JPS602327A - Method of controlling temperature of mold for molding resin - Google Patents

Method of controlling temperature of mold for molding resin

Info

Publication number
JPS602327A
JPS602327A JP11051583A JP11051583A JPS602327A JP S602327 A JPS602327 A JP S602327A JP 11051583 A JP11051583 A JP 11051583A JP 11051583 A JP11051583 A JP 11051583A JP S602327 A JPS602327 A JP S602327A
Authority
JP
Japan
Prior art keywords
temperature
cavity
heating medium
resin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11051583A
Other languages
Japanese (ja)
Inventor
Masami Umetsu
梅津 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP11051583A priority Critical patent/JPS602327A/en
Publication of JPS602327A publication Critical patent/JPS602327A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7306Control circuits therefor

Abstract

PURPOSE:To shorten the solidifying time of a melted resin in a cavity, by passing alternatively a heating medium having a temperature required for charging a resin and a heating medium having a temperature lower than that through a heating medium passage arranged adjacent to a cavity. CONSTITUTION:In a mold 1 that is used particularly in injection molding technique, a heating medium passage 3 is arranged adjacent to a cavity 2. A first heating medium 11 is passed to raise the temperature adjacent to the cavity to a temperature enough to charge a melted resin. Then immediately after the melted resin is charged into the mold 1 under a prescribed pressure, a second heating medium 12 is passed to lower the temperature adjacent to the cavity 2 so that the cooling speed of the resin is quickened to shorten the solidifying time. Immediately after the solidifying of the resin, the first heating medium 11 is passed to raise the temperature adjacent to the cavity so that the temperature may be restored to the prescribed temperature required for charging of the resin.

Description

【発明の詳細な説明】 本発明は特に射出成形法に使用される金型において樹脂
成形品の成形に必要な時間、特に冷却固化に必要な時間
を著しく短縮することを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to significantly shorten the time required for molding a resin molded article, especially the time required for cooling and solidification, particularly in a mold used in an injection molding method.

従来の方法は第1図に示す如く、金型全体を時経列的に
常に一定温度に保ち且つ金型全体としてはその取り封部
に断熱材等を設は保温を兼ねて熱的外乱に対して抵抗性
と實容性を有する構造としていた。この様に一般通念に
おいては金型全体を所要の一定温度に保ち、樹脂の流動
特性・成形収縮・成形歪・表面状態が製品品質を安定さ
せる為に時経列的に安定させている。この様にすると、
金型のキャビティに充填可能且つ品質を維持しながら必
要なキャビティの最低温度は樹脂流動性の温度依在特性
と溶融樹脂のキャビティへの流路とによって決定されこ
の温度のキャビティに充填しなければならない。さらに
キャビティに充填された溶融樹脂は前記金型温度TOに
向かって降温漸近する。これは第2図に示す第1指数関
数曲線001に沿って冷却されるが、ポリアセタール樹
脂を例にとると、結晶化温度T!l(+165℃ )近
傍で融解潜熱のピークを有する為に、溶融ポリアセター
ル樹脂の温度下降は止まり40°al/!1.、。5の
融解潜熱が移動すると再びポリアセタール樹脂の温度は
第1冷却曲Moatに沿って下降する。この時にキャビ
ティのゲート部のポリアセタール樹脂は固化しゲートシ
ール温度Tcとなりゲートシール時間sc1 を要する
。この後キャビティ内のポリアセタール樹脂はエジェク
トビンによってキャビティより押し出される時の抵抗力
に対抗できるだけの弾性又は剛性を保有できる固化温度
TBまで製品が冷却されなければならない。これは−元
以上の固化時間8e1 を必要とすることを示しており
成形所要時間Elf1 をi縮することと相反する特性
である。以上の如く、キャビティへの溶融樹脂の充填に
必要な流動特性を維持しながら、キャビティ充填から固
化温度TBまでの固化時間Se1 を必要としている為
に成形所要時間Sf1を短縮することが難しい欠点があ
った。
As shown in Figure 1, the conventional method is to keep the entire mold at a constant temperature over time, and to protect the entire mold from thermal disturbances by installing a heat insulating material in the sealing part. The structure was designed to be resistant and practical. In this way, the general idea is that the entire mold is kept at a constant temperature, and the flow characteristics of the resin, molding shrinkage, molding distortion, and surface condition are stabilized over time in order to stabilize product quality. If you do it like this,
The minimum temperature required to fill the mold cavity while maintaining quality is determined by the temperature-dependent characteristics of resin fluidity and the flow path of molten resin into the cavity, and the cavity must be filled at this temperature. No. Further, the temperature of the molten resin filled in the cavity asymptotically decreases toward the mold temperature TO. This is cooled along the first exponential curve 001 shown in FIG. 2. Taking polyacetal resin as an example, the crystallization temperature T! Since the latent heat of fusion has a peak near l(+165°C), the temperature of the molten polyacetal resin stops decreasing by 40°al/! 1. ,. When the latent heat of fusion of No. 5 moves, the temperature of the polyacetal resin decreases again along the first cooling curve Moat. At this time, the polyacetal resin at the gate portion of the cavity solidifies and reaches the gate sealing temperature Tc, which requires a gate sealing time sc1. Thereafter, the product must be cooled to a solidification temperature TB at which the polyacetal resin in the cavity has enough elasticity or rigidity to resist the resistance force when it is extruded from the cavity by an ejector bin. This indicates that a solidification time of 8e1 or more is required, which is a characteristic contradictory to reducing the required molding time Elf1. As mentioned above, it is difficult to shorten the molding time Sf1 because the solidification time Se1 from filling the cavity to the solidification temperature TB is required while maintaining the flow characteristics necessary for filling the molten resin into the cavity. there were.

本発明はかかる欠点を除去したもので、その目的は温度
への依存性においてキャビティへの溶融樹脂の充填に必
要な流動特性ダそこなうことなく冷却固化までの時間を
短縮する為になされたものである。
The present invention eliminates such drawbacks, and its purpose is to shorten the time required for cooling and solidifying without impairing the flow characteristics necessary for filling a cavity with molten resin due to its dependence on temperature. be.

以下実施例に基づいて本発明の詳細な説明する。第3図
と第4図において、常温状態の金型を温度t1の第1熱
媒11を第1方向制御弁5 (vl)によって流通させ
tlの温度とする。これは従来性なわれている始業時の
金型の昇温と同様に行なわれる。次に第1熱媒11を停
止、その温度がt 2C第2熱媒12を流通させキャビ
ティ附近の温度を第2設定温度T、まで降温させる。さ
らに第2熱媒12を停止し第1熱媒11を流通させキャ
ビティ附近の温度を溶融樹脂を充填させるに十分な第1
設定温度Tユに昇温させる。これで、キャビティ附近は
サイクル運転時と同じ温度状態又はそれに近い温度状態
とすることができる。またキャビティ附近の温度は第1
設定温度T0となり、溶融樹脂をキャビティに充填させ
るに十分な温度に達する。この時キャビティ内に溶融樹
脂を射出充填させ、一方充填開始と同時または充填終了
と同時に、第2熱媒12を流通させ、キャビティ附近を
降温させ樹脂の冷却速度を速め同化時間8e2 を短縮
させる。この時キャビティ附近の温度は第1設定温度T
1から第2設定温度T2に向かって指数関数曲線C■2
 に沼って降温する。また溶融樹脂の温度は第2指数関
数曲線Co2 を基本とし、結晶化温度Ty附近での内
部潜熱とキャビティ附近の温度変化が加わった第2冷却
曲線Oa2 に油ってゲートシール温度Tc経て固化温
度TEに達する。
The present invention will be described in detail below based on Examples. In FIGS. 3 and 4, the first heating medium 11 at a temperature t1 is passed through the mold at room temperature by the first directional control valve 5 (vl) to bring the temperature to tl. This is done in the same way as the conventional heating of the mold at the start of the operation. Next, the first heating medium 11 is stopped and its temperature reaches t2C.The second heating medium 12 is caused to flow and the temperature around the cavity is lowered to the second set temperature T. Further, the second heating medium 12 is stopped and the first heating medium 11 is allowed to flow, so that the temperature in the vicinity of the cavity becomes sufficient to fill the molten resin.
Raise the temperature to the set temperature Tyu. This allows the vicinity of the cavity to be at the same temperature as during cycle operation or a temperature close to it. Also, the temperature near the cavity is the first
The temperature reaches the set temperature T0, which is sufficient to fill the cavity with the molten resin. At this time, the molten resin is injected and filled into the cavity, and at the same time as the start of filling or the end of filling, the second heating medium 12 is caused to flow to lower the temperature around the cavity, speed up the cooling rate of the resin, and shorten the assimilation time 8e2. At this time, the temperature near the cavity is the first set temperature T
Exponential function curve C■2 from 1 to the second set temperature T2
The temperature drops in the swamp. The temperature of the molten resin is based on the second exponential function curve Co2, and the second cooling curve Oa2, which includes the internal latent heat near the crystallization temperature Ty and the temperature change near the cavity, moves to the solidification temperature via the gate seal temperature Tc. Reach TE.

第2図と第3図を比較して明らかな様に溶融拉1脂とキ
ャビティ附近の温度とによって冷却曲線の傾きが異なり
、一般的によく知られている温度差に比例し経過時間の
指数関数となる。従来方法と本発明の方法との間で、固
化温贋TEまでの固化時間を比較するとポリアセタール
樹脂の場合60%程贋まで短縮された。本発明の方法に
よれば充填時においては溶融樹脂の流動性をそこなうこ
となく維持しながら、冷却固化時にはキャビティ附近の
温度を降下させ固化時間を短縮することのできるすぐれ
た効果を有する。さらに詳しく説明すると、第4図の如
く金型1はキャビティ2の近傍に設けた熱媒通路3と連
通する熱媒入口4aと熱媒出口4bとから構成されてい
る。さらに第1熱媒11を圧送する第1ポンプ9とこれ
を一定圧力以下に制御する第1圧力制御弁7と、前記熱
媒入04αと熱媒出口4bとに連通ずる第1方向制御弁
5とによって構成される第1熱媒11の流通回路とによ
って構成され、これと同様に並列構成された第2熱媒1
2の第2ポンプ1oと第2圧力制御弁8と第2方向制御
弁6とから構成された第2熱媒12の流通回路とによっ
て構成された熱媒交互流通回路とからなっている。以上
の構成において、第1熱媒11を第1ポンプ?で圧送し
第1圧力制御弁7を通り第1方向制御弁5によって熱媒
入口4αに送シ熱媒通路3を経て熱媒出口4bに至った
第1熱媒11を回送する。この時、第1方向制御弁5が
動作状態となり第2方向制御弁6は停止状態となる。第
2方向制御弁6が停止状態の為第2ポンプ10より送シ
出された第2熱媒12は圧力が高くなり第2圧力制御弁
により回送される。以上の如く、交互に方向制御弁を交
互に動作させることによりキャビティ2の附近を周期的
に温度を変化させることができる。この様に熱媒体を交
互に流通させることができる方法であれば他の回路構成
でも本発明の目的に合致する。さらに第1方向制御弁5
と第2方向制御弁6の動作状態と停止状態の切換時期は
キャビティ乙の附近の温度によって決定しても可能であ
り、本発明に含まれる。
As is clear from comparing Figures 2 and 3, the slope of the cooling curve differs depending on the temperature of the molten resin and the temperature near the cavity, and it is generally known that the slope of the cooling curve is proportional to the temperature difference and is an index of the elapsed time. Becomes a function. Comparing the solidification time to solidification temperature TE between the conventional method and the method of the present invention, in the case of polyacetal resin, it was shortened by about 60% to TE. The method of the present invention has the excellent effect of maintaining the fluidity of the molten resin without impairing it during filling, while lowering the temperature near the cavity during cooling and solidification, thereby shortening the solidification time. More specifically, as shown in FIG. 4, the mold 1 is comprised of a heat medium inlet 4a and a heat medium outlet 4b communicating with a heat medium passage 3 provided near the cavity 2. Further, a first pump 9 that pumps the first heat medium 11, a first pressure control valve 7 that controls the pressure below a constant pressure, and a first directional control valve 5 that communicates with the heat medium inlet 04α and the heat medium outlet 4b. and a second heating medium 1 configured in parallel with the first heating medium 11.
2, a second heat medium 12 circulation circuit constituted by two second pumps 1o, a second pressure control valve 8, and a second directional control valve 6. In the above configuration, the first heat medium 11 is the first pump? The first heat medium 11 that has passed through the first pressure control valve 7 and reached the heat medium outlet 4b via the heat transfer passage 3 is transferred to the heat medium inlet 4α by the first directional control valve 5. At this time, the first directional control valve 5 is in an operating state and the second directional control valve 6 is in a stopped state. Since the second directional control valve 6 is in a stopped state, the pressure of the second heat medium 12 pumped out by the second pump 10 becomes high and is sent back by the second pressure control valve. As described above, by alternately operating the directional control valves, the temperature in the vicinity of the cavity 2 can be changed periodically. Other circuit configurations can also meet the objective of the present invention as long as the method allows the heat medium to flow alternately in this manner. Furthermore, the first directional control valve 5
The switching timing between the operating state and the stopped state of the second directional control valve 6 can also be determined based on the temperature near the cavity B, and is included in the present invention.

以上の如く、異なる温度の熱媒を交互に流通させる機能
を附与されキャビティ附近に設けられた熱媒通路に、樹
脂の充填に必要な温度以上に加熱された熱媒と充填に必
要な温度より低い温度に冷却された熱媒とを交互に流通
させることにより、キャビティ内の溶融樹脂の固化時間
を著しく短縮させることのできる方法を提供できる。
As described above, the heating medium passage provided near the cavity is provided with the function of alternately circulating heating mediums of different temperatures, and the heating medium heated to a temperature higher than the temperature required for filling the resin and the heating medium heated to a temperature higher than the temperature required for filling the resin. By alternately circulating a heat medium cooled to a lower temperature, a method can be provided that can significantly shorten the solidification time of the molten resin in the cavity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金型温度の状態を示す図。第2図は従来
の金型温度制御の方法によって得られるキャビティ内の
樹脂の温度変化を示す図。第3図は本発明の温度制御方
法によるキャビティ内の樹脂の温度変化を示す図。第4
図はキャビティ附近に異なる温度の熱媒を周期的に流通
させるための熱媒交互流通回路と熱媒通路との関係を示
す図。 1・・・・・・・・・金 型 2・・・・・・・・・キャビティ 3・・・・・・・・・熱媒通路 4α・・・・・・熱媒入口 4h・・・・・・熱媒出口 5・・・・・・・・・第1方向制御弁(vl )6・・
・・・・・・・第2方向制御弁(v2 )7・・・・・
・・・・第1圧力制御弁 8・・・・・・・・・第2圧力制御弁 9・・・・・・・・・第1ポンプ 10・・・・・・第2ポンプ 11・・・・・・第1熱媒 12・・・・・・第2熱媒 才1図 才2図 f:si!1 ″f4図
FIG. 1 is a diagram showing the state of conventional mold temperature. FIG. 2 is a diagram showing the temperature change of the resin inside the cavity obtained by the conventional mold temperature control method. FIG. 3 is a diagram showing the temperature change of the resin in the cavity according to the temperature control method of the present invention. Fourth
The figure is a diagram showing the relationship between a heating medium alternate circulation circuit and a heating medium path for periodically circulating heating mediums of different temperatures in the vicinity of a cavity. 1...Mold 2...Cavity 3...Heat medium passage 4α...Heat medium inlet 4h... ...Heat medium outlet 5...First direction control valve (vl) 6...
......Second directional control valve (v2)7...
...First pressure control valve 8 ...Second pressure control valve 9 ...First pump 10 ...Second pump 11 ... ...First heating medium 12...Second heating medium 1 figure 2 figure f: si! 1″f4 diagram

Claims (1)

【特許請求の範囲】[Claims] 溶融樹脂を所定の圧力で金型の所要の製品形状のキャビ
ティに充填させる樹脂の成形性方法において、前記キャ
ビティ附近に熱媒通路を設けこれに温度の異なる熱媒を
流通せしめる熱媒交互流通回路によって、溶融樹脂がキ
ャビティに充填後直ちに第2熱媒を流通させ冷却を促進
し、樹脂の固化後直ちに、第1熱媒を流通させキャビテ
ィ附近の温度を上昇させ溶融樹脂の充填に必要な所定の
温度に復帰させることを特徴とする樹脂成形用金型の温
度制御方法。
In a resin moldability method in which a cavity of a desired product shape of a mold is filled with molten resin at a predetermined pressure, a heating medium alternate circulation circuit is provided in which a heating medium passage is provided near the cavity and heating mediums of different temperatures are passed through the passage. Immediately after the molten resin is filled into the cavity, the second heating medium is passed through to promote cooling, and immediately after the resin solidifies, the first heating medium is passed through to raise the temperature around the cavity to a predetermined level necessary for filling the molten resin. A method for controlling the temperature of a mold for resin molding, characterized by returning the temperature to a temperature of .
JP11051583A 1983-06-20 1983-06-20 Method of controlling temperature of mold for molding resin Pending JPS602327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11051583A JPS602327A (en) 1983-06-20 1983-06-20 Method of controlling temperature of mold for molding resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11051583A JPS602327A (en) 1983-06-20 1983-06-20 Method of controlling temperature of mold for molding resin

Publications (1)

Publication Number Publication Date
JPS602327A true JPS602327A (en) 1985-01-08

Family

ID=14537745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11051583A Pending JPS602327A (en) 1983-06-20 1983-06-20 Method of controlling temperature of mold for molding resin

Country Status (1)

Country Link
JP (1) JPS602327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748679A1 (en) * 1995-06-16 1996-12-18 Hans-Jürgen Luckow Method and apparatus for injection moulding
WO2004016412A1 (en) * 2002-07-18 2004-02-26 Siemens Aktiengesellschaft Tempering device for a tool of an injection moulding machine
EP1473135A2 (en) * 2003-04-28 2004-11-03 Technotrans AG Device for the supply of temperature control media to channels of an injection mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748679A1 (en) * 1995-06-16 1996-12-18 Hans-Jürgen Luckow Method and apparatus for injection moulding
WO2004016412A1 (en) * 2002-07-18 2004-02-26 Siemens Aktiengesellschaft Tempering device for a tool of an injection moulding machine
EP1473135A2 (en) * 2003-04-28 2004-11-03 Technotrans AG Device for the supply of temperature control media to channels of an injection mold
EP1473135A3 (en) * 2003-04-28 2005-02-09 Technotrans AG Device for the supply of temperature control media to channels of an injection mold

Similar Documents

Publication Publication Date Title
US4726751A (en) Hot-runner plastic injection molding system
JPS6159220B2 (en)
US2338691A (en) Molten metal for temperature control
JPS602327A (en) Method of controlling temperature of mold for molding resin
JPS62117716A (en) Mold and temperature controlling thereof
JPH032048B2 (en)
JPH05154880A (en) Metal mold and method for molding plastic lens
JPH07144352A (en) Temperature control structure of mold
CN207629175U (en) A kind of novel pouring gate structure for Ultra-Low Speed die casting
JPS6374618A (en) Plastic molding die for disk board
JPH04138234A (en) Controlling device for injection molding machine
JP3605499B2 (en) Mold temperature control device
CN110181770A (en) Become the forming method of mould temperature system and optical mirror slip
JPS5795431A (en) Temperature control for metallic mold of injection molding machine
TWM568775U (en) Mold temperature control device
JPS6418620A (en) Mold temperature adjusting apparatus for injection molding machine
KR101113132B1 (en) Mold system for molding comprising heating elements
JPS6262720A (en) Injection mold
JPH04301425A (en) Mold temperature regulator
JPS6251414A (en) Hot runner type injection molding equipment
RU2038425C1 (en) Device for manufacture of underpin plugs for self-baking anode of aluminum electrolyzer with top current lead
JPH0531505B2 (en)
JPH06132331A (en) Semiconductor sealing mold
JPS5887009A (en) Injection molding method for ceramic resin
JPS5812740A (en) Resin molding method