JP2002267438A - Free curved surface shape measuring method - Google Patents

Free curved surface shape measuring method

Info

Publication number
JP2002267438A
JP2002267438A JP2001064431A JP2001064431A JP2002267438A JP 2002267438 A JP2002267438 A JP 2002267438A JP 2001064431 A JP2001064431 A JP 2001064431A JP 2001064431 A JP2001064431 A JP 2001064431A JP 2002267438 A JP2002267438 A JP 2002267438A
Authority
JP
Japan
Prior art keywords
free
form surface
normal vector
touch probe
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001064431A
Other languages
Japanese (ja)
Inventor
Koichi Kato
孝一 加藤
Kimiaki Fuku
公彰 冨久
Takamasa Ito
隆昌 伊藤
Sumiteru Mikami
純照 三上
Kenji Nakao
健二 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2001064431A priority Critical patent/JP2002267438A/en
Publication of JP2002267438A publication Critical patent/JP2002267438A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure the shape of a free curved surface in the normal direction thereto. SOLUTION: A touch probe 11 is axially moved to locate its probing center at an offset position Pof offset by a specified value in the direction of a normal vector at a measuring point S on a free curved surface according to information expressing the normal vector at the measuring point S and further moved in the direction of the normal vector at the measuring point S from the offset position Pof to close touch the surface of an object under test, thereby obtaining the travel distance or a numerical value equivalent thereto from the offset position Pof to the touch position of the surface of the object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001 】[0001]

【発明の属する技術分野】この発明は、自由曲面形状測
定方法に関し、特に、数値制御式の3軸加工機によって
加工される金型のような加工物の自由曲面形状の精度評
価のために自由曲面の形状精度を数値化する自由曲面形
状測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of a free-form surface, and more particularly to a method for evaluating the accuracy of the shape of a free-form surface of a workpiece such as a die machined by a numerically controlled three-axis machine. The present invention relates to a method for measuring the shape of a free-form surface, which quantifies the accuracy of the shape of a curved surface.

【0002 】[0002]

【従来の技術】数値制御式の3軸加工機において、直交
3軸の同期制御によってプレス金型等の金型の三次元の
自由曲面を削り出すことが行われている。また、3軸加
工機の主軸にタッチプローブを取り付け、自動計測パタ
ーン機能によって機上で、加工面の寸法精度(形状精
度)を計測することも行われている。
2. Description of the Related Art In a numerically controlled three-axis machine, a three-dimensional free-form surface of a die such as a press die is cut by synchronous control of three orthogonal axes. Further, a touch probe is attached to a main shaft of a three-axis processing machine, and dimensional accuracy (shape accuracy) of a processed surface is measured on the machine by an automatic measurement pattern function.

【0003 】[0003]

【発明が解決しようとする課題】従来の自動計測パター
ン機能によるインプロセス計測は、主軸を単純に軸方向
に移動させて形状精度を計測するため、測定方向は、水
平方向あるいは垂直方向に限られ、三次元の自由曲面で
は、軸方向の寸法誤差しか測定することができない。
In the conventional in-process measurement using the automatic measurement pattern function, since the shape accuracy is measured by simply moving the main shaft in the axial direction, the measurement direction is limited to the horizontal direction or the vertical direction. On a three-dimensional free-form surface, only the dimensional error in the axial direction can be measured.

【0004 】金型のような場合、自由曲面に面直な方
向の形状精度がプレス製品や樹脂成形品の肉厚方向の精
度になるから、金型のような場合には、自由曲面の面直
な方向の形状精度が、金型の形状精度を評価する上で重
要な要件になる。しかし、従来は、自由曲面に面直な方
向の形状精度を計測して数値化する技術が確立していな
いため、熟練技能者の勘に頼って何回かのトライアウト
を行うことにより、所要の形状精度を有する金型を仕上
げている。このため、金型製作に時間を要し、また、熟
練技能者の高齢化により、熟練技能者に依存できなくな
ってきている。
[0004] In the case of a mold, the shape accuracy in the direction perpendicular to the free-form surface becomes the accuracy in the thickness direction of a pressed product or a resin molded product. The shape accuracy in the straight direction is an important requirement in evaluating the shape accuracy of the mold. However, in the past, there was no established technology to measure and quantify the shape accuracy in the direction perpendicular to the free-form surface, so by performing several tryouts depending on the intuition of a skilled technician, the required Finishes molds with shape accuracy. For this reason, it takes time to manufacture the mold, and the aging of the skilled technicians makes it difficult to rely on the skilled technicians.

【0005 】この発明は、上述の如き問題点を解消す
るためになされたもので、自由曲面の面直方向の形状精
度を測定して数値化し、金型のような加工物の自由曲面
形状の精度評価を的確に行えるようにし、熟練技能者を
要することなく、少ないトライアウト回数で、所要の形
状精度を有する金型等を仕上げることを支援する自由曲
面形状測定方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and measures the shape accuracy of a free-form surface in the direction perpendicular to the surface to obtain a numerical value. It is an object of the present invention to provide a free-form surface shape measuring method that enables accurate accuracy evaluation and supports finishing a mold or the like having a required shape accuracy with a small number of tryouts without requiring a skilled technician. .

【0006 】[0006]

【課題を解決するための手段】上述の目的を達成するた
めに、この発明による自由曲面形状測定方法は、自由曲
面の任意の座標位置を測定点とし、その座標位置におけ
る法線ベクトルを示す情報を自由曲面の曲面データより
取得し、球状あるいは半球状の測定子を有するタッチプ
ローブを使用し、取得した法線ベクトルを示す情報より
前記測定点において法線ベクトル方向に所定量オフセッ
トした位置を設定し、そのオフセット位置に測定子中心
が位置するようにタッチプローブを軸移動させ、タッチ
プローブを前記オフセット位置より前記測定点の法線ベ
クトル方向に移動させてタッチプローブを被測定物の表
面に接近接触させ、前記オフセット位置より被測定物の
表面との接触位置までの移動量あるいはそれと等価の数
量値を求めるものである。
In order to achieve the above-mentioned object, a free-form surface shape measuring method according to the present invention uses an arbitrary coordinate position of a free-form surface as a measurement point and information indicating a normal vector at the coordinate position. Is obtained from the curved surface data of the free-form surface, using a touch probe having a spherical or hemispherical stylus, and setting a position offset by a predetermined amount in the normal vector direction at the measurement point from the information indicating the obtained normal vector. Then, the touch probe is axially moved so that the center of the tracing stylus is located at the offset position, and the touch probe is moved from the offset position in the direction of the normal vector of the measurement point so that the touch probe approaches the surface of the device under test. Contact, and the amount of movement from the offset position to the position of contact with the surface of the object to be measured or a quantity equivalent thereto is calculated. A.

【0007 】また、この発明による自由曲面形状測定
方法は、更に、形状寸法が既知の基準球を使用し、前記
基準球に対してタッチプローブの測定子中心が前記基準
球の球面における任意の1点に対して法線ベクトル方向
に所定量オフセットしたオフセット位置に位置するよう
にタッチプローブを軸移動させ、タッチプローブを前記
オフセット位置より前記任意の1点の法線ベクトル方向
に移動させてタッチプローブを基準球の表面に接近接触
させ、前記オフセット位置より基準球の表面との接触位
置までの移動量あるいはそれと等価の数量値を求めて自
由曲面形状測定のキャリブレーションを行うものであ
る。
Further, the method for measuring the shape of a free-form surface according to the present invention further uses a reference sphere having a known shape and size, and the center of the probe of the touch probe relative to the reference sphere is an arbitrary one of the spherical surface of the reference sphere. The touch probe is axially moved so as to be located at an offset position offset by a predetermined amount in the direction of the normal vector with respect to the point, and the touch probe is moved from the offset position in the direction of the normal vector of the arbitrary one point. Is brought into close contact with the surface of the reference sphere, and the amount of movement from the offset position to the position of contact with the surface of the reference sphere or a quantitative value equivalent thereto is calculated to perform calibration of the free-form surface shape measurement.

【0008 】この発明による自由曲面形状測定方法で
は、被測定物は、数値制御式の3軸加工機によって自由
曲面形状を加工された加工物とすることができ、前記3
軸加工機の主軸に前記タッチプローブを取り付けて前記
3軸加工機の機上で自由曲面形状の測定を行うことがで
きる。この場合、数値制御式の3軸加工機で用いられる
加工プログラムを作成するための曲面データより法線ベ
クトルを示す情報を取得することができる。曲面データ
はCAD・CAMデータより得ることができる。
In the method for measuring the shape of a free-form surface according to the present invention, the object to be measured can be a work in which the shape of the free-form surface is machined by a numerically controlled three-axis machine.
By attaching the touch probe to the main shaft of the spindle machine, the shape of a free-form surface can be measured on the machine of the three-axis machine. In this case, information indicating a normal vector can be obtained from the curved surface data for creating a machining program used in the numerically controlled three-axis machine. Curved surface data can be obtained from CAD / CAM data.

【0009 】[0009]

【発明の実施の形態】以下に添付の図を参照してこの発
明の実施の形態を詳細に説明する。図1はこの発明によ
る自由曲面形状測定方法の一つの実施の形態を示してい
る。この発明による自由曲面形状測定方法によって自由
曲面形状を測定する被測定物Wとしては、金型のように
三次元の自由曲面を有する加工物がある。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a free-form surface shape measuring method according to the present invention. The workpiece W whose free-form surface shape is measured by the free-form surface shape measurement method according to the present invention includes a workpiece having a three-dimensional free-form surface such as a mold.

【0010 】被測定物Wの自由曲面fの任意の座標位
置は、直交3軸の座標値(Xs,Ys,Zs)により決
まり、その座標位置を一つの測定点S(Xs,Ys,Z
s)とする。
An arbitrary coordinate position of the free-form surface f of the workpiece W is determined by coordinate values (Xs, Ys, Zs) of three orthogonal axes, and the coordinate position is determined by one measurement point S (Xs, Ys, Z).
s).

【0011 】測定点Sは一つの被測定物Wにおいて点
列的に多数設定し、各測定点Sにおける法線ベクトルを
示す情報を自由曲面fの曲面データより取得して計測用
データを作成する。測定点Sにおける法線ベクトルは、
曲面創成の数式から、X軸,Y軸、Z軸の各軸方向のベ
クトルi、j、kによって定義する仕方と、測定点Sに
おける曲面の傾斜角度Bと水平方向の角度Cとにより定
義する仕方がある。ここでは、後者を使用することで、
指令フォマットは、次のように表される。指令フォマッ
ト:G***_X*_Y*_Z*_B*_C*
A large number of measurement points S are set in a point sequence in one DUT W, and information indicating a normal vector at each measurement point S is obtained from the surface data of the free-form surface f to create measurement data. . The normal vector at the measurement point S is
From the mathematical expression for creating a curved surface, a method of defining by vectors i, j, and k in the X-, Y-, and Z-axis directions, and a tilt angle B and a horizontal angle C of the curved surface at the measurement point S are defined. There is a way. Here, by using the latter,
The command format is expressed as follows. Command format: G *** _ X * _Y * _Z * _B * _C *

【0012 】被測定物Wが、金型のように、数値制御
式の3軸加工機によって自由曲面形状を加工された加工
物である場合、法線ベクトルを示す情報、すなわち、傾
斜角度Bと水平方向の角度Cは、その自由曲面形状の加
工のために、数値制御式の3軸加工機で用いられる数値
制御の加工プログラムを作成するためのCAD・CAM
データの曲面データより取得でき、傾斜角度Bと水平方
向の角度Cを得る機能を、測定点データ作成ソウトフェ
アとして、CAD・CAMのソウトフェアに組み込むこ
とができる。
When the workpiece W is a workpiece whose free-form surface has been machined by a numerically controlled three-axis machine such as a mold, information indicating a normal vector, that is, an inclination angle B, The horizontal angle C is a CAD / CAM for creating a numerically controlled machining program used in a numerically controlled three-axis machine for machining the free-form surface shape.
The function of obtaining the inclination angle B and the angle C in the horizontal direction, which can be obtained from the curved surface data of the data, can be incorporated into a CAD / CAM software fair as a measurement point data creation software fair.

【0013 】三次元形状測定具として、球状あるいは
半球状の測定子11を有するタッチプローブ10を使用
し、取得した法線ベクトルを示す情報より、測定点Sに
おいて法線ベクトル方向に所定量オフセットしたオフセ
ット位置Pofを設定し、そのオフセット位置Pofに
測定子中心Cが位置するように、タッチプローブ10を
軸移動させ、タッチプローブ10をオフセット位置Po
fより測定点Sの法線ベクトル方向に移動させ、タッチ
プローブ10の測定子11を被測定物Wの表面に接近接
触させる。前記オフセット位置Pofより被測定物の表
面との接触位置までの移動量あるいはそれと等価の数量
値を求める。
A touch probe 10 having a spherical or hemispherical tracing stylus 11 is used as a three-dimensional shape measuring tool, and is offset by a predetermined amount in the direction of the normal vector at the measurement point S from the acquired information indicating the normal vector. The offset position Pof is set, and the touch probe 10 is axially moved so that the tracing stylus center C is located at the offset position Pof, and the touch probe 10 is moved to the offset position Po.
The measurement point S is moved in the direction of the normal vector of the measurement point S to bring the probe 11 of the touch probe 10 into close contact with the surface of the workpiece W. The amount of movement from the offset position Pof to the position of contact with the surface of the object to be measured or a quantity equivalent thereto is obtained.

【0014 】測定点Sの設計上の座標値(Xs,Y
s,Zs)と、オフセット位置Pofの座標値(Xo
f,Yof,Zof)は既知値であるから、誤差ゼロ時
のオフセット位置Pofと測定点Sとの法線ベクトル方
向の距離、すなわち、肉厚方向の数量値は既知値とな
り、この値と測定値との差値が、直接、自由曲面f上の
測定点Sの肉厚方向の精度を数量で表すことになる。
Design coordinate values (Xs, Y
s, Zs) and the coordinate value (Xo) of the offset position Pof.
f, Yof, Zof) are known values, so the distance in the normal vector direction between the offset position Pof at zero error and the measurement point S, that is, the quantity value in the thickness direction becomes a known value. The difference from the value directly indicates the accuracy of the measurement point S on the free-form surface f in the thickness direction by a quantity.

【0015 】この差値が予め設定されている誤差許容
値以内であるか否の比較演算を行うことにより、図2に
示されているように、測定点S毎に、OK、NGを出力
したり、あるいは差値を段階的に分け、図3に示されて
いるように、誤差レベル(VALUE)0〜Nを出力するこ
とができる。なお、図2、図3において、S1、S2、
S3…は各測定点を、X、Y、Zは各測定点の座標値
を、Lは差値(肉厚方向の誤差値)を各々示している。
By performing a comparison operation as to whether or not the difference value is within a predetermined error allowable value, OK and NG are output for each measurement point S as shown in FIG. Alternatively, the difference values can be divided in stages, and error levels (VALUE) 0 to N can be output as shown in FIG. In FIGS. 2 and 3, S1, S2,
S3... Indicate each measurement point, X, Y, and Z indicate coordinate values of each measurement point, and L indicates a difference value (error value in the thickness direction).

【0016 】被測定物Wが数値制御式の3軸加工機に
よって自由曲面形状を加工された加工物である場合に
は、図1に示されているように、タッチプローブ10を
数値制御式3軸加工機の主軸50に取り付け、3軸加工
機の機上で、3軸加工機に付随する数値制御装置を用い
て自由曲面形状の測定を自動モードで行うことができ、
数値制御式3軸加工機をBC軸自動オフセット機能を備
えた面直測定CMM(Coordinate Meas
uring Machine)として機能させることが
できる。
When the workpiece W is a workpiece whose free-form surface is machined by a numerically controlled three-axis machine, as shown in FIG. Attached to the spindle 50 of the spindle machine, the free-form surface shape can be measured in the automatic mode on the machine of the 3-axis machine by using a numerical controller attached to the machine.
A surface control CMM (Coordinate Meas) equipped with a BC-axis automatic offset function
urging Machine).

【0017 】タッチプローブ10による自由曲面形状
測定のキャリブレーションが必要な場合は、図4に示さ
れているように、3軸加工機のワークテーブル51に形
状寸法が既知の基準球52を固定し、基準球52に対し
てタッチプローブ10の測定子中心が基準球52の球面
における任意の1点に対して法線ベクトル方向に所定量
オフセットしたオフセット位置に位置するようにタッチ
プローブを軸移動させ、タッチプローブをオフセット位
置より任意の1点の法線ベクトル方向に移動させてタッ
チプローブ10の測定子11を基準球52の表面に接近
接触させ、オフセット位置より基準球52の表面との接
触位置までの移動量あるいはそれと等価の数量値を求め
てを行うことができる。
When the calibration of the free-form surface shape measurement by the touch probe 10 is necessary, as shown in FIG. 4, a reference sphere 52 having a known shape and size is fixed to a work table 51 of a three-axis machine. The touch probe is axially moved such that the center of the tracing stylus of the touch probe 10 with respect to the reference sphere 52 is located at an offset position offset by a predetermined amount in the direction of the normal vector with respect to an arbitrary point on the spherical surface of the reference sphere 52. The touch probe is moved from the offset position in the direction of the normal vector at an arbitrary point to bring the tracing stylus 11 of the touch probe 10 into close contact with the surface of the reference sphere 52, and the contact position with the surface of the reference sphere 52 from the offset position. The amount of movement up to or a quantity value equivalent thereto can be obtained.

【0018 】基準球52の形状寸法は既知であるか
ら、オフセット位置より基準球52の球面上の任意の1
点までの法線ベクトル方向の距離が既知であり、この距
離と上述の移動量の測定値の差値を補正値として測定値
を補正し、この校正差値が許容値内になるまで、キャリ
ブレーションを繰り返す。
Since the shape and dimensions of the reference sphere 52 are known, any one of the reference spheres 52 on the spherical surface of the reference sphere 52 can be determined from the offset position.
The distance in the normal vector direction to the point is known, and the measured value is corrected using the difference between the distance and the measured value of the movement amount as a correction value, and the calibration is performed until the calibration difference value falls within the allowable value. Repeat the procedure.

【0019 】上述した自由曲面形状の測定により、自
由曲面の面直方向の形状精度を測定して数値化でき、金
型のような加工物の自由曲面形状の精度評価を的確に行
えるようになる。
By measuring the shape of the free-form surface described above, the shape accuracy of the free-form surface in the direction perpendicular to the surface can be measured and quantified, and the accuracy of the free-form surface shape of a workpiece such as a mold can be accurately evaluated. .

【0020 】[0020]

【発明の効果】以上の説明から理解される如く、この発
明による自由曲面形状測定方法によれば、自由曲面の面
直方向の形状精度を測定して数値化するから、金型のよ
うな加工物の自由曲面形状の精度評価を的確に行えるよ
うになり、熟練技能者を要することなく、少ないトライ
アウト回数で、所要の形状精度を有する金型等を仕上げ
ることを支援できる。
As will be understood from the above description, according to the free-form surface shape measuring method of the present invention, the shape accuracy of the free-form surface in the direction perpendicular to the surface is measured and quantified. Accuracy evaluation of the free-form surface shape of an object can be accurately performed, and it is possible to support finishing a mold or the like having a required shape accuracy with a small number of tryouts without requiring a skilled technician.

【0021 】被測定物が数値制御式の3軸加工機によ
って自由曲面形状を加工された加工物である場合、数値
制御式の3軸加工機で用いられる加工プログラムを作成
するための曲面データより法線ベクトルを示す情報を取
得することができ、その3軸加工機の主軸に前記タッチ
プローブを取り付けて3軸加工機の機上で、インプロセ
スで、自由曲面形状の測定を行うことができる。
When the object to be measured is a workpiece whose free-form surface is machined by a numerically controlled three-axis machine, the surface data for creating a machining program used in the numerically controlled three-axis machine are used. Information indicating a normal vector can be acquired, and the touch probe can be attached to the main axis of the three-axis machine to measure the free-form surface shape in-process on the three-axis machine. .

【0022 】また、基準球の使用して自由曲面形状測
定のキャリブレーションを行うことができ、キャリブレ
ーションによって所要の自由曲面形状の測定精度を確保
できる。
Further, the calibration of the free-form surface shape measurement can be performed using the reference sphere, and the required accuracy of the measurement of the free-form surface shape can be ensured by the calibration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による自由曲面形状測定方法の一つ実
施の形態を示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of a free-form surface shape measuring method according to the present invention.

【図2】この発明による自由曲面形状測定方法における
測定結果の出力例を示す説明図である。
FIG. 2 is an explanatory diagram showing an output example of a measurement result in the free-form surface shape measuring method according to the present invention.

【図3】この発明による自由曲面形状測定方法における
測定結果の出力例の他の例を示す説明図である。
FIG. 3 is an explanatory diagram showing another example of an output example of a measurement result in the free-form surface shape measuring method according to the present invention.

【図4】この発明による自由曲面形状測定方法における
キャリブレーション実行状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a calibration execution state in the free-form surface shape measuring method according to the present invention.

【符号の説明】[Explanation of symbols]

10 タッチプローブ 11測定子 50 主軸 51 ワークテーブル 52 基準球 Reference Signs List 10 touch probe 11 contact point 50 spindle 51 work table 52 reference sphere

フロントページの続き (72)発明者 伊藤 隆昌 静岡県沼津市大岡2068の3 東芝機械株式 会社内 (72)発明者 三上 純照 東京都中央区勝どき6−1−15 勝どきY Sビル 株式会社アルゴ21内 (72)発明者 中尾 健二 東京都中央区勝どき6−1−15 勝どきY Sビル 株式会社アルゴ21内 Fターム(参考) 2F069 AA04 AA06 AA66 BB40 EE07 FF01 FF07 GG01 GG12 GG14 GG52 GG62 GG72 HH01 JJ04 LL02 3C029 BB01 5H269 AB05 BB03 CC02 DD01 JJ18 MM05 NN14 Continued on the front page (72) Inventor Takamasa Ito 2068-3 Ooka, Numazu-shi, Shizuoka Toshiba Machine Co., Ltd. (72) Inventor Junsho Mikami 6-1-15 Kachidoki, Chuo-ku, Tokyo Kachidoki YS Building Argo Co., Ltd. 21 (72) Inventor Kenji Nakao 6-1-15 Kachidoki, Chuo-ku, Tokyo Kachidoki YS Building Argo 21 Inside F-term (reference) 2F069 AA04 AA06 AA66 BB40 EE07 FF01 FF07 GG01 GG12 GG14 GG52 GG62 GG72 HH01 JJ04 LL02 3C029 BB01 5H269 AB05 BB03 CC02 DD01 JJ18 MM05 NN14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 自由曲面の任意の座標位置を測定点と
し、その座標位置における法線ベクトルを示す情報を自
由曲面の曲面データより取得し、球状あるいは半球状の
測定子を有するタッチプローブを使用し、取得した法線
ベクトルを示す情報より前記測定点において法線ベクト
ル方向に所定量オフセットした位置を設定し、そのオフ
セット位置に測定子中心が位置するようにタッチプロー
ブを軸移動させ、タッチプローブを前記オフセット位置
より前記測定点の法線ベクトル方向に移動させてタッチ
プローブを被測定物の表面に接近接触させ、前記オフセ
ット位置より被測定物の表面との接触位置までの移動量
あるいはそれと等価の数量値を求めることを特徴とする
自由曲面形状測定方法。
An arbitrary coordinate position of a free-form surface is set as a measurement point, and information indicating a normal vector at the coordinate position is obtained from the surface data of the free-form surface, and a touch probe having a spherical or hemispherical measuring element is used. Then, a position offset by a predetermined amount in the direction of the normal vector is set at the measurement point from the information indicating the acquired normal vector, and the touch probe is axially moved so that the center of the tracing stylus is located at the offset position. Is moved from the offset position in the direction of the normal vector of the measurement point to bring the touch probe into close contact with the surface of the object to be measured, and the amount of movement from the offset position to the position of contact with the surface of the object to be measured or equivalent thereto. A method for measuring the shape of a free-form surface, characterized in that a quantity value of (i) is obtained.
【請求項2】 形状寸法が既知の基準球を使用し、前記
基準球に対してタッチプローブの測定子中心が前記基準
球の球面における任意の1点に対して法線ベクトル方向
に所定量オフセットしたオフセット位置に位置するよう
にタッチプローブを軸移動させ、タッチプローブを前記
オフセット位置より前記任意の1点の法線ベクトル方向
に移動させてタッチプローブを基準球の表面に接近接触
させ、前記オフセット位置より基準球の表面との接触位
置までの移動量あるいはそれと等価の数量値を求めて自
由曲面形状測定のキャリブレーションを行うことを特徴
とする請求項1に記載の自由曲面形状測定方法。
2. A reference sphere having a known shape and size is used, and a center of a probe of a touch probe is offset by a predetermined amount in a direction of a normal vector with respect to an arbitrary point on a sphere of the reference sphere. The touch probe is axially moved so as to be located at the set offset position, and the touch probe is moved from the offset position in the direction of the normal vector of the arbitrary one point so that the touch probe comes into close contact with the surface of the reference sphere. The free-form surface shape measuring method according to claim 1, wherein the calibration of the free-form surface shape measurement is performed by obtaining a moving amount from the position to the contact position with the surface of the reference sphere or a quantitative value equivalent thereto.
【請求項3】 被測定物が数値制御式の3軸加工機によ
って自由曲面形状を加工された加工物であり、前記3軸
加工機の主軸に前記タッチプローブを取り付けて前記3
軸加工機の機上で自由曲面形状の測定を行うことを特徴
とする請求項1または2記載の自由曲面形状測定方法。
3. An object to be measured is a workpiece having a free-form surface processed by a numerically controlled three-axis processing machine, and the touch probe is attached to a main shaft of the three-axis processing machine.
The free-form surface shape measuring method according to claim 1 or 2, wherein the free-form surface shape is measured on an axis processing machine.
【請求項4】 数値制御式の3軸加工機で用いられる加
工プログラムを作成するための曲面データより法線ベク
トルを示す情報を取得することを特徴とする請求項3記
載の自由曲面形状測定方法。
4. A method for measuring the shape of a free-form surface according to claim 3, wherein information indicating a normal vector is obtained from the surface data for creating a machining program used in a numerically controlled three-axis machine. .
JP2001064431A 2001-03-08 2001-03-08 Free curved surface shape measuring method Pending JP2002267438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064431A JP2002267438A (en) 2001-03-08 2001-03-08 Free curved surface shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064431A JP2002267438A (en) 2001-03-08 2001-03-08 Free curved surface shape measuring method

Publications (1)

Publication Number Publication Date
JP2002267438A true JP2002267438A (en) 2002-09-18

Family

ID=18923250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064431A Pending JP2002267438A (en) 2001-03-08 2001-03-08 Free curved surface shape measuring method

Country Status (1)

Country Link
JP (1) JP2002267438A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097939A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Device and method for shape measuring, computer program and storage medium storing computer program for shape measuring, shape correcting process method, type, mold goods and optical system for shape copying
JP2005181293A (en) * 2003-11-25 2005-07-07 Mitsutoyo Corp Surface-copying measuring instrument, and method of preparing correction table for copying probe
JP2006349411A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration gauge
JP2006349410A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration method and program for creating calibration execution program for measurement device
JP2008268118A (en) * 2007-04-24 2008-11-06 Makino Milling Mach Co Ltd Method and device for measuring shape
KR100922589B1 (en) 2003-03-31 2009-10-21 한국항공우주산업 주식회사 Measuring supporter for scribe line
JP2011214931A (en) * 2010-03-31 2011-10-27 Fanuc Ltd Probe mounting position calculation method of on-machine measuring device
JP2013088341A (en) * 2011-10-20 2013-05-13 Toshiba Mach Co Ltd Measuring device, measuring method, touch probe, and calibration gauge
CN103264318A (en) * 2013-04-19 2013-08-28 湖北三江航天险峰电子信息有限公司 On-line detection method of three-dimensional molded surface
KR101421502B1 (en) 2014-04-08 2014-07-22 경남대학교 산학협력단 Measuring method of curved surface using 2nd differential of a part area and system thereof
CN113916169A (en) * 2021-09-02 2022-01-11 北京航空材料研究院有限公司 Measuring method for establishing reference characteristics based on curved surface reference elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221609A (en) * 1988-02-29 1989-09-05 Toyota Motor Corp Measuring instrument for three-dimensional composite free curved surface shape
JPH0321813A (en) * 1989-06-20 1991-01-30 Nissan Motor Co Ltd Method for displaying shape measurement result
JPH11123635A (en) * 1997-10-23 1999-05-11 Makino Milling Mach Co Ltd Method and device for measuring shape dimension of workpiece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221609A (en) * 1988-02-29 1989-09-05 Toyota Motor Corp Measuring instrument for three-dimensional composite free curved surface shape
JPH0321813A (en) * 1989-06-20 1991-01-30 Nissan Motor Co Ltd Method for displaying shape measurement result
JPH11123635A (en) * 1997-10-23 1999-05-11 Makino Milling Mach Co Ltd Method and device for measuring shape dimension of workpiece

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097939A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Device and method for shape measuring, computer program and storage medium storing computer program for shape measuring, shape correcting process method, type, mold goods and optical system for shape copying
KR100922589B1 (en) 2003-03-31 2009-10-21 한국항공우주산업 주식회사 Measuring supporter for scribe line
JP2005181293A (en) * 2003-11-25 2005-07-07 Mitsutoyo Corp Surface-copying measuring instrument, and method of preparing correction table for copying probe
JP4695374B2 (en) * 2003-11-25 2011-06-08 株式会社ミツトヨ Surface scanning measuring device and scanning probe correction table creation method
JP2006349410A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration method and program for creating calibration execution program for measurement device
JP2006349411A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration gauge
JP2008268118A (en) * 2007-04-24 2008-11-06 Makino Milling Mach Co Ltd Method and device for measuring shape
JP2011214931A (en) * 2010-03-31 2011-10-27 Fanuc Ltd Probe mounting position calculation method of on-machine measuring device
US8554502B2 (en) 2010-03-31 2013-10-08 Fanuc Corporation Method for calculating probe mounting position in on-machine measuring device
TWI451217B (en) * 2010-03-31 2014-09-01 Fanuc Corp Method for calculating probe mounting position in on-machine measuring device
JP2013088341A (en) * 2011-10-20 2013-05-13 Toshiba Mach Co Ltd Measuring device, measuring method, touch probe, and calibration gauge
CN103264318A (en) * 2013-04-19 2013-08-28 湖北三江航天险峰电子信息有限公司 On-line detection method of three-dimensional molded surface
CN103264318B (en) * 2013-04-19 2015-11-18 湖北三江航天险峰电子信息有限公司 A kind of online test method of three-dimensional profile
KR101421502B1 (en) 2014-04-08 2014-07-22 경남대학교 산학협력단 Measuring method of curved surface using 2nd differential of a part area and system thereof
CN113916169A (en) * 2021-09-02 2022-01-11 北京航空材料研究院有限公司 Measuring method for establishing reference characteristics based on curved surface reference elements

Similar Documents

Publication Publication Date Title
JP4959028B1 (en) Error measuring apparatus and error measuring method
US9506736B2 (en) Measurement system
US10401162B2 (en) Calibration of measurement probes
US4945501A (en) Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor
JP2013503380A (en) Calibration method for machine tools
WO2003074968A1 (en) Dynamic artefact comparison
JP2007212359A (en) Shape measuring device, shape measuring method and program
JP2002267438A (en) Free curved surface shape measuring method
JP6960893B2 (en) Machine tool measurement error evaluation method and program
JP5201871B2 (en) Shape measuring method and apparatus
JP4804807B2 (en) Calibration method and program
JP2003114117A (en) Calibration method and calibration program for probe
JP2013088341A (en) Measuring device, measuring method, touch probe, and calibration gauge
JP6933603B2 (en) Machine tool measurement capability evaluation method and program
Pahk et al. Development of virtual coordinate measuring machines incorporating probe errors
JP7448437B2 (en) Control method for shape measuring device
KR101823052B1 (en) Method of measuring workpiece for correction of cnc machine job
JP4950443B2 (en) Calibration gauge
Desai et al. Reverse engineering: A review & evaluation of contact based systems
Liu et al. The application of the double-readheads planar encoder system for error calibration of computer numerical control machine tools
Wang et al. Accessibility analysis for CMM inspection planning by means of haptic device and STL representation
Jankowski et al. Master artifacts for testing the performance of probes for CNC machine tools
Pahk et al. Application of microcomputer for assessing the probe lobing error and geometric errors of CMMs using commercial ring gauges
Ali Development of a STEP-NC compliant feature-based inspection framework for prismatic parts
Jywe et al. A study of geometric error measurement of cnc machine tools using the improved planar encoder system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110124

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110210