、第1
図と同一構成要素につめては同一符号を角し説明を省略
する。単位セル列4′および45NチヤネルとPチャネ
ルの構成が互いに入れかわった形の単位セルの集合で、
この関係は第4図の部分拡大図である第6図を参照する
ことによってより明確化する。NチャネルとPチャネル
トが入れかわることによって電4;y 12および13
の位買関係も逆転する。第4図に示すように単位セル列
41および4+1は交互に配せられる。従って号りあう
単位セルh(1においては、同じ導’f%、’型の表子
領域が向いあうことになる。囲いあうP型の勢子領域に
侠掟れた配猾領域69および回いあうN型の米子領域に
挾−!、わ、た配線領域61には、それぞれ異なった層
が基板内に形成される。これらの層は、第4図のマスタ
チップを切断線Y −Yで切断した部分断面(図である
第51シ)に示されている。即ち、配線類1或6’[相
当する基板内にFiN+拡散層141が形成され、第2
図でのN4−拡散層14と同様の機能を有するとともに
、隣りあう′電標vDD用の′電極12を互いに接続す
る歓能全果たす。一方、配線領域611に相当する基板
内にはPウェル僧1σおよび?拡散I@151が形成さ
れる。Pウェル410’は第2図でのPウェル層10と
1司枦の1幾能を有するとともに、隋りあうN+拡散層
9を互いに接続する機能を果たし、1+ た、P 拡散+115−は第2図でのP 拡散層15と
同様のや能を有するとともに、114りあう接地用電極
13を互いに接続する機能を果たす。
The present invention will be described in detail below based on illustrated embodiments. Fourth
1 is a top view of a semiconductor integrated circuit device according to the present invention;
Components that are the same as those in the figures are denoted by the same reference numerals and their explanations will be omitted. Unit cell rows 4' and 45 are a set of unit cells in which the N channel and P channel configurations are interchanged,
This relationship will be made clearer by referring to FIG. 6, which is a partially enlarged view of FIG. 4. By swapping the N channel and P channel, electric 4;y 12 and 13
The buying and selling relationship will also be reversed. As shown in FIG. 4, unit cell rows 41 and 4+1 are arranged alternately. Therefore, in the unit cell h (1), the front regions of the same conductive 'f%, ' type face each other. Different layers are formed in the substrate in each of the interconnection areas 61 that meet the N-type Yonago area.These layers are formed by cutting the master chip along the cutting line Y-Y in This is shown in a partial cross section (No. 51 in the figure). That is, the wiring type 1 or 6' [the FiN+ diffusion layer 141 is formed in the corresponding substrate, and the second
It has the same function as the N4-diffusion layer 14 in the figure, and also serves the function of connecting the adjacent electrodes 12 for the electrodes vDD to each other. On the other hand, inside the substrate corresponding to the wiring region 611 are P wells 1σ and ? Diffusion I@151 is formed. The P-well 410' has the same function as the P-well layer 10 in FIG. It has the same function as the P diffusion layer 15 in FIG.

上述のように本実施例でU、*+Xりあう電極12が互
いに接続され、寸た隣りあう電極13が互いに接続され
るため、一方の電極に瞬時に大電流が流れた場合にも他
方の電極がこれを緩衝し、電源■ゆや接地点の電位の揺
らぎによる内部雑音を従来より少なくすることができる
。一方、インパクトイオン化現象については、Pウェル
10“、N+拡散領域141、およびP十拡散頒域15
′が、従来の各領域に比べて広くなるため、基板電流等
の影響を少なくすることができる。
As described above, in this embodiment, the electrodes 12 that are opposite each other by U and *+X are connected to each other, and the electrodes 13 that are directly adjacent to each other are connected to each other, so even if a large current flows instantaneously to one electrode, the other electrode's The electrode buffers this, making it possible to reduce internal noise caused by fluctuations in potential at the power source and ground point compared to conventional devices. On the other hand, regarding the impact ionization phenomenon, P well 10'', N+ diffusion region 141, and P10 diffusion region 15
' is wider than each conventional area, so the influence of substrate current etc. can be reduced.

なお、このマスタチップに各品種に応じた配線パターン
をバターニングした後、配線領域の未使用部分を利用し
て該配線領域をはさむ両電惨どうじを互いに接続するよ
う配線することにより、電源ラインを安定化させること
もできる。
In addition, after patterning the wiring pattern according to each product type on this master chip, the power supply line can be connected by using the unused part of the wiring area to connect the two electrical channels that sandwich the wiring area. It can also be stabilized.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば、電源ラインの内部雑音
やインパクトイオン化現象による基板電流等の影響を少
なくできるため、これらを原因とするラッチアップ現象
が起こりにくい半導体集積回路装置を提供することがで
きる。
As described above, according to the present invention, it is possible to reduce the effects of internal noise in the power supply line and substrate current caused by impact ionization, and therefore it is possible to provide a semiconductor integrated circuit device in which the latch-up phenomenon caused by these factors is less likely to occur. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相補型MO8FET を用いたマスタヌ
ライス方式による半導体集積回路装置の上面図、第2図
は第1図に示す半導体集積回路装置の切断線X−Xによ
る部分断面図、第8図は第1図に示す半導体集積回路装
置の上面図の部分拡大図、第4図は本発明に係る半導体
集積回路装置の上面図、第5図は第4図に示す半導体集
積回路装置の切断線x−yによる部分断面図、第6図は
第4図に示す半導体集積回路装置の上面図の部分拡大図
である。 l・・・入出力回路、2・・・入出力回路列、3・・・
単位セル、4・・・単位セル列、5・・・単位セル集合
体領域、6・・・配線領域、7・・・N型基板、8・・
・P+拡散領域、9・・・N 拡散領域、10・・・P
型ウェル、11・・・絶縁層、12・・・電源用電極、
13・・・接地用電極、14・・・N+拡散領域、15
・・・P+拡散領域。 出願人代理人 猪 股 清 ′$ 1 図 第2図
FIG. 1 is a top view of a semiconductor integrated circuit device using a conventional master-nullice method using complementary MO8FETs, FIG. 2 is a partial cross-sectional view of the semiconductor integrated circuit device shown in FIG. 1 along cutting line X-X, and FIG. is a partial enlarged view of the top view of the semiconductor integrated circuit device shown in FIG. 1, FIG. 4 is a top view of the semiconductor integrated circuit device according to the present invention, and FIG. 5 is a cutting line of the semiconductor integrated circuit device shown in FIG. 4. FIG. 6 is a partially enlarged top view of the semiconductor integrated circuit device shown in FIG. 4; l...input/output circuit, 2...input/output circuit row, 3...
Unit cell, 4... Unit cell row, 5... Unit cell assembly area, 6... Wiring area, 7... N-type substrate, 8...
・P+diffusion area, 9...N diffusion area, 10...P
mold well, 11... insulating layer, 12... power supply electrode,
13...Grounding electrode, 14...N+ diffusion region, 15
...P+ diffusion region. Applicant's agent Kiyoshi Inomata'$ 1 Figure 2

Claims (1)

【特許請求の範囲】 1、 N型半導体基板と、□ このN型半導体基板に構成され、この基板面において互
いに平行になるように配された複数の単位セル列と、 この複数の単位セル列の相互間に設けられた1i敬の配
線領域と、 を有する半導体集積回路装置であって、前記単位セル列
が、PチャネルMO8FETおよびNチャネルMO8F
FiT よりなる相補型MO8FETと、電源用電極と
、接地用1!極と、で構成される単位セルを、同じ導電
型のMO8FFjTが同じ側を向くように複数直線状に
並べたものである半導体集積回路装置において、 隣り合う2つの華位セル列の、配線領域をはさんで向き
合うそれぞれの側が、同じ導電型のMOSFET とな
るように前記単位セル列を配し、前記配線領域のうち、
PチャネルMO8?ETにはさまれた部分に対応する前
記N型半導体基板の■(分にN+不純物拡散層を設け、
前記配#j領域のうち、NチャネルMOF3NETには
さまれた部分に対応する前記N型半導体基+ 板の部分KP 不純物拡散層およびPウェル層を設け、 前記N+不純物拡散層を前記寛ω用電極に接+ 続し、前記P 不純物拡散層を前記接地用電極Kl&続
したことを特徴とする半導体集積回路装置。
[Claims] 1. An N-type semiconductor substrate, □ a plurality of unit cell rows formed on the N-type semiconductor substrate and arranged parallel to each other on the surface of the substrate, and the plurality of unit cell rows. A semiconductor integrated circuit device having a wiring area of 1 i x 1 provided between
Complementary MO8FET consisting of FiT, power supply electrode, and grounding 1! In a semiconductor integrated circuit device in which a plurality of unit cells consisting of poles and are arranged in a straight line so that MO8FFjTs of the same conductivity type face the same side, the wiring area of two adjacent cell rows The unit cell rows are arranged so that MOSFETs of the same conductivity type are on each side facing each other across the wiring area.
P channel MO8? An N+ impurity diffusion layer is provided in the part (■) of the N-type semiconductor substrate corresponding to the part sandwiched between the ETs,
A portion KP of the N-type semiconductor substrate corresponding to a portion sandwiched between the N-channel MOF3NETs in the wiring #j region, an impurity diffusion layer and a P well layer are provided, and the N+ impurity diffusion layer is used for the wide A semiconductor integrated circuit device, characterized in that the P impurity diffusion layer is connected to the grounding electrode Kl.
JP59087782A 1984-05-02 1984-05-02 Semiconductor ic device Pending JPS60233838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087782A JPS60233838A (en) 1984-05-02 1984-05-02 Semiconductor ic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087782A JPS60233838A (en) 1984-05-02 1984-05-02 Semiconductor ic device

Publications (1)

Publication Number Publication Date
JPS60233838A true JPS60233838A (en) 1985-11-20

Family

ID=13924546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087782A Pending JPS60233838A (en) 1984-05-02 1984-05-02 Semiconductor ic device

Country Status (1)

Country Link
JP (1) JPS60233838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928164A (en) * 1985-11-19 1990-05-22 Fujitsu Limited Integrated circuit device having a chip
US5444288A (en) * 1992-02-27 1995-08-22 U.S. Philips Corporation CMOS integrated circuit having improved power-supply filtering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928164A (en) * 1985-11-19 1990-05-22 Fujitsu Limited Integrated circuit device having a chip
US5444288A (en) * 1992-02-27 1995-08-22 U.S. Philips Corporation CMOS integrated circuit having improved power-supply filtering

Similar Documents

Publication Publication Date Title
US5814844A (en) Gate array having highly flexible interconnection structure
US4771327A (en) Master-slice integrated circuit having an improved arrangement of transistor elements for simplified wirings
US5821587A (en) Field effect transistors provided with ESD circuit
JPH0434309B2 (en)
US4825273A (en) Semiconductor integrated circuit device
JP3962441B2 (en) Semiconductor device
JP4039998B2 (en) Semiconductor device and semiconductor integrated circuit device
JPS60233838A (en) Semiconductor ic device
JP3060673B2 (en) Semiconductor integrated circuit
JP4017060B2 (en) Semiconductor device
JPH0258871A (en) Borderless masterslice semiconductor device
US20040203196A1 (en) Semiconductor integrated circuit
JP2933671B2 (en) Semiconductor integrated circuit device
JPS6362904B2 (en)
JPH0122736B2 (en)
JP2700365B2 (en) Semiconductor integrated circuit device
JP3747980B2 (en) Semiconductor integrated circuit device
JP2679034B2 (en) Semiconductor integrated device
KR920005798B1 (en) Borderless master slice semiconductor device
JPH0613589A (en) Master slice semiconductor device
JPH0371788B2 (en)
JPS6370541A (en) Semiconductor integrated circuit device
JPH0362551A (en) Standard cell and standard cell row
JPS6381946A (en) Semiconductor integrated circuit device
JPS6329544A (en) Semiconductr integrated circuit device