JPS60231491A - Manufacture of single crystal - Google Patents

Manufacture of single crystal

Info

Publication number
JPS60231491A
JPS60231491A JP8740284A JP8740284A JPS60231491A JP S60231491 A JPS60231491 A JP S60231491A JP 8740284 A JP8740284 A JP 8740284A JP 8740284 A JP8740284 A JP 8740284A JP S60231491 A JPS60231491 A JP S60231491A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
melt
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8740284A
Other languages
Japanese (ja)
Inventor
Toru Sugai
菅井 徹
Setsuo Itabashi
板橋 節男
Mineo Yorizumi
頼住 美根生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8740284A priority Critical patent/JPS60231491A/en
Publication of JPS60231491A publication Critical patent/JPS60231491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow high-quality single crystal excellent in crystallizability and uniformity of the composition by passing slowly a crucible holding the melt contained raw material through the inside of a furnance having temp. gradient while rotating the crucible acceleratedly and deceleratedly. CONSTITUTION:A crucible (made of platinium) 1 incorporated with raw material is decended through the inside of a furnace 2 in which the temp. gradient typically showed at the right side of the figure is formed with a heating heater and the raw material incorporated in the crucible 1 is competely melted to make melt 3 and the melt 3 is stitted and made uniform composition through rotating the crucible 1 acceleratedly and deceleratedly in the X direction shown by an arrow. Then, at the point of time at which the lower end of the crucible 1 is reached the point A being crystallizing temp., the melt 3 is cooled below the crystallizing temp. to grow single crystal 4. The decending of the crucible 1 is continued and it is slowly cooled to obtain rod-shaped high-quality single crystal 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単結晶作製方法に関するものであシ、さらに詳
細にはブリッジマン法による単結晶作製方法の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a single crystal, and more particularly to an improvement in the method for producing a single crystal using the Bridgman method.

〔背景技術とその問題点〕[Background technology and its problems]

従来、各種単結晶を作製するだめの方法としては種々の
方法が知られているが、特に、操作が容易で設備も簡単
なブリッジマン法が広く用いられている。このブリッジ
マン法は、温度勾配を利用して結晶化を進めるものであ
り、例えば溶融試料を入れた白金製のルツボを温度勾配
のある炉の中を一定回転させながら移動し溶融試料の一
端を冷却して結晶化させ、これを徐々に成長させるとい
うものである。このようなブリッジマン法によれば、金
属ばかシでなく塩類等の大きな単結晶を作成することが
可能で、工業的にも光学用材料や磁性材料、半導体、各
種合金等の単結晶を製造するのに利用されている。
Conventionally, various methods have been known for producing various single crystals, but the Bridgman method, which is easy to operate and requires simple equipment, is particularly widely used. The Bridgman method uses temperature gradients to advance crystallization. For example, a platinum crucible containing a molten sample is moved through a furnace with a temperature gradient while rotating at a constant rate, and one end of the molten sample is moved. It is cooled to crystallize and then gradually grows. According to this Bridgman method, it is possible to create large single crystals of salts, etc., rather than metals, and it is also possible to produce single crystals of optical materials, magnetic materials, semiconductors, various alloys, etc. industrially. It is used to.

ところが、上述のブIJ 、ジマン法においては、あら
かじめ原材料をルツボ内で全て溶融し、とのルツボの先
端部より徐々に冷却して単結晶を成長させるので、特に
多成分系の原材料を用いた場合には所謂組成偏析が生じ
、上記ルツボの先端部と後端部とでは生成する結晶の組
成が異なってしまうという欠点がある。これは、一般に
多成分系の原材料では、その組成と融点との関係を示す
状態図において、共晶点でない限り液相と固相とが平衡
を保つ温度を液相の組成について描いた液相線と固相の
組成について描いた固相線とが一致しないことによるも
のである。このように結晶に組成偏析を生じ場所によっ
て組成が異なると物理的性質も異なってしまい、所定の
品質を確保することは難かしい。例えばフェライトの如
き磁性材料では、結晶の組成が異なると透磁率が変化し
てしまい、得られた単結晶を磁気ヘッドに加工した場合
、用いた結晶が上記単結晶の先端部か後端部かによって
性能が大きく異なってしまう。
However, in the BuIJ and Ziman methods mentioned above, all raw materials are melted in advance in a crucible and then gradually cooled from the tip of the crucible to grow a single crystal, so it is especially difficult to use multi-component raw materials. In this case, so-called compositional segregation occurs, and there is a drawback that the composition of the crystals produced differs between the front end and the rear end of the crucible. In general, for multi-component raw materials, in a phase diagram showing the relationship between the composition and melting point, the liquid phase is the temperature at which the liquid phase and solid phase are in equilibrium, unless it is the eutectic point. This is due to the fact that the line does not match the solidus line drawn regarding the composition of the solid phase. If compositional segregation occurs in the crystal and the composition differs depending on the location, the physical properties will also differ, making it difficult to ensure a desired quality. For example, in a magnetic material such as ferrite, the magnetic permeability changes if the crystal composition differs, and when the obtained single crystal is processed into a magnetic head, it is difficult to determine whether the crystal used is the tip or the rear end of the single crystal. Performance will vary greatly depending on the

さらに、上述のブリッジマン法により単結晶を作製した
場合には、角度ズレの少ない所謂少傾角結晶粒界が発生
し易く、得られる単結晶の結晶性が悪くなってしまう虞
れもある。
Furthermore, when a single crystal is produced by the Bridgman method described above, so-called low-angle grain boundaries with small angle deviations are likely to occur, and the crystallinity of the obtained single crystal may be deteriorated.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、上述の実情に鑑みて提案されたもので
あって、結晶性や組成の均一性に優れ高品質の単結晶を
育成できるような単結晶作製方法の提供を目的とする。
The present invention was proposed in view of the above-mentioned circumstances, and aims to provide a method for producing a single crystal that can grow a high-quality single crystal with excellent crystallinity and uniform composition.

〔発明の概要〕[Summary of the invention]

すなわち、本発明に係る単結晶作製方法の特徴は、原材
料を含んだ融液を温度勾配を有する炉中を徐々に通過さ
せることにより単結晶を育成するにあたシ、上記融液を
保持するルツボを加速及び減速回転させながら単結晶を
成長させることであシ、これによって融液が常に攪拌さ
れて融液組成が一定となシ、シたがって成長する単結晶
の組成も均一に制御されるのである。さらに注目すべき
ことは、上記加速及び減速回転させることによって、得
られる単結晶の少傾角結晶粒界が消失し結晶性の改善も
図られるのである。
That is, the feature of the method for producing a single crystal according to the present invention is that while growing a single crystal by gradually passing a melt containing raw materials through a furnace having a temperature gradient, the melt is held. The single crystal is grown by accelerating and decelerating the rotation of the crucible, whereby the melt is constantly stirred and the composition of the melt remains constant, so the composition of the growing single crystal is also controlled uniformly. It is. What should be further noted is that by performing the above-mentioned acceleration and deceleration rotation, the low-angle grain boundaries of the obtained single crystal disappear, and the crystallinity is improved.

〔実施例〕〔Example〕

以下、本発明による単結晶作製方法について、図面を参
照しながら説明する。、 第1図はブリッジマン法による単結晶作製を実現するた
めの装置の一例を示すものである。
Hereinafter, a method for producing a single crystal according to the present invention will be explained with reference to the drawings. , FIG. 1 shows an example of an apparatus for realizing single crystal production by the Bridgman method.

この第1図において、ルツボ1は白金により形成され、
また炉2内には加熱ヒータによって第1図右側に模式的
に示すような温度勾配が形成されている。
In FIG. 1, the crucible 1 is made of platinum,
Further, a temperature gradient as schematically shown on the right side of FIG. 1 is formed in the furnace 2 by a heater.

そして、先ず上記白金製のルツボ1を上記炉2内に徐々
に降下していくと、とのルツボ1内の原材料が完全に融
解して融液3となる。
First, when the crucible 1 made of platinum is gradually lowered into the furnace 2, the raw material in the crucible 1 is completely melted and becomes a melt 3.

続いて、さらに上記ルツボ1を降下すると、このルツボ
1の下端が炉2内温度が結晶の晶出温度となっているA
点に達し、上記融液3が結晶晶出温度以下に冷却され単
結晶4が晶出し始める。
Subsequently, when the crucible 1 is lowered further, the lower end of the crucible 1 reaches A where the temperature inside the furnace 2 is the crystallization temperature.
At this point, the melt 3 is cooled below the crystallization temperature and a single crystal 4 begins to crystallize.

最終的には、上記融液3が全て単結晶4となるまで上記
ルツボ1の降下を続け、徐々に冷却して棒状の単結晶4
を取り出す。
Finally, the crucible 1 continues to descend until all of the melt 3 becomes a single crystal 4, and is gradually cooled to form a rod-shaped single crystal 4.
Take out.

このとき、本発明においては、上記ルツボ1に図中矢印
X方向に加速及び減速回転を与えておくのである。この
加速及び減速回転は、例えば回転数を徐々に上げ所定の
回転数になったら回転数を徐々に下げるという操作を繰
シ返すことにより達成され、常に一定方向に回転させる
ような加速及び減速正回転であってもよいし、正転と逆
転とを繰υ返す加速及び減速正逆回転であってもよい。
At this time, in the present invention, the crucible 1 is subjected to acceleration and deceleration rotation in the direction of the arrow X in the figure. This acceleration and deceleration rotation is achieved, for example, by repeating the operation of gradually increasing the rotation speed and gradually lowering the rotation speed when it reaches a predetermined rotation speed. It may be rotation, or it may be acceleration and deceleration forward and reverse rotation that repeats forward rotation and reverse rotation.

このようにルツボ1に加速及び減速回転を与えることに
より、得られる単結晶の結晶性や組成の均−性等が著し
く改善されるのである。
By applying acceleration and deceleration rotation to the crucible 1 in this manner, the crystallinity, compositional uniformity, etc. of the obtained single crystal are significantly improved.

例えば、ルツボ1に第2図Aないし第2図Cに示すよ、
うな回転を与えてフェライトの単結晶を作製した。
For example, as shown in Fig. 2A to Fig. 2C in crucible 1,
A single crystal of ferrite was produced by subjecting it to rotation.

なお、第2図Aは回転数6 rpmで一定速度の回転を
与える場合(比較例)を示し、第2図B11−10〜8
 rpmの範囲で加速及び減速正回転を与える場合(実
施例1)、第2図CはO〜8 rpmの範囲で加速及び
減速正逆回転を与える場合(実施例2)を示す。
In addition, FIG. 2 A shows a case (comparative example) in which rotation is given at a constant speed at a rotation speed of 6 rpm, and FIG. 2 B11-10 to 8
FIG. 2C shows a case where forward rotation with acceleration and deceleration is applied in the range of 0 to 8 rpm (Example 1), and FIG.

各実施例及び比較flJによシ得られた単結晶の表面の
様子を第3図Aないし第3図Cに示す。第3図Aは比較
例で得られた単結晶であって、少傾角結晶粒界が認めら
れ、各少傾角結晶粒界の幅りは約5間であった。第3図
Bは実施例1で得られた単結晶であって、先の比較例よ
シも幅の狭い少傾角結晶粒界が認められ、その幅りは約
1 mmであった。第3図Cは実施例2で得られた単結
晶であって、少傾角結晶粒界は全く認められなかった。
The appearance of the surface of the single crystal obtained in each example and comparison flJ is shown in FIGS. 3A to 3C. FIG. 3A shows a single crystal obtained in a comparative example, in which low-angle grain boundaries were observed, and the width of each low-angle grain boundary was about 5 mm. FIG. 3B shows the single crystal obtained in Example 1, in which narrower low-angle grain boundaries than in the previous comparative example were observed, and the width was about 1 mm. FIG. 3C shows the single crystal obtained in Example 2, in which no low-angle grain boundaries were observed.

第4図にルツボ1に与える回転のΔRと得られる単結晶
の少傾角結晶粒界の幅りの関係を示す。
FIG. 4 shows the relationship between the rotation ΔR applied to the crucible 1 and the width of the low-angle grain boundary of the obtained single crystal.

なお、上記ΔRは与える回転の回転数の変化量を示すも
のであって、例えば比較例ではΔR−0゜実施例1では
ΔR二8.実施例2ではΔR二16である。
Note that the above ΔR indicates the amount of change in the rotational speed of rotation, and for example, in the comparative example, ΔR−0°, and in Example 1, ΔR28. In Example 2, ΔR216.

この第4図よシ、ΔRが増加するのに伴なって少傾角結
晶粒界の幅りがせばまり、ΔR≧16では得られる単結
晶の少傾角結晶粒界が全く消失することが分かる。
It can be seen from Figure 4 that as ΔR increases, the width of the low-angle grain boundaries becomes narrower, and when ΔR≧16, the low-angle grain boundaries of the single crystal obtained completely disappear. .

次に、第5図人ないし第5図Cに、得られる単結晶の透
磁率温度特性を示す。なお、これら各図において、曲線
aは得られる単結晶の先端部分の透磁率温度特性、曲線
すは得られる単結晶の中央部分の透磁率温度特性、曲線
Cは得られる単結晶の後端部分の透磁率温度特性をそれ
ぞれ示す。
Next, Figures 5 to 5C show the permeability-temperature characteristics of the obtained single crystal. In each of these figures, curve a is the magnetic permeability-temperature characteristic at the tip of the obtained single crystal, curve A is the magnetic permeability-temperature characteristic at the center of the obtained single crystal, and curve C is the magnetic permeability-temperature characteristic at the rear end of the obtained single crystal. The magnetic permeability temperature characteristics of each are shown.

第5図人は比較例で得られた単結晶の透磁率温度特性を
示すものであって、単結晶の各部分によって透磁率の温
度特性が大幅に異なシ、例えば先端部分の透磁率が最大
となる温度がおよそ一70℃であるのに対して、後端部
分の透磁率が最大となる温度はおよそ60℃である。こ
のことから、上記比較例で得られる単結晶においては組
成偏析が生じ、各部分によシ組成が大幅に異なるものと
推定される。
Figure 5 shows the magnetic permeability-temperature characteristics of the single crystal obtained in the comparative example. The temperature at which the magnetic permeability of the rear end portion reaches a maximum is approximately 60°C, whereas the temperature at which the magnetic permeability of the rear end portion reaches a maximum is approximately 170°C. From this, it is presumed that compositional segregation occurs in the single crystal obtained in the above comparative example, and the composition differs greatly depending on each part.

第5図Bは実施例1で得られた単結晶の透磁率温度特性
を示すものであって、各曲線8〜曲線Cはほとんど一致
するが、透磁率が最大となる温度に先端部分と後端部分
で若干のズレが生していることが分かる。例えば、先端
部分の透磁率が最大となる温度が一100℃であるのに
対して、後端部分の透磁率が最大となる温度は一80℃
である。
FIG. 5B shows the magnetic permeability temperature characteristics of the single crystal obtained in Example 1, and each curve 8 to curve C almost coincide with each other, but the temperature at which the magnetic permeability reaches its maximum is reached at the tip and the rear. It can be seen that there is some misalignment at the edges. For example, the temperature at which the magnetic permeability at the tip reaches its maximum is 1100°C, while the temperature at which the magnetic permeability at the rear end reaches its maximum is 180°C.
It is.

このことから、この実施ψ131においては、組成偏析
がかなり改善されるが、若干の組成のズレが生じている
ものと推定される。
From this, it is presumed that in this implementation ψ131, although the compositional segregation is considerably improved, there is a slight deviation in the composition.

第5図Cは実施例2で得られた単結晶の透磁率温度特性
を示すものであって、各曲線8〜曲線Cは良く一致し、
透磁率が最大となる温度も各部分において良く一致する
ことが分かる。このこと力)ら、この実施例2において
は、組成偏析が解消され、得られる単結晶の組成の均一
化が達成されたものと推定される。
FIG. 5C shows the magnetic permeability temperature characteristics of the single crystal obtained in Example 2, and each curve 8 to curve C agree well.
It can be seen that the temperatures at which the magnetic permeability is maximum also match well in each part. From this, it is presumed that in Example 2, compositional segregation was eliminated and the composition of the resulting single crystal was made uniform.

第6図にルツボ1に与える回転のΔRと、得られる単結
晶の先端部分において透磁率が最大となる温度と後端部
分において透磁率が最大となる温度の温度差ΔTとの関
係を示す。
FIG. 6 shows the relationship between the rotation ΔR given to the crucible 1 and the temperature difference ΔT between the temperature at which the magnetic permeability is maximum at the leading end and the temperature at which the magnetic permeability is maximum at the rear end of the resulting single crystal.

この第6図よシ、ΔRが増加するのに伴なって温度差Δ
Tが減少し、組成偏析が徐々に改善さね。
As shown in Fig. 6, as ΔR increases, the temperature difference Δ
T decreases, and compositional segregation gradually improves.

ることか分かる。特に、ΔR≧16では上記温度差ΔT
がほとんどなくなり、したがって結晶組成の均一化が達
成されたものと推定される。
I understand that. In particular, when ΔR≧16, the above temperature difference ΔT
It is therefore presumed that uniformity of the crystal composition has been achieved.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明に係る単結晶作製方法におい
ては、ブリッジマン法により単結晶を育成する際に融液
を保持するルツボに加速及び減速回転を与えているので
、融液の組成の均一化が図られ、したがって得られる単
結晶は組成の均一性に優れたものとなシ、さらに結晶性
も大幅に改善されるのである。
As described above, in the method for producing a single crystal according to the present invention, acceleration and deceleration rotation is applied to the crucible that holds the melt when growing a single crystal by the Bridgman method, so that the composition of the melt can be changed. Uniformity is achieved, and therefore the resulting single crystal has excellent compositional uniformity, and furthermore, crystallinity is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る単結晶作製方法を実現するために
用いられる装置の一例を示す概略断面図である。 第2図人ないし第2図Cはルツボに与える回転数の変化
を模式的に示す図面であって、第2図人は比較例、第2
図Bは本発明の一実施例、第2図Cは他の実施例を示す
。第3図人ないし第3図Cは得られる酢結晶の表面の様
子を示す模式的な9A+1面図であシ、第4図はルツボ
に与える回転数の変化量ΔRと得られる単結晶の少傾角
結晶粒界の幅りの関係を示す特性図である。第5図人な
いし第5図Cは得られた単結晶の先端部分、中央部分。 後端部分における透磁率温度特性を比較して示す特性図
であって、第5図人は比較例で得られた単結晶、第5図
Bは本発明の一実施例で得られた単結晶、第5図Cは本
発明の他の実施例で得られた単結晶、の透磁率温度特性
をそれぞれ示す。第6図はルツボに与える回転数の変化
量ΔRと、得られる単結晶の先端部分において透磁率が
最大となる温度と後端部分において透磁率が最大となる
温度の温度差ΔTとの関係を示す特性図である。 1・・・ルツボ 2・・・炉 3・・・融液 4・・・単結晶 特許出願人 ソニー株式会社 代理人 弁理士 小 池 見 回 1)村 栄 − 第1図 第2図(A) 第6図
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus used to realize the single crystal manufacturing method according to the present invention. Figure 2 Figure 2 to Figure 2 C are drawings schematically showing changes in the rotational speed given to the crucible, Figure 2 Figure 2 Figure 2 is a comparative example,
FIG. B shows one embodiment of the present invention, and FIG. 2C shows another embodiment. Figures 3 to 3C are schematic 9A+1 views showing the surface appearance of the vinegar crystals obtained, and Figure 4 shows the amount of change ΔR in the rotational speed given to the crucible and the amount of the single crystal obtained. FIG. 3 is a characteristic diagram showing the relationship between the widths of tilt grain boundaries. Figures 5 to 5C show the tip and center portions of the single crystals obtained. FIG. 5 is a characteristic diagram showing a comparison of magnetic permeability and temperature characteristics at the rear end portion, where FIG. 5 shows a single crystal obtained in a comparative example, and FIG. 5 B shows a single crystal obtained in an example of the present invention. , and FIG. 5C show the magnetic permeability-temperature characteristics of single crystals obtained in other embodiments of the present invention. Figure 6 shows the relationship between the amount of change ΔR in the rotational speed given to the crucible and the temperature difference ΔT between the temperature at which the magnetic permeability is maximum at the leading end and the temperature at which the magnetic permeability is maximum at the rear end of the resulting single crystal. FIG. 1... Crucible 2... Furnace 3... Melt 4... Single crystal patent applicant Sony Corporation representative Patent attorney Mimi Koike 1) Sakae Mura - Figure 1 Figure 2 (A) Figure 6

Claims (1)

【特許請求の範囲】[Claims] 原材料を含んだ融液を温度勾配を有する炉中を徐々に通
過させることによシ単結晶を育成するにあたり、上記融
液を保持するルツボを加速及び減速回転させながら単結
晶を成長させることを特徴とする単結晶作製方法っ
When growing a single crystal by gradually passing a melt containing raw materials through a furnace with a temperature gradient, the single crystal is grown while accelerating and decelerating the rotation of the crucible that holds the melt. Characteristic single crystal production method
JP8740284A 1984-04-28 1984-04-28 Manufacture of single crystal Pending JPS60231491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8740284A JPS60231491A (en) 1984-04-28 1984-04-28 Manufacture of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8740284A JPS60231491A (en) 1984-04-28 1984-04-28 Manufacture of single crystal

Publications (1)

Publication Number Publication Date
JPS60231491A true JPS60231491A (en) 1985-11-18

Family

ID=13913877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8740284A Pending JPS60231491A (en) 1984-04-28 1984-04-28 Manufacture of single crystal

Country Status (1)

Country Link
JP (1) JPS60231491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635413B2 (en) * 2004-09-03 2009-12-22 Sumitomo Metal Industries, Ltd. Method for preparing silicon carbide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635413B2 (en) * 2004-09-03 2009-12-22 Sumitomo Metal Industries, Ltd. Method for preparing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
US4944925A (en) Apparatus for producing single crystals
JPS60231491A (en) Manufacture of single crystal
KR20140018671A (en) Method for manufacturing silicon single crystal ingot
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
US3775066A (en) Method for producing crystal plate of gadolinium molybdate
JPH06199597A (en) Production of aluminum oxide single crystal
JPS6042293A (en) Manufacture of single crystal
JP2017078013A (en) Sapphire single crystal manufacturing method of the same
JP3208603B2 (en) How to make a single crystal
JPS62167213A (en) Production of silicon polycrystalline ingot
JP2739546B2 (en) Method for producing lithium borate single crystal
RU1445270C (en) Process of growing crystals of corundum
CN104911693A (en) Preparation method of rare earth silicide monocrystal
JPS606915B2 (en) Growth method of titanium carbide single crystal
JP2922039B2 (en) Single crystal growth method
WO2017069107A1 (en) Sapphire single crystal and method for producing same
JPH0859396A (en) Reforming of beta-barium borate single crystal worked surface
JPH0850312A (en) Production of organic nonlinear optical crystal
JP2001106597A (en) Method and device for producing single crystal
JPH05254979A (en) Mehtod and apparatus for producing compound semiconductor single crystal
JPS6360194A (en) Method for pulling up single crystal
JPH09124397A (en) Production of ferrite single crystal
JPH0769773A (en) Production of single crystal
JP2003238287A (en) Method of manufacturing solid solution single crystal
JPS61132599A (en) Method for producing group iii-v single crystal, and part therefor