JPS60233512A - Method for detecting angle with high accuracy in measuring three-dimensional coordinate value - Google Patents

Method for detecting angle with high accuracy in measuring three-dimensional coordinate value

Info

Publication number
JPS60233512A
JPS60233512A JP8888884A JP8888884A JPS60233512A JP S60233512 A JPS60233512 A JP S60233512A JP 8888884 A JP8888884 A JP 8888884A JP 8888884 A JP8888884 A JP 8888884A JP S60233512 A JPS60233512 A JP S60233512A
Authority
JP
Japan
Prior art keywords
measurement
approach
measuring
displacement
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8888884A
Other languages
Japanese (ja)
Other versions
JPH0229965B2 (en
Inventor
Takayuki Sasabe
笹部 高之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP8888884A priority Critical patent/JPS60233512A/en
Publication of JPS60233512A publication Critical patent/JPS60233512A/en
Publication of JPH0229965B2 publication Critical patent/JPH0229965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Copy Controls (AREA)

Abstract

PURPOSE:To detect an angle with high accuracy by reducing friction in a contact point of a measuring ball and an object to be measured, which occurs when an automatic approach function of a profile machine tool has been used. CONSTITUTION:A measuring ball 12 is approached to an object to be measured automatically by fixing one shaft of X, Y and Z shafts, displacement quantities Ex, Ey and Ez of a measuring point T are read, and a direction vector of reaction from the inclined surface of the measuring point T by an internal operation of an NC, but due to the presence of a frictional force (f), the reaction turns to the N direction. Subsequently, the measuring ball 12 is separated from an inclined surface 11, and simultaneously moved by a triaxial NC automatic feed. Next, the measuring ball 12 is positioned simultaneously at an approach end point by the triaxial NC automatic feed, displacement quantities E'x, E'y and E'z are read again, a direction vector of a reaction from the inclined surface 11 in this state is derived, and the measuring ball 12 is moved along its direction vector until it is separated from the inclined surface 11. In this way, displacement quantities of the approach end point by the measurment of said two times are compared, the measuring procedure is repeated until its difference enters prescribed range, an angle of a contact point in the final time point is derived, and a coordinate of the contact point is calculated.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は三次元自由曲面の座標値測定における角度検出
方法に関し、さらに詳しくは、三次元自由曲面の座標値
測定に於いて、倣い工作機の自動アプローチ機能を用い
た場合に起こる測定球と被測定物との接触点での摩擦を
低減させて高精度な角度検出を行う角度検出方法である
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an angle detection method for measuring the coordinate values of a three-dimensional free-form surface. This is an angle detection method that performs highly accurate angle detection by reducing the friction at the point of contact between the measuring ball and the object to be measured that occurs when using the automatic approach function of .

口、従来技術 最近の傾向として切削加工から成形加工へと需要が変化
してきており、しかも、ますます高精度で、かつ、短納
期が要求されるようになってきている。そして成形加工
の中でも、特に三次元自由曲面を持つ金型の高精度の外
形測定は三次元測定機以外では計測が困難である。しか
し、三次元測定機は高価で、中小企業の多い金型メーカ
ーでは経済的な面で入手できない。
Regarding conventional technology, the recent trend is that demand is changing from cutting to molding, and moreover, higher precision and shorter delivery times are required. Among molding processes, it is particularly difficult to measure the highly accurate outer shape of a mold with a three-dimensional free-form surface using anything other than a three-dimensional measuring machine. However, three-dimensional measuring machines are expensive, and many small and medium-sized mold manufacturers cannot afford them.

上記の事情から、簡易的に倣い工作機のトレーサを用い
てオン・ザ・マシンで高精度な計測の可能性を検討した
。公知の倣い工作機の三次元座標測定原理は1軸固定自
動アプローチ機能を用い、被測定物に対してアプローチ
をかけ、アプローチ終了点における測定の合成変位のベ
クトルから、測定球と被測定面との接触点での角度を算
出し、アプローチ終了時のx、ySz軸方向の座標と、
測定球径及び演算によって得られた角度により、x、y
、z軸方向の座標を補正し、被測定物と測定球との接触
点の座標を得るものである。
Based on the above circumstances, we investigated the possibility of high-precision measurement on the machine using a simple tracer on a copying machine tool. The three-dimensional coordinate measurement principle of a known copying machine tool uses a single-axis fixed automatic approach function to approach the object to be measured, and then calculates the measurement sphere and surface to be measured from the vector of the resultant displacement of the measurement at the end point of the approach. Calculate the angle at the contact point, and calculate the coordinates in the x, ySz axis direction at the end of the approach,
Based on the measured sphere diameter and the angle obtained by calculation, x, y
, the coordinates in the z-axis direction are corrected to obtain the coordinates of the contact point between the object to be measured and the measurement sphere.

第1図は、測定球中心(0)と被測定物(2)と測定球
(1)との接触点(T)を含む平面で切ったものである
。第1図において、測定球(1)はXY軸を固定してz
軸方向に下降し、はじめT゛点で被測定物(2)に接触
、この時の球心位置を0′とする。さらに測定球(1)
はアプローチを続け、仮想球中心□l lの位置まで下
降して停止する。実際には、被測定物と接触することに
より、接触点Tを含む被測定物表面の法線上、点0に測
定球中心が移動することになる。5斤は測定球径に対応
した変位量であり、o o”が測定球の実際の変位量と
して検出される。仮想球中心点0°゛の座標値を(X、
 Y、Z)としたとき、測定球と被測定物とのと接触点
Tの座標値をめるには(X、Y、Z”)から、斜線部で
示した補正量(Hx、Hy、Hz)を減算してやればよ
い。補正量は測定球半径をRとして Hz=R・□−Ex Ex +Ey +Ez でめられる。
FIG. 1 is a plane cut along a plane including the center of the measurement sphere (0) and the point of contact (T) between the object to be measured (2) and the measurement sphere (1). In Figure 1, the measurement sphere (1) is fixed at the X and Y axes and
The ball descends in the axial direction and first contacts the object to be measured (2) at point T', and the ball center position at this time is set to 0'. Furthermore, measuring ball (1)
continues its approach, descends to the virtual sphere center □l l, and stops. In reality, by contacting the object to be measured, the center of the measurement sphere moves to point 0 on the normal line of the surface of the object to be measured including the contact point T. 5 is the displacement corresponding to the diameter of the measurement sphere, and o o'' is detected as the actual displacement of the measurement sphere.The coordinates of the virtual sphere center point 0° are expressed as (X,
Y, Z), to calculate the coordinate values of the contact point T between the measurement sphere and the object to be measured, from (X, Y, Z''), the correction amount shown in the shaded area (Hx, Hy, Hz).The correction amount can be determined by Hz=R・□−Ex +Ey +Ez, where R is the radius of the measurement sphere.

但し、ExsX軸方向の変位置 EyrY軸方向の変位置 EzsZ軸方向の変位置 第2図は、上記の性能を満足するトレーサヘッドの基本
構造で、測定球が平滑な被測定面に対し法線方向に変位
し停止させるには、測定球を三次元方向に自由支持し、
x、y、z方向とも変位−荷重特性(バネ常数)が等し
い特性が必要である。
However, ExsDisplacement in the X-axis direction EyrDisplacement in the Y-axis direction EzsDisplacement in the Z-axis direction Figure 2 shows the basic structure of the tracer head that satisfies the above performance, and the measurement sphere is normal to the smooth surface to be measured. To displace and stop the measurement sphere in the three-dimensional direction,
It is necessary to have equal displacement-load characteristics (spring constant) in the x, y, and z directions.

第2図において、測定球(1)は円筒状に分布した複数
の弾性リボン(3)とそれに直角なフランジ(5)で支
持される。弾性リボンでXY平面内の動作、フランジと
トレーサ軸(8)との間のリニアボール(6)で2軸方
向の動作を保証し、トレーサ軸は常に垂直方向を保ち平
行移動式で弾性変位する機構である。変位の検出はxS
y、z軸方向にそれぞれ差動トランス(7)を設けて検
出する。(4)は重量調整器である。
In FIG. 2, the measuring sphere (1) is supported by a plurality of cylindrically distributed elastic ribbons (3) and a flange (5) at right angles thereto. The elastic ribbon ensures movement in the XY plane, and the linear ball (6) between the flange and the tracer axis (8) ensures movement in two axes, and the tracer axis always maintains a vertical direction and is elastically displaced in parallel. It is a mechanism. Displacement detection is xS
Differential transformers (7) are provided in each of the y- and z-axis directions for detection. (4) is a weight adjuster.

ところで、上記の針側方法は、第3図に示す様に、倣い
工作機の同時1軸自動アプローチ機能を用いて角度θを
検出し、接触点の座標を算出している。この同時1軸自
動アプローチは測定球(1)が被測定物と接触し、軸方
向変位量Ex、Ey、Ezを入力しながら測定球(1)
が被測定物に沿って移動し、合成変位量(E=Ex2+
Ey2+Ez2)が設定値に達した時終了する。ところ
が、この時アプローチ方向による被測定物と測定球(1
)との間の摩擦力(f)の影響によって測定球(1)の
被測定物による抗力(N)が測定点(T)での面法線方
向を向かない。この為、軸方向変位(Ex、By、Ez
)から算出される測定点Tの角度は実際の値とは異なる
ものとなり、この角度がらめられる測定点の座標は測定
球径に比例した誤差が、介入する。
By the way, in the needle side method described above, as shown in FIG. 3, the simultaneous one-axis automatic approach function of the copying machine tool is used to detect the angle θ and calculate the coordinates of the contact point. In this simultaneous 1-axis automatic approach, the measuring ball (1) comes into contact with the object to be measured, and while inputting the axial displacement Ex, Ey, Ez, the measuring ball (1)
moves along the object to be measured, and the resultant displacement (E=Ex2+
The process ends when Ey2+Ez2) reaches the set value. However, at this time, the object to be measured and the measuring ball (1
) Due to the influence of the frictional force (f) between the measurement ball (1) and the object to be measured, the drag force (N) caused by the object to be measured does not point in the normal direction of the surface at the measurement point (T). For this reason, the axial displacement (Ex, By, Ez
) is different from the actual value, and an error proportional to the diameter of the measurement sphere intervenes in the coordinates of the measurement point in which this angle is involved.

ハ0発明の目的 本発明は倣い工作機のトレーサを用い、測定球と被測定
物との間の摩擦力の影響を除去して角度検出精度を向上
させ高精度な三次元座標値測定を行うことである。
Purpose of the Invention The present invention uses a tracer of a copying machine tool to eliminate the influence of frictional force between a measurement ball and a measured object, improve angle detection accuracy, and perform highly accurate three-dimensional coordinate value measurement. That's true.

二00発明構成 本発明は自動アプローチ機能、及び同時3軸制御機能を
有する倣い工作機を用い、1軸固定で自動アプローチを
かけ、自動アプローチ終了点における変位量から接触点
の被測定物からの抗力の方向ベクトルをめ、つづいて同
時3軸NC自動送りによってベクトル方向に測定球と被
測定物とが完全に離れるまで測定球を移動させる第1の
測定手順と、同時3軸NC自動送りで前回のアプローチ
終了点へ位置決めし、再び変位量を読み取り、被測定物
からの抗力の方向ベクトルをめ、その後同時3軸NC自
動送りによってそのベクトル方向に測定球と被測定物と
が完全に離れるまで測定球を移動させる第2の測定手順
と、前回のアプローチ終了時の変位量と今回のアプロー
チ終了時の変位量とを比較してその差が成る一定範囲内
に入るまで第2の測定手順を繰り返し、最終的なアプロ
ーチ終了時の変位量を取り込む第3の測定手順と、上記
第3の測定手順で得た最終のアプローチ終了時の変位量
からNCの内部演算によって接触点の角度をめ、かつ請
求められた角度と測定球径とによって接触点の座標を算
出する第4の測定手順からなる三次元座標値測定におけ
る高精度角度検出方法である。
200 Invention Structure This invention uses a copying machine tool having an automatic approach function and a simultaneous 3-axis control function, performs an automatic approach with one axis fixed, and calculates the contact point from the object to be measured from the displacement amount at the automatic approach end point. The first measurement procedure involves determining the direction vector of the drag force and then moving the measuring ball in the vector direction using simultaneous 3-axis NC automatic feeding until the measuring ball and the object to be measured are completely separated; Position to the end point of the previous approach, read the displacement again, determine the direction vector of the drag force from the object to be measured, and then use simultaneous 3-axis NC automatic feed to completely separate the measuring ball from the object in the direction of that vector. A second measurement procedure in which the measuring ball is moved up to the point where the displacement amount at the end of the previous approach and the amount of displacement at the end of the current approach are compared until the difference falls within a certain range. A third measurement procedure takes in the amount of displacement at the end of the final approach, and an internal calculation of the NC calculates the angle of the contact point from the amount of displacement at the end of the final approach obtained in the third measurement procedure. , and a fourth measurement procedure of calculating the coordinates of the contact point based on the requested angle and the measurement sphere diameter.

ホ、実施例 第4図乃至第8図において、斜線部分は測定斜面(11
)を示し、円は倣い工作機の測定球(12)を示し、一
点鎖線(C)は測定点(P)での面法線を示し、矢印(
D)は測定球の運動方向を示し、矢印(N)は演算結果
による抗力の方向を示す。
E. In Examples 4 to 8, the shaded area is the measurement slope (11
), the circle indicates the measurement sphere (12) of the copying machine tool, the dashed-dotted line (C) indicates the surface normal at the measurement point (P), and the arrow (
D) indicates the direction of movement of the measuring ball, and arrow (N) indicates the direction of the drag force based on the calculation result.

以下、第4図乃至第8図によって本発明による三次元測
定における角度検出方法を説明する。
Hereinafter, the angle detection method in three-dimensional measurement according to the present invention will be explained with reference to FIGS. 4 to 8.

第、1の測定手順 測定球(12)を被測定物に対し、x、y、z軸、のう
ち−軸固定で自動アプローチさせ、自動アプローチ終了
点、即ち測定点 (T)における変位量E” 、’E 
y % E zを読み取り、NCの内部演算によって測
定点(T)の斜面からの抗力の方向ベクトルをめる(第
4図)。この演算によってめられた抗力の方向ベクトル
は、理論的には第1図のT−0線の方向に向いている筈
であるが、現実的には摩擦力(f)の存在によって、測
定点(T)での法線より若干反時計方向、例えば矢印(
N)で示す方向に向いている(第5図)。そこで、演算
による上記抗力の方向ベクトルの方向に測定球(12)
と斜面とが完全に離れる距離だけ、測定球(12)を同
時3軸NC自動送りによって移動させる(第6図)。
First measurement procedure: The measurement ball (12) is automatically approached to the object to be measured with the -axis fixed among the x, y, and z axes, and the displacement E at the end point of the automatic approach, that is, the measurement point (T) is measured. ” ,'E
y % E z is read and the direction vector of the drag force from the slope at the measuring point (T) is determined by internal calculation of the NC (Figure 4). Theoretically, the direction vector of the drag force determined by this calculation should point in the direction of the T-0 line in Figure 1, but in reality, due to the presence of frictional force (f), the direction vector of the drag force Slightly counterclockwise from the normal at (T), for example, arrow (
N) (Figure 5). Therefore, the measurement ball (12) is placed in the direction of the direction vector of the above-mentioned drag force by calculation.
The measurement ball (12) is moved by simultaneous 3-axis NC automatic feed by a distance that completely separates the ball and the slope (FIG. 6).

第2の測定手順 第1の測定手順でめたアプローチ終了点へ同時3軸NC
自動送りによって測定球(12)を位置決めしく第7図
)、再び変位量Ex’、E yl、Ez”を読み取り、
この状態での斜面からの抗力の方向ベクトルをめ、つづ
いて同時3軸NC自動送りによって上記抗力の方向ベク
トルにそって、測定球(12)が斜面から完全に離れる
まで移動させる。
2nd measurement procedure Simultaneous 3-axis NC to the approach end point determined in the 1st measurement procedure
Position the measuring ball (12) by automatic feed (Fig. 7), read the displacement Ex', Eyl, Ez'' again,
In this state, the direction vector of the drag force from the slope is determined, and then the measurement ball (12) is moved along the direction vector of the drag force by simultaneous three-axis NC automatic feed until the measurement ball (12) is completely separated from the slope.

第3の測定手順 第1の測定手順によるアプローチ終了点の変位量と第2
の測定手順によるアプローチ終了点の変位量とを比較し
、その差が一定範囲内に入るまで、上記第2の測定手順
を繰り返す(第8図)。
Third measurement procedure The amount of displacement at the approach end point according to the first measurement procedure and the second
The second measurement procedure is repeated until the difference is within a certain range (FIG. 8).

第4の測定手順 第3の測定手順によって最終的なアプローチ終了時の変
位量を取り込み、NCの内部演算によって接触点の角度
をめる。そしてめられた角度と測定球径とによって接触
点の座標を算出する。
Fourth measurement procedure The third measurement procedure captures the amount of displacement at the end of the final approach, and calculates the angle of the contact point by internal calculation of the NC. Then, the coordinates of the contact point are calculated from the determined angle and the measured sphere diameter.

へ9発明の効果 上記の第1から第4の測定手順において、第3の測定手
順によってアプローチ方向が原因で注じる摩擦を減じ、
斜面からの抗力を接触点の面法線方向へ近づけることが
可能となる。
9 Effects of the Invention In the first to fourth measurement procedures described above, the third measurement procedure reduces the friction caused by the approach direction,
It becomes possible to bring the drag force from the slope closer to the surface normal direction of the contact point.

本発明は同時3軸制御機能及び自動アブローチ機能を備
えた倣い工作機のトレーサを用いた測定のみでなく、ア
ナログ式三次元座標測定機にも応用できる。
The present invention can be applied not only to measurement using a tracer of a copying machine equipped with a simultaneous three-axis control function and an automatic approach function, but also to an analog three-dimensional coordinate measuring machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は倣い工作機のトレーサによる三次元座標測定実
理図、第2図はトレーサの内部構造を示す図面、第3図
は自動アプローチ終了点での測定球と斜面間の力関係を
示す図面であり、第4図乃至第8図は本発明の測定手順
の説明図である。 (11) −測定斜面、(12)−・−測定球、(T)
−・測定点、(N)−測定点(T)での面法線。 第1WJ 1( 千 第8図
Figure 1 shows the actual three-dimensional coordinate measurement using the tracer of a copying machine tool, Figure 2 shows the internal structure of the tracer, and Figure 3 shows the force relationship between the measuring ball and the slope at the end point of the automatic approach. 4 to 8 are explanatory diagrams of the measurement procedure of the present invention. (11) -Measuring slope, (12)--Measuring sphere, (T)
- Measurement point, (N) - Surface normal at measurement point (T). 1st WJ 1 (1000th Figure 8)

Claims (1)

【特許請求の範囲】[Claims] (11自動アプローチ機能、及び同時3軸制御機能を有
する倣い工作機を用い、1軸固定で自動アプローチをか
け、自動アプローチ終了点における変位量から接触点の
斜面からの抗力の方向ベクトルをめ、つづいて同時3軸
NC自動送りによってベクトル方向に測定球と斜面とが
完全に離れるまで測定球を移動させる第1の測定手順と
、同時3軸NC自動送りで前回のアプローチ終了点へ位
置決めし、再び変位量を読み取り、斜面からの抗力の方
向ベクトルをめ、その後同時3軸NC自動送りによって
そのベクトル方向に測定球と斜面とが完全に離れるまで
測定球を移動させる第2の測定手順と、前回のアプロー
チ終了時の変位量と今回のアプローチ終了時の変位量と
を比較してその差が成る一定範囲内に入るまで第2の測
定手順を繰り返し、最終的なアプローチ終了時の変位量
を取り込む第3の測定手順と、上記第3の測定手順で得
た最終のアプローチ終了時の変位量からNCの内部演算
によって接触点の角度をめ、かつ請求められた角度と測
定球径とによって接触点の座標を算出する第4の測定手
順からなる三次元座標値測定における高精度角度検出方
法。
(11 Using a copying machine tool with automatic approach function and simultaneous 3-axis control function, perform automatic approach with one axis fixed, calculate the direction vector of the drag force from the slope of the contact point from the displacement amount at the automatic approach end point, Next, the first measurement procedure involves moving the measuring ball in the vector direction using simultaneous 3-axis NC automatic feeding until the measuring ball and the slope are completely separated, and positioning to the previous approach end point using simultaneous 3-axis NC automatic feeding. A second measurement procedure in which the amount of displacement is read again, the direction vector of the drag force from the slope is determined, and then the measurement ball is moved in the direction of the vector by simultaneous three-axis NC automatic feed until the measurement ball and the slope are completely separated; Compare the amount of displacement at the end of the previous approach with the amount of displacement at the end of this approach, repeat the second measurement procedure until the difference is within a certain range, and calculate the amount of displacement at the end of the final approach. The angle of the contact point is determined by the internal calculation of the NC from the third measurement procedure to be imported and the displacement amount at the end of the final approach obtained in the third measurement procedure, and the angle of the contact point is determined based on the requested angle and the measurement sphere diameter. A highly accurate angle detection method in three-dimensional coordinate value measurement comprising a fourth measurement procedure for calculating the coordinates of a contact point.
JP8888884A 1984-05-02 1984-05-02 Method for detecting angle with high accuracy in measuring three-dimensional coordinate value Granted JPS60233512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8888884A JPS60233512A (en) 1984-05-02 1984-05-02 Method for detecting angle with high accuracy in measuring three-dimensional coordinate value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8888884A JPS60233512A (en) 1984-05-02 1984-05-02 Method for detecting angle with high accuracy in measuring three-dimensional coordinate value

Publications (2)

Publication Number Publication Date
JPS60233512A true JPS60233512A (en) 1985-11-20
JPH0229965B2 JPH0229965B2 (en) 1990-07-03

Family

ID=13955508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8888884A Granted JPS60233512A (en) 1984-05-02 1984-05-02 Method for detecting angle with high accuracy in measuring three-dimensional coordinate value

Country Status (1)

Country Link
JP (1) JPS60233512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131016A (en) * 1986-11-20 1988-06-03 Mitsutoyo Corp Measuring method
KR100457315B1 (en) * 2002-07-08 2004-11-16 현대자동차주식회사 Apparatus for inspecting part worked by machine tool
JP2008268118A (en) * 2007-04-24 2008-11-06 Makino Milling Mach Co Ltd Method and device for measuring shape

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121292B2 (en) * 2007-04-24 2013-01-16 株式会社牧野フライス製作所 Shape measuring method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943308A (en) * 1982-09-03 1984-03-10 Tokyo Seimitsu Co Ltd Method and apparatus for detecting three-dimensional shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943308A (en) * 1982-09-03 1984-03-10 Tokyo Seimitsu Co Ltd Method and apparatus for detecting three-dimensional shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131016A (en) * 1986-11-20 1988-06-03 Mitsutoyo Corp Measuring method
KR100457315B1 (en) * 2002-07-08 2004-11-16 현대자동차주식회사 Apparatus for inspecting part worked by machine tool
JP2008268118A (en) * 2007-04-24 2008-11-06 Makino Milling Mach Co Ltd Method and device for measuring shape

Also Published As

Publication number Publication date
JPH0229965B2 (en) 1990-07-03

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
US5501096A (en) Calibration method for determining and compensating differences of measuring forces in different coordinate directions in a multi-coordinate scanning system
US4636960A (en) Method of operating a machine tool with a sensing probe in order to gather positional data for the calculation of tool offset parameters
US3840994A (en) Method and device of automatic measurement for use with a numerically-controlled lathe
JPS5973704A (en) Multi-coordinate-sensing head
US20210010791A1 (en) Method and Apparatus for Determining a Relative Position of an Axis of Rotation of a Rotary Table for a Coordinate Measuring Machine
US4542467A (en) Method of operating a machine tool with a sensing probe in order to gather positional data for the calculation of tool offset parameters
JP5444590B2 (en) Workpiece reference point on-machine detection method and machining apparatus using the method
CN109341471A (en) The identification method of three axis lathe geometric errors detection is realized based on ball row
CN102873586B (en) Fast on-line measuring device for curvature radius of workpiece processed in numerically controlled manner
JP5201871B2 (en) Shape measuring method and apparatus
CN109822422A (en) A kind of burnishing machine rotating shaft geometric error measuring device and method of adjustment
CN114782513B (en) Point laser sensor mounting pose calibration method based on plane
EP1491287B1 (en) Self-centring sensing device
GB2108715A (en) Method of operating a machine tool
JP2831610B2 (en) measuring device
CN111536877A (en) Method for calibrating attitude of line laser sensor on three-coordinate measuring machine
Guo et al. Continuous measurements with single setup for position-dependent geometric errors of rotary axes on five-axis machine tools by a laser displacement sensor
JPS60233512A (en) Method for detecting angle with high accuracy in measuring three-dimensional coordinate value
CN113733102A (en) Error calibration device and method for industrial robot
CN112846936A (en) Method for calibrating accuracy of trigger type measuring head in on-machine detection
JP2002267438A (en) Free curved surface shape measuring method
CN216846033U (en) Inner wall measuring system based on deep rise workpiece
JP2628523B2 (en) Tracer for surface shape measurement
JP2003202219A (en) Surface property profile measuring method and program