JPS62117716A - Mold and temperature controlling thereof - Google Patents

Mold and temperature controlling thereof

Info

Publication number
JPS62117716A
JPS62117716A JP25961285A JP25961285A JPS62117716A JP S62117716 A JPS62117716 A JP S62117716A JP 25961285 A JP25961285 A JP 25961285A JP 25961285 A JP25961285 A JP 25961285A JP S62117716 A JPS62117716 A JP S62117716A
Authority
JP
Japan
Prior art keywords
mold
movable
insert
fixed
fixed mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25961285A
Other languages
Japanese (ja)
Inventor
Setsuji Yamamoto
山本 節二
Tsuneo Kurihara
栗原 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25961285A priority Critical patent/JPS62117716A/en
Publication of JPS62117716A publication Critical patent/JPS62117716A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • B29C2033/042Meander or zig-zag shaped cooling channels, i.e. continuous cooling channels whereby a plurality of cooling channel sections are oriented in a substantial parallel direction

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To uniformize the temperature of a mold as a whole and consequently effectively cool molten resin in a short period of time by a method wherein a large amount of hot water, the temperature of which is nearly equal to the removal temperature of a molded part, as cooling medium is circulated through a mold consisting of a movable mold core and a fixed mold core, both of which are made of material with high heat conductivity. CONSTITUTION:In a movable mold core 13, the hot water supplied through a pipe 57 is circulated through holes 24, 18, 28, 18, 30, 18, 32, 18 and 26 in the order named. On the other hand, in a fixed mold core 14, the hot water fed to a hole 60 is circulated through holes 61, 62, 63, 64 and 65 in the order named and discharged outside from the fixed mold core 14. Because the movable mold core 13 and the fixed mold core 14 are made of material with high heat conductivity in the case, the mold temperature of the movable mold core 13 and of the fixed mold core 14 are uniformized as a whole. In addition, because the cooling medium channel formed in the movable mold core 13 is so constituted as to be made square with that formed in the fixed mold core 14, uniform cooling effect is given to a molded part formed by a cavity 16.

Description

【発明の詳細な説明】 本発明は、金型およびその温度制御方法に関し、一層詳
細には、プラスチック成形に用いる金型の特にキャビテ
ィ部分を熱伝導性の優れた部材で形成すると共に、当該
金型内に成形品取り出し温度に設定された冷却媒体、例
えば、温水または温油を大量に通流することにより、成
形品の冷却温度差を少なくし、冷却効率を高め且つ成形
サイクルを短縮し、しかも、成形品の品質の一層の向上
を達成するようにした金型およびその温度制御N(1方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold and a method for controlling its temperature, and more particularly, the present invention relates to a mold used for plastic molding, in particular, the cavity portion of the mold is formed of a member with excellent thermal conductivity, and By flowing a large amount of cooling medium, such as hot water or hot oil, set at the temperature for taking out the molded product into the mold, the difference in cooling temperature of the molded product is reduced, cooling efficiency is increased, and the molding cycle is shortened. Moreover, it relates to a mold and its temperature control N (1 method) that achieves further improvement in the quality of molded products.

合成樹脂からなる成形品を射出成形法により得る場合、
固定型と可動型とからなる金型によって画成されたキャ
ビティに加熱溶融した樹脂材を高圧下で注入し、この溶
融樹脂を冷却固化させた後、固定型と可動型とを離間さ
せて、所謂型開きを行い、所定形状の成形品を取り出す
When a molded product made of synthetic resin is obtained by injection molding,
A heated and molten resin material is injected under high pressure into a cavity defined by a mold consisting of a fixed mold and a movable mold, and after the molten resin is cooled and solidified, the fixed mold and the movable mold are separated, A so-called mold opening is performed and a molded product of a predetermined shape is taken out.

従って、型内にあって溶融樹脂の冷却速度を早めて型開
きを早期に行うことは成形サイクルの時間短縮を達成す
るために必要不可欠である。
Therefore, it is essential to speed up the cooling rate of the molten resin in the mold and open the mold early in order to shorten the molding cycle time.

そこで、通常、金型の内部に予め冷却媒体用の流路を形
成し、この流路に、例えば、冷媒として冷却水を通流す
ることにより、キャビティの外部から強制的に溶融樹脂
を冷却している。
Therefore, normally, a channel for a cooling medium is formed in advance inside the mold, and the molten resin is forcibly cooled from outside the cavity by, for example, passing cooling water as a coolant through this channel. ing.

然しなから、一般に、金型は金属としては比較的熱伝導
性の劣る鋼材からなり、また、金型の内部に形成される
流路の直径は、金型全体の寸法に鑑みれば相対的には極
めて小さい。さらに、このような流路には通常以下の温
度の冷却水を通流している。
However, in general, molds are made of steel, which has relatively poor thermal conductivity as a metal, and the diameter of the flow passage formed inside the mold is relatively small considering the overall dimensions of the mold. is extremely small. Furthermore, cooling water at a temperature below normal is passed through such a flow path.

このような場合、溶融樹脂に対する強制冷却は金型を構
成する熱伝導率の低い部材を介して行わなければならな
い。しかも、流路が小径であるため、大量の冷却水を一
度に通流させることが不可能であり、この結果、キャビ
ティ内の溶融樹脂を効率よく冷却することが出来ない。
In such a case, forced cooling of the molten resin must be performed through a member with low thermal conductivity that constitutes the mold. Moreover, since the flow path has a small diameter, it is impossible to flow a large amount of cooling water at once, and as a result, the molten resin in the cavity cannot be efficiently cooled.

また、前記のように、金型構成部材は熱伝導率が低いた
め、部分的には冷却温度差が大きくなり、従って、キャ
ビティを画成する部位の表面温度が均一にならない。こ
の結果、溶融樹脂全体を均等に冷却することが出来ない
ため、成形品に内部応力が発生し、引けあるいは歪み等
の品質不良が惹起する虞れがある。
Further, as described above, since the mold constituent members have low thermal conductivity, the cooling temperature difference becomes large in some parts, and therefore, the surface temperature of the part defining the cavity is not uniform. As a result, the entire molten resin cannot be cooled uniformly, which may generate internal stress in the molded product, leading to quality defects such as shrinkage or distortion.

本発明は前記の不都合を克服するためになされたもので
あって、金型の特にキャビティ画成部位を熱伝導率の高
い部材で形成すると共に、成形品の取り出し温度に設定
した水または油等の冷却媒体を前記流路を介して大計に
通流させることにより、冷却効率の向上を図り、これに
よって成形サイクルの時間を短縮し、しかも、安定した
品質の成形品を製造することを可能とする金型およびそ
の温度制御方法を提供することを目的とする。
The present invention has been made in order to overcome the above-mentioned disadvantages, and in particular, the cavity defining portion of the mold is formed of a material with high thermal conductivity, and water or oil, etc., set at the temperature for taking out the molded product, etc. By circulating the cooling medium widely through the flow path, cooling efficiency is improved, thereby shortening the molding cycle time and making it possible to manufacture molded products with stable quality. The purpose of the present invention is to provide a mold and a method for controlling its temperature.

前記の目的を達成するために、本発明は供給される溶融
材料を冷却固化して成形品を成形するための可動型と固
定型とからなる金型において、可動型は可動型本体と前
記可動型本体に一体化される可動型入子とを含み、一方
、固定型は固定型本体と前記固定型本体に一体化される
固定型入子とを含み、前記可動型入子と固定型入子によ
り成形品を形成するキャビティを画成すると共に、前記
可動型入子と固定型入子とを夫々可動型本体並びに固定
型本体よりも熱伝導率の高い部材で構成し、さらに、前
記可動型入子と固定型入子の夫々に冷却媒体を通流させ
て溶融材料を強制的に冷却する冷媒用流路を画成するこ
とを特徴とする。
To achieve the above object, the present invention provides a mold consisting of a movable mold and a fixed mold for molding a molded product by cooling and solidifying a supplied molten material, wherein the movable mold has a movable mold main body and the movable mold body. The fixed mold includes a movable mold insert integrated into the mold body, while the fixed mold includes a fixed mold main body and a fixed mold insert integrated with the fixed mold body, and the movable mold insert and the fixed mold insert The movable mold insert and the fixed mold insert are each made of a member having a higher thermal conductivity than the movable mold main body and the fixed mold main body, and It is characterized in that a cooling medium is made to flow through each of the mold insert and the fixed mold insert to define a coolant flow path for forcibly cooling the molten material.

さらにまた、本発明は可動型本体と一体化され且つ前記
可動型本体よりも熱伝導率の高い部材からなる可動型入
子と、固定型本体と一体化され且つ前記固定型本体より
も熱伝導率の高い部材からなる固定型入子とを互いに型
締めすることにより成形品用キャビティを画成し、前記
キャビティに溶融材料を注湯し、次いで、可動型本体を
固定型本体から離間させることにより可動型入子と固定
型入子との型開きを行い、キャビテイ内で固化した成形
品を取り出し、この間、前記可動型入子と固定型入子の
夫々に形成された冷却媒体用流路に略成形品取り出し温
度に設定された冷却媒体を通流させて前記キャビティの
溶融材料を強制的に冷却固化することを特徴とする。
Furthermore, the present invention also provides a movable insert made of a member that is integrated with a movable main body and has a higher thermal conductivity than the movable main body, and a movable insert that is integrated with a fixed main body and has a higher thermal conductivity than the fixed main body. A cavity for the molded article is defined by clamping together a fixed mold insert made of a material with a high ratio of molding, pouring molten material into the cavity, and then separating the movable mold body from the fixed mold body. The molds of the movable mold insert and the fixed mold insert are opened, and the molded product solidified within the cavity is taken out. During this time, the cooling medium flow channels formed in the movable mold insert and the fixed mold insert The method is characterized in that the molten material in the cavity is forcibly cooled and solidified by passing a cooling medium set to approximately the temperature at which the molded product is taken out.

次に、本発明に係る金型の温度制御方法についてそれを
実施する金型との関連において好適な実施例を挙げ、添
付の図面を参照しながら以下詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the mold temperature control method according to the present invention will be described in detail with reference to the accompanying drawings, in connection with a mold for implementing the method.

第1図において、参照符号10は本発明に係る金型を示
し、前記金型10は実質的に可動型11と固定型12と
からなる。この場合、前記可動型11と固定型12とは
互いに当接することによって成形品を成形するためのキ
ャビティ16を画成する可動型入子13および固定型入
子14とを含む。前記可動型入子13および固定型入子
14は熱伝導率の高い部材、例えば、純銅、銅合金、ア
ルミニウム、アルミニウム合金または亜鉛合金等を用い
て形成されている。
In FIG. 1, reference numeral 10 indicates a mold according to the present invention, and the mold 10 substantially consists of a movable mold 11 and a fixed mold 12. In this case, the movable mold 11 and the fixed mold 12 include a movable mold insert 13 and a fixed mold insert 14 which define a cavity 16 for molding a molded product by coming into contact with each other. The movable insert 13 and the fixed insert 14 are made of a material with high thermal conductivity, such as pure copper, copper alloy, aluminum, aluminum alloy, or zinc alloy.

可動型入子13には、図における水平方向に指向して貫
通する孔部18が穿設され、この孔部18の両端部にプ
ラグ部材20および22を嵌着することによって前記孔
部18の開口部は密閉される。
A hole 18 is formed in the movable insert 13 and extends through the hole 18 in the horizontal direction in the figure.Plug members 20 and 22 are fitted into both ends of the hole 18 to close the hole 18. The opening is sealed.

この場合、孔部18の直径は従来の略同−の金型におけ
る冷媒用流路よりも大きく選択しておく。
In this case, the diameter of the hole 18 is selected to be larger than the refrigerant flow path in a conventional mold of approximately the same size.

さらに、可動型入子13の側面部から前記孔部18のi
端部に連通して孔部24が穿設され、同様に、孔部18
の他端部に連通して孔部26が穿設される(第2図参照
)。前記孔部24.26における可動型入子13の側面
部の開口部位には後述する管体を接続するための内螺子
24a、26aを刻設しておく。さらに、孔部18に連
通ずるように所定間隔離間し且つキャビティ16に指向
して孔部28.30および32が画成される。なお、図
から容易に諒解されるように、この孔部28.30.3
2の最深部は夫々鋭化するように形成しておく。この場
合、前記孔部28.30.32の直径は孔部18のそれ
よりも大きく選択する。
Further, from the side surface of the movable insert 13 to the i of the hole 18,
A hole 24 is bored in communication with the end, and similarly, a hole 18
A hole 26 is bored in communication with the other end (see FIG. 2). Inner screws 24a and 26a for connecting a tube body, which will be described later, are cut into the openings of the side surfaces of the movable insert 13 in the holes 24 and 26. Additionally, holes 28, 30 and 32 are defined spaced apart from each other in communication with the hole 18 and directed toward the cavity 16. In addition, as can be easily understood from the figure, this hole 28.30.3
The deepest parts of No. 2 are formed so as to be sharpened. In this case, the diameter of the bore 28, 30, 32 is selected to be larger than that of the bore 18.

次に、孔部28が可動型入子13の底面部に開口する部
位にはプラグ部材36を嵌着し、このプラグ部材36に
は孔部28に臨む仕切板34が植設される。従って、前
記仕切板34の先端部が孔部28の最深部を画成する部
位と離間することによって、孔部28内には逆U字状の
流路が画成されることが諒解されよう。これと同様にし
て、孔部30の開口部は仕切板38が固着されたプラグ
部材40によって閉塞され、孔部32の開口部は仕切板
42が固着されたプラグ部材44によって閉塞される。
Next, a plug member 36 is fitted into the portion where the hole 28 opens at the bottom of the movable insert 13, and a partition plate 34 facing the hole 28 is implanted in the plug member 36. Therefore, it can be understood that by separating the tip of the partition plate 34 from the part that defines the deepest part of the hole 28, an inverted U-shaped flow path is defined within the hole 28. . Similarly, the opening of the hole 30 is closed by a plug member 40 to which a partition plate 38 is fixed, and the opening of the hole 32 is closed by a plug member 44 to which a partition plate 42 is fixed.

すなわち、夫々の孔部28.30.32内には逆U字状
の流路が画成され、この流路に冷媒が流れることによっ
て一層可動型入子13側の冷却効果を高めることが可能
となる。
That is, an inverted U-shaped flow path is defined in each of the holes 28, 30, and 32, and by allowing the refrigerant to flow through this flow path, it is possible to further enhance the cooling effect on the movable insert 13 side. becomes.

以上のような構成の可動型入子13は可動型本体46に
装着される。すなわち、可動型本体46には凹部48が
形成されており、また、第2図に示すように、前記凹部
48に連通して比較的直径の大きい孔部50および52
が穿設されている。そこで、前記可動型本体46に可動
型入子13を装着する際には、可動型本体46と可動型
入子13との間に断熱材54を介装して前記可動型入子
13を凹部48に嵌合させる。なお、前記断熱材54は
断熱効果を有するステンレス鋼、石綿あるいは合成樹脂
材等を用いて構成してお(と好適である。さらにまた、
可動型入子13、断熱材54、可動型本体46には、第
1図に示すように、ボルト56a、56bを所定の孔部
を介して可動型本体46から可動型入子13に至るまで
挿通し前記可動型入子13、断熱材54、可動型本体4
6を緊締する。なお、可動型本体46に穿設された前記
孔部50および52は、第2図に示すように、可動型入
子13に穿設された孔部24および26に連通ずるよう
に構成される。
The movable insert 13 configured as described above is attached to the movable main body 46. That is, a recess 48 is formed in the movable main body 46, and as shown in FIG. 2, holes 50 and 52 having a relatively large diameter are connected to the recess 48.
is drilled. Therefore, when attaching the movable insert 13 to the movable main body 46, a heat insulating material 54 is interposed between the movable main body 46 and the movable insert 13, and the movable insert 13 is inserted into the recess. 48. The heat insulating material 54 is preferably made of stainless steel, asbestos, synthetic resin, or the like, which has a heat insulating effect.Furthermore,
As shown in FIG. 1, bolts 56a and 56b are inserted into the movable mold insert 13, the heat insulating material 54, and the movable mold main body 46 through predetermined holes from the movable mold main body 46 to the movable mold insert 13. Insert the movable mold insert 13, the heat insulating material 54, the movable mold main body 4
Tighten 6. The holes 50 and 52 formed in the movable mold main body 46 are configured to communicate with the holes 24 and 26 formed in the movable mold insert 13, as shown in FIG. .

従って、このように孔部50と24および孔部52と2
6を夫々連通させるためには、断熱材54に所要の孔部
を穿設しておく。そして、冷媒用管路を構成する管体5
7を孔部50に挿通し、この管体57の細く形成された
先端部を孔部24の内螺子24aに螺着して流路接続す
る。これと同様に、孔部52には管体59を挿通し、そ
の先端部を孔部26の内螺子26aに接続する。
Therefore, in this way, the holes 50 and 24 and the holes 52 and 2
In order to communicate with each other, required holes are bored in the heat insulating material 54. A pipe body 5 constituting a refrigerant pipe line
7 is inserted into the hole 50, and the thin tip of the tube 57 is screwed onto the internal thread 24a of the hole 24 to connect the flow path. Similarly, a tube 59 is inserted into the hole 52 and its tip is connected to the internal thread 26a of the hole 26.

次に、前記可動型本体46は基台58に載設される。さ
らに、前記基台58は図示しないアクチュエータに接続
され、図における鉛直方向に変位可能なように構成され
る。
Next, the movable main body 46 is mounted on a base 58. Further, the base 58 is connected to an actuator (not shown) and is configured to be movable in the vertical direction in the figure.

一方、所定位置に固定される固定型入子14には従来の
同一サイズの金型における流路よりも直径が比較的大き
く選択さ°れた孔部60乃至65がキャビティ16から
所定間隔離間し且つ平行に穿設される。第1図から容易
に諒解されるように、前記孔部60乃至65は可動型入
子13に画成された孔部18.28.30および32と
夫々直交する方向に延在している。また、キャビティ1
6に連通ずるように溶湯供給路68が固定型入子14に
穿設されている。
On the other hand, the fixed mold insert 14, which is fixed at a predetermined position, has holes 60 to 65, which are selected to have a relatively larger diameter than the flow path in a conventional mold of the same size, and are separated from the cavity 16 by a predetermined distance. The holes are drilled parallel to each other. As can be easily seen from FIG. 1, the holes 60 to 65 extend perpendicularly to the holes 18, 28, 30 and 32 defined in the movable insert 13, respectively. Also, cavity 1
A molten metal supply channel 68 is bored in the fixed mold insert 14 so as to communicate with the molten metal supply channel 6 .

以上のような構成の固定型入子14は断熱材70を介し
て固定型本体72に固着される。固定型入子14、断熱
材70、固定型本体72の一体化の方法は前記可動型入
子13、断熱材54、可動型本体46の一体化の方法と
同様であり、すなわち、固定型本体72に形成された凹
部74に断熱材70を介して固定型入子14を嵌合させ
、さらに、ボルト76乃至79を図示するように固定型
本体72から固定型入子14に至るまで挿通して緊締す
る。また、断熱材70および固定型本体72には、前記
孔部60乃至65に連通する図示しない孔部が穿設され
、前記孔部に所定の管体を挿入して孔部60乃至65に
接続することにより、第3図に示すように、孔部60−
61−62−63−64−65と冷媒が通流する流路を
構成しておく。
The fixed mold insert 14 configured as described above is fixed to the fixed mold main body 72 via the heat insulating material 70. The method of integrating the fixed mold insert 14, the heat insulating material 70, and the fixed mold main body 72 is the same as the method of integrating the movable mold insert 13, the heat insulating material 54, and the movable mold main body 46, that is, the fixed mold main body The fixed mold insert 14 is fitted into the recess 74 formed in the fixed mold insert 14 via the heat insulating material 70, and the bolts 76 to 79 are inserted from the fixed mold main body 72 to the fixed mold insert 14 as shown in the figure. and tighten it. Further, the heat insulating material 70 and the fixed main body 72 are provided with holes (not shown) that communicate with the holes 60 to 65, and a predetermined pipe body is inserted into the hole and connected to the holes 60 to 65. By doing so, as shown in FIG.
61-62-63-64-65 and a flow path through which the refrigerant flows is configured.

固定型本体72の上面からはブツシュ部材82を嵌入し
、このブツシュ部材82を固定型入子14に穿設された
孔部84に嵌着する。この場合、ブツシュ部材82内に
形成されたスプル86は前記溶湯供給路68に連通ずる
。固定型本体72の上面部には板状部材88が固着され
、この板状部材88にロケートリング92が嵌着される
。前記ロケートリング92にはノズル部材94が挿通さ
れ、このノズル部材94の噴出口が前記スプル86に連
通ずるように構成される。
A bushing member 82 is inserted into the upper surface of the fixed mold main body 72, and this bushing member 82 is fitted into a hole 84 formed in the fixed mold insert 14. In this case, a sprue 86 formed within the bushing member 82 communicates with the molten metal supply channel 68. A plate member 88 is fixed to the upper surface of the fixed main body 72, and a locate ring 92 is fitted onto the plate member 88. A nozzle member 94 is inserted through the locate ring 92 , and a jet port of the nozzle member 94 is configured to communicate with the sprue 86 .

なお、当該金型lOにおいて、可動型11に成形品を可
動型入子13から離脱させるための突出機構を内設すれ
ば、一層好適である。
In addition, in the mold IO, it is more preferable if the movable mold 11 is provided with a protrusion mechanism for separating the molded product from the movable mold insert 13.

本発明に係る金型は基本的には以上のように構成される
ものであり、次に、その作用並びに効果について説明す
る。
The mold according to the present invention is basically constructed as described above, and its operation and effects will be explained next.

先ず、第2図において、矢印Eで示すように、管体57
を介して孔部24に大量の温水を連続的に供給し、これ
と同時に、第3図において矢印Fで示すように、孔部6
0に同じく大量の温水を連続的に供給する。この場合、
可動型入子13および固定型入子14の温度がキャビテ
ィ16に射出注入される溶融樹脂を固化出来る範囲内の
温度となるように、前記温水の温度を設定しておく。
First, as shown by arrow E in FIG.
A large amount of hot water is continuously supplied to the hole 24 through the hole 24, and at the same time, as shown by the arrow F in FIG.
Similarly, a large amount of hot water is continuously supplied to 0. in this case,
The temperature of the hot water is set so that the temperatures of the movable mold insert 13 and the fixed mold insert 14 are within a temperature range at which the molten resin injected into the cavity 16 can be solidified.

すなわち、前記温水の温度は樹脂の性質に対応させて選
択されるべきものであるが、−C的には、成形品の取り
出し温度である30℃〜100℃程度の温水を用いると
溶融樹脂を好適に固化させ且つ品質の良好性が確保出来
る。さらに、可動型入子13および固定型入子14の内
部に複数の孔部を穿設することによって構成された流路
はその直径が比較的大きく選択されているため、大量の
温水を連続的に供給することが可能となっている。
In other words, the temperature of the hot water should be selected depending on the properties of the resin, but in terms of -C, if hot water is used at a temperature of about 30°C to 100°C, which is the temperature at which the molded product is taken out, the molten resin will be It can solidify suitably and ensure good quality. Furthermore, since the diameter of the flow path formed by drilling a plurality of holes inside the movable insert 13 and the fixed insert 14 is selected to be relatively large, a large amount of hot water can be continuously supplied. It is now possible to supply

この場合、可動型入子13においては、管体57を介し
て供給された温水は孔部24−18−28−18−30
−18−32−18−26と通流する。その際、孔部2
8.30.32では、第1図に示すように、逆U字状の
流路を温水が通流する。なお、孔部26から矢印G(第
2図参照)で示すように管体59を介して外部に流出す
る温水を図示しないタンク内に還流させ、この還流され
た温水を温度調節した上で再び管体57を介して孔部2
4に供給するよう再循環流路を構成しておけば、水の使
用量の節減が達成され好適である。
In this case, in the movable insert 13, the hot water supplied through the pipe body 57 is
-18-32-18-26. At that time, hole 2
At 8.30.32, hot water flows through an inverted U-shaped channel, as shown in FIG. Note that the hot water flowing out from the hole 26 through the pipe 59 as shown by arrow G (see Fig. 2) is refluxed into a tank (not shown), and the temperature of this refluxed hot water is adjusted before being poured again. Hole 2 via pipe 57
It is preferable to configure a recirculation flow path so as to supply water to water 4, as this will reduce the amount of water used.

また、固定型入子14において、孔部60に供給された
温水は孔部61−62−63−64−65と通流して、
第3図の矢印Hで示すように固定型入子14から外部へ
と流出する。この外部に流出するl温水を前記の場合と
同様に温度調節した後、再び固定型入子14内の流路に
再循環させる。さらに、この場合、可動型入子13およ
び固定型入子14の内部の流路に通流させる温水が連続
した一つの循環流路を通流するように構成しておくこと
も可能であることは容易に諒解されよう。
In addition, in the fixed insert 14, the hot water supplied to the holes 60 flows through the holes 61-62-63-64-65,
As shown by arrow H in FIG. 3, it flows out from the fixed mold insert 14. After the temperature of this hot water flowing outside is adjusted in the same manner as in the above case, it is recirculated to the flow path within the fixed insert 14. Furthermore, in this case, it is also possible to configure the hot water to flow through the channels inside the movable insert 13 and the fixed insert 14 to flow through one continuous circulation channel. can be easily understood.

従って、可動型入子13および固定型入子14の内部に
は大量の温水が通流し、しかも、可動型入子13および
固定型入子14は熱伝導率の高い部材で形成されている
ため、可動型入子13、固定型入子14の型温は全体的
に均一である。
Therefore, a large amount of hot water flows inside the movable insert 13 and the fixed insert 14, and since the movable insert 13 and the fixed insert 14 are made of a material with high thermal conductivity. The mold temperatures of the movable insert 13 and the fixed insert 14 are uniform throughout.

なお、このように、冷媒としての冷却水は可動型入子1
3並びに固定型入子14に画成された冷媒用流路を通流
するが、前記のように、可動型入子13に形成された冷
媒用流路と固定型入子14に形成された冷媒用流路とは
互いに直交するように構成されているために、キャビテ
ィ16によって形成される成形品に均一な冷却効果を付
与することが可能となる。
In addition, in this way, the cooling water as a refrigerant is used in the movable insert 1.
3 and the refrigerant flow path defined in the fixed mold insert 14, but as described above, the refrigerant flow path formed in the movable mold insert 13 and the refrigerant flow path formed in the fixed mold insert 14 Since the refrigerant channels are configured to be perpendicular to each other, it is possible to impart a uniform cooling effect to the molded product formed by the cavity 16.

次に、第1図の矢印Iで示すようにノズル部材94を介
してスプル86、溶湯供給路68内に加熱溶融された樹
脂を圧入する。このような場合の溶融樹脂の温度は樹脂
の種類等に対応して種々選択されるが、一般的には20
0℃前後から300°C以下程度である。そこで、ノズ
ル部材94、スプル86、溶湯供給路68を介して圧入
された溶融樹脂はキャビティ16内に満たされる。その
際、可動型入子13および固定型入子14は成形品取り
出し温度に設定された温水によって適度に温められた。
Next, as shown by arrow I in FIG. 1, the heated and melted resin is press-fitted into the sprue 86 and the molten metal supply path 68 through the nozzle member 94. The temperature of the molten resin in such a case is variously selected depending on the type of resin, etc., but is generally 20°C.
The temperature ranges from around 0°C to 300°C or less. Therefore, the cavity 16 is filled with the molten resin press-fitted through the nozzle member 94, the sprue 86, and the molten metal supply path 68. At that time, the movable mold insert 13 and the fixed mold insert 14 were appropriately warmed with hot water set at the temperature for taking out the molded product.

状態にあるため、キャビティ16内に先に到達した溶融
樹脂が必要以上に急激に冷却されることはない。このた
め、キャビティ16内における溶融樹脂の流動性がよく
、キャビティ16内への溶融樹脂の正大作業は確実且つ
容易に達成される。
In this state, the molten resin that reached the cavity 16 first is not cooled more rapidly than necessary. Therefore, the fluidity of the molten resin within the cavity 16 is good, and the operation of directly introducing the molten resin into the cavity 16 can be achieved reliably and easily.

このように、キャビティ16内に充填された溶融樹脂は
温水によって好適な温度となっている可動型入子13お
よび固定型入子14により冷却される。この場合、可動
型入子13および固定型入子14は熱伝導率が高いため
、前記溶融樹脂に対する冷却は均等に行われ、従って、
キャビティ16内で固化して成形品となる樹脂に内部応
力が残存することはなく、また、歪みおよび割れ等が発
生することもない。
In this way, the molten resin filled in the cavity 16 is cooled by the movable mold insert 13 and the fixed mold insert 14, which are kept at a suitable temperature by hot water. In this case, since the movable insert 13 and the fixed insert 14 have high thermal conductivity, the molten resin is uniformly cooled, and therefore,
No internal stress remains in the resin that solidifies in the cavity 16 to form a molded product, and no distortion or cracks occur.

溶融樹脂が冷却固化された後は、基台58に接続された
図示しないアクチュエータを駆動することにより可動型
11を矢印B方向に変位させて型開きを行い、固化した
成形品を取り出す。
After the molten resin is cooled and solidified, an actuator (not shown) connected to the base 58 is driven to displace the movable mold 11 in the direction of arrow B to open the mold and take out the solidified molded product.

成形品取り出し後は、再び金型10を次なる成形工程に
待機させる。すなわち、前記アクチュエータを駆動させ
ることにより、可動型11を矢印A方向に変位させて第
1図に示すような型締め状態を得た後、再びキャビティ
16内への溶融樹脂の充填作業を実行すれば、新たな成
形品が得られる。そして、このように射出成形作業を連
続的に繰り返す場合にも、可動型入子13および固定型
入子14内には大量の温水が通流しており、しかも、前
記可動型入子13および固定型入子14自体は熱伝導性
が極めて良好であるため、溶融樹脂から伝達された熱は
冷却媒体としての温水との間で熱交換される。従って、
可動型入子13および固定型入子14が所定温度以上に
達することなく、好適な射出成形作業を繰り返すことが
可能である。
After removing the molded product, the mold 10 is placed on standby again for the next molding process. That is, by driving the actuator, the movable mold 11 is displaced in the direction of arrow A to obtain a mold clamping state as shown in FIG. 1, and then the filling operation of the molten resin into the cavity 16 is performed again. In other words, new molded products can be obtained. Even when the injection molding operation is continuously repeated in this way, a large amount of hot water flows through the movable mold insert 13 and the fixed mold insert 14, and moreover, the movable mold insert 13 and the fixed mold insert Since the mold insert 14 itself has extremely good thermal conductivity, the heat transferred from the molten resin is exchanged with hot water as a cooling medium. Therefore,
It is possible to repeat suitable injection molding operations without the movable mold insert 13 and the fixed mold insert 14 reaching a predetermined temperature or higher.

なお、可動型入子13と可動型本体46との間に断熱材
54を介装し、さらに、固定型入子14と固定型本体7
2との間に断熱材70を介装しているため、溶融樹脂か
らの熱が可動型本体46および固定型本体72に大量に
伝達されることもなく、この結果、金型10の外側面が
異常に高温化することはない。
Note that a heat insulating material 54 is interposed between the movable insert 13 and the movable main body 46, and the fixed insert 14 and the fixed main body 7 are further interposed.
2, a large amount of heat from the molten resin is not transferred to the movable mold body 46 and the fixed mold body 72, and as a result, the outer surface of the mold 10 does not reach abnormally high temperatures.

本発明によれば、以上のようにキャビティを画成する可
動型入子および固定型入子からなる成形型を熱伝導率の
高い部材で形成すると共に、当該成形型内に成形品取り
出し温度と略同−の温度の温水を冷却媒体として大量に
通流している。このため、成形型の温度は全体的に均一
となり、成形型内に画成されたキャビティに充填される
溶融樹脂はこの大量の冷却媒体によって比較的短時間で
効果的に冷却される。さらに、溶融樹脂に対する冷却作
用が均等に行われるため、成形品の品質の一層の向上を
図ることが可能であり、不良発生率を低減することが出
来る。
According to the present invention, as described above, the mold consisting of the movable mold insert and the fixed mold insert that define the cavity is formed of a material with high thermal conductivity, and the temperature at which the molded product is taken out is maintained within the mold. A large amount of hot water of approximately the same temperature is passed through as a cooling medium. Therefore, the temperature of the mold becomes uniform throughout, and the molten resin filled in the cavity defined within the mold is effectively cooled in a relatively short time by this large amount of cooling medium. Furthermore, since the cooling effect on the molten resin is uniformly performed, it is possible to further improve the quality of the molded product, and the rate of defects can be reduced.

しかも、前記のように成形型は熱伝導率が高いため、そ
の成形型内に通流させる冷却媒体の温度によって当該成
形型を短時間で適切な温度にすることが出来る。従って
、成形工程を間欠的に行う場合にも成形型の初期温度設
定を容易に行うことが可能であり、安定した品質の成形
品を当初から製造することが出来る。さらにまた、成形
型内に通流させる冷却媒体は温水であるため溶融樹脂が
必要以上に急冷されることがなく、この結果、溶融樹脂
のゲート並びにキャビティ内の流動抵抗が低く、従って
、溶融樹脂の射出圧力をある程度低下させた場合でも当
該溶融樹脂をキャビティ全体に行き渡らせることが可能
となり、高品質の成形品が得られる。このように、本発
明に係る金型およびその温度制御方法は成形サイクルの
時間短縮を可能とし、成形品の品質が向上される等、種
々の効果が得られる。
Furthermore, as described above, since the mold has high thermal conductivity, the mold can be brought to an appropriate temperature in a short time by changing the temperature of the cooling medium passed through the mold. Therefore, even when the molding process is performed intermittently, it is possible to easily set the initial temperature of the mold, and molded products of stable quality can be manufactured from the beginning. Furthermore, since the cooling medium that is passed through the mold is hot water, the molten resin is not cooled more rapidly than necessary, and as a result, the flow resistance of the molten resin at the gate and inside the cavity is low. Even if the injection pressure is lowered to some extent, it is possible to spread the molten resin throughout the cavity, resulting in a high-quality molded product. As described above, the mold and its temperature control method according to the present invention can achieve various effects such as shortening the molding cycle time and improving the quality of molded products.

以上、本発明について好適な実施例を挙げて説明したが
、本発明はこの実施例に限定されるものではなく、例え
ば、冷却媒体としては水以外の油等の流体を採用するこ
とも出来る等、本発明の要旨を逸脱しない範囲において
種々の改良並びに設計の変更が可能なことは勿論である
Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to these embodiments. For example, fluids such as oil other than water may be used as the cooling medium. Of course, various improvements and changes in design are possible without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る金型の一部縦断面図、第2図は第
1図のn−n線断面図、 第3図は第1図の金型における冷却媒体用の流路を平面
図的に示した説明図である。
FIG. 1 is a partial longitudinal cross-sectional view of a mold according to the present invention, FIG. 2 is a cross-sectional view taken along the line nn in FIG. 1, and FIG. It is an explanatory view shown in a top view.

Claims (4)

【特許請求の範囲】[Claims] (1)供給される溶融材料を冷却固化して成形品を成形
するための可動型と固定型とからなる金型において、可
動型は可動型本体と前記可動型本体に一体化される可動
型入子とを含み、一方、固定型は固定型本体と前記固定
型本体に一体化される固定型入子とを含み、前記可動型
入子と固定型入子により成形品を形成するキャビテイを
画成すると共に、前記可動型入子と固定型入子とを夫々
可動型本体並びに固定型本体よりも熱伝導率の高い部材
で構成し、さらに、前記可動型入子と固定型入子の夫々
に冷却媒体を通流させて溶融材料を強制的に冷却する冷
媒用流路を画成することを特徴とする金型。
(1) In a mold consisting of a movable mold and a fixed mold for molding a molded product by cooling and solidifying supplied molten material, the movable mold is a movable mold main body and a movable mold integrated with the movable mold main body. The fixed mold includes a fixed mold main body and a fixed mold insert integrated with the fixed mold main body, and a cavity in which a molded product is formed by the movable mold insert and the fixed mold insert. The movable insert and the fixed insert are respectively constructed of a member having a higher thermal conductivity than the movable main body and the fixed main body, and further, the movable insert and the fixed insert are A mold characterized in that a cooling medium is formed in each of the molds to forcibly cool a molten material by passing a cooling medium therethrough.
(2)特許請求の範囲第1項記載の金型において、可動
型入子と可動型本体との間には第1の断熱材が介装され
、固定型入子と固定型本体との間には第2の断熱材が介
装されてなる金型。
(2) In the mold according to claim 1, a first heat insulating material is interposed between the movable mold insert and the movable mold body, and the first heat insulating material is interposed between the fixed mold insert and the fixed mold body. A mold in which a second heat insulating material is interposed.
(3)可動型本体と一体化され且つ前記可動型本体より
も熱伝導率の高い部材からなる可動型入子と、固定型本
体と一体化され且つ前記固定型本体よりも熱伝導率の高
い部材からなる固定型入子とを互いに型締めすることに
より成形品用キャビテイを画成し、前記キャビテイに溶
融材料を注湯し、次いで、可動型本体を固定型本体から
離間させることにより可動型入子と固定型入子との型開
きを行い、キャビテイ内で固化した成形品を取り出し、
この間、前記可動型入子と固定型入子の夫々に形成され
た冷却媒体用流路に略成形品取り出し温度に設定された
冷却媒体を通流させて前記キャビテイの溶融材料を強制
的に冷却固化することを特徴とする金型の温度制御方法
(3) A movable insert made of a member that is integrated with the movable body and has a higher thermal conductivity than the movable body, and a movable insert that is integrated with the fixed body and has a higher thermal conductivity than the fixed body. A cavity for the molded product is defined by clamping the fixed mold insert consisting of the members to each other, a molten material is poured into the cavity, and then the movable mold body is separated from the fixed mold body. The mold is opened between the insert and the fixed insert, and the molded product that has solidified inside the cavity is taken out.
During this time, the molten material in the cavity is forcibly cooled by passing a cooling medium set to approximately the temperature for taking out the molded product through cooling medium channels formed in each of the movable mold insert and the fixed mold insert. A mold temperature control method characterized by solidification.
(4)特許請求の範囲第3項記載の方法において、冷却
媒体は水または油からなり、前記水または油は成形品取
り出し温度である30℃乃至100℃に加温されて冷却
媒体用流路に供給されてなる金型の温度制御方法。
(4) In the method according to claim 3, the cooling medium is made of water or oil, and the water or oil is heated to a temperature of 30°C to 100°C, which is the temperature for taking out the molded product, and the cooling medium flow path is Temperature control method for molds supplied to
JP25961285A 1985-11-18 1985-11-18 Mold and temperature controlling thereof Pending JPS62117716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25961285A JPS62117716A (en) 1985-11-18 1985-11-18 Mold and temperature controlling thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25961285A JPS62117716A (en) 1985-11-18 1985-11-18 Mold and temperature controlling thereof

Publications (1)

Publication Number Publication Date
JPS62117716A true JPS62117716A (en) 1987-05-29

Family

ID=17336503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25961285A Pending JPS62117716A (en) 1985-11-18 1985-11-18 Mold and temperature controlling thereof

Country Status (1)

Country Link
JP (1) JPS62117716A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215321U (en) * 1988-07-15 1990-01-31
JPH0486212A (en) * 1990-07-31 1992-03-18 Mitsubishi Heavy Ind Ltd Mold
US5363900A (en) * 1992-04-16 1994-11-15 Thyssen Guss Ag Steel mold especially for permanent mold casting of metal
EP0659533A1 (en) * 1993-12-22 1995-06-28 Sumitomo Heavy Industries, Ltd Injection mold
JP2002239684A (en) * 2001-02-14 2002-08-27 Honda Motor Co Ltd Structure for cooling metallic mold
JP2002283355A (en) * 2001-03-28 2002-10-03 Toray Ind Inc Mold for molding resin
EP1500445A2 (en) * 2003-07-22 2005-01-26 Alpha 3D Large metal mould
JP2007320168A (en) * 2006-05-31 2007-12-13 Daiho Industrial Co Ltd Mold
JP2013240999A (en) * 2012-04-23 2013-12-05 Toyota Auto Body Co Ltd Injection molding equipment and reinforcement rib extrusion device
JP2015520050A (en) * 2011-05-20 2015-07-16 ザ プロクター アンド ギャンブルカンパニー How to operate a high productivity injection molding machine
CN106825494A (en) * 2017-03-21 2017-06-13 苏州工业职业技术学院 A kind of hand die casting containing side typing mechanism
CN106914600A (en) * 2017-02-21 2017-07-04 苏州工业职业技术学院 A kind of die casting and pressure casting method
CN108973034A (en) * 2018-09-01 2018-12-11 苏州百盛精密工业有限公司 The cooling branching block of integrated form and its production technology
KR102546413B1 (en) * 2022-08-31 2023-06-23 (주)대림산업 A mold for an insulator bracket with knurling structure at a fastening surface

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215321U (en) * 1988-07-15 1990-01-31
JPH0540984Y2 (en) * 1988-07-15 1993-10-18
JPH0486212A (en) * 1990-07-31 1992-03-18 Mitsubishi Heavy Ind Ltd Mold
US5363900A (en) * 1992-04-16 1994-11-15 Thyssen Guss Ag Steel mold especially for permanent mold casting of metal
EP0659533A1 (en) * 1993-12-22 1995-06-28 Sumitomo Heavy Industries, Ltd Injection mold
JP2002239684A (en) * 2001-02-14 2002-08-27 Honda Motor Co Ltd Structure for cooling metallic mold
JP4658349B2 (en) * 2001-02-14 2011-03-23 本田技研工業株式会社 Mold cooling structure
JP2002283355A (en) * 2001-03-28 2002-10-03 Toray Ind Inc Mold for molding resin
EP1500445A3 (en) * 2003-07-22 2007-04-25 Alpha 3D Large metal mould
EP1500445A2 (en) * 2003-07-22 2005-01-26 Alpha 3D Large metal mould
JP2007320168A (en) * 2006-05-31 2007-12-13 Daiho Industrial Co Ltd Mold
JP2015520050A (en) * 2011-05-20 2015-07-16 ザ プロクター アンド ギャンブルカンパニー How to operate a high productivity injection molding machine
JP2013240999A (en) * 2012-04-23 2013-12-05 Toyota Auto Body Co Ltd Injection molding equipment and reinforcement rib extrusion device
CN106914600A (en) * 2017-02-21 2017-07-04 苏州工业职业技术学院 A kind of die casting and pressure casting method
CN106825494A (en) * 2017-03-21 2017-06-13 苏州工业职业技术学院 A kind of hand die casting containing side typing mechanism
CN108973034A (en) * 2018-09-01 2018-12-11 苏州百盛精密工业有限公司 The cooling branching block of integrated form and its production technology
KR102546413B1 (en) * 2022-08-31 2023-06-23 (주)대림산업 A mold for an insulator bracket with knurling structure at a fastening surface

Similar Documents

Publication Publication Date Title
US4685881A (en) Nozzle assembly for injection molding
US5554395A (en) Open bore injection molding apparatus
JPS62117716A (en) Mold and temperature controlling thereof
JPS6159219B2 (en)
CN1121917C (en) Hot sprue system for diecasting
JPS63236615A (en) Method and apparatus for runnerless injection molding of synthetic resin by means of intermittent cooling
JPS59188417A (en) Core ring gate device for injection molding
JPS597575B2 (en) Synthetic resin injection molding method and equipment
US4212624A (en) Hot-runner mold and injection molding method making use of the same
JPH08244072A (en) Injection mold and molding method
JPH06166063A (en) Plastic molding device
JPH09300417A (en) Injection molding, injection molding die and injection molding device
JP3809057B2 (en) Mold for molding metal products
JP3571281B2 (en) Aluminum Wheel Mold
JPS62179912A (en) Molding equipment of synthetic resin molded part
JPS6096427A (en) Injection molding method
KR860000803B1 (en) Hot sprue assembly for an infection molding machine
JPS6132735Y2 (en)
JPS61217225A (en) Mold for injection molding
JPS60212317A (en) Injection compression molding
JP2969456B2 (en) Valve gate type mold equipment
JPS588528Y2 (en) injection mold equipment
JP2681423B2 (en) Plastic mold
JPH01135612A (en) Sprue bushing of molding die
JPS5887009A (en) Injection molding method for ceramic resin