JPS60231105A - Measurement of shift of absorbing axis - Google Patents

Measurement of shift of absorbing axis

Info

Publication number
JPS60231105A
JPS60231105A JP8887784A JP8887784A JPS60231105A JP S60231105 A JPS60231105 A JP S60231105A JP 8887784 A JP8887784 A JP 8887784A JP 8887784 A JP8887784 A JP 8887784A JP S60231105 A JPS60231105 A JP S60231105A
Authority
JP
Japan
Prior art keywords
measured
axis
optical system
transmitted light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8887784A
Other languages
Japanese (ja)
Other versions
JPH0444941B2 (en
Inventor
Akio Tsumura
昭雄 津村
Suguru Yamamoto
山本 英
Masaharu Miyaake
宮明 稚晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP8887784A priority Critical patent/JPS60231105A/en
Priority to US06/687,403 priority patent/US4684256A/en
Priority to DE19843447878 priority patent/DE3447878A1/en
Publication of JPS60231105A publication Critical patent/JPS60231105A/en
Publication of JPH0444941B2 publication Critical patent/JPH0444941B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To facilitate the measurement of the shift of an absorbing axis, by calculating the angle reaching a point where the intensity of transmitted light becomes min while the specimen to be measured placed between two polarizers forming a Nicol optical system is rotated around the axis of the optical system. CONSTITUTION:An orthogonal Nicol optical system is constituted of a light source 1, two polarizers 3a, 3b arranged so that absorbing axes mutually cross at right angles and a light receiver 4. A specimen 2 to be measured is held between both polarizers 3a, 3b by a holder 5 so that the surface thereof crosses the X-axis of the orthogonal Nicol optical system at right angles. Transmitted light is detected by the light receiver 4 while the specimen 2 is rotated around the axis X and recorded by a recorder 6. By this mechanism, the relation of the intensity and rotary angle of transmitted light is displayed by the recorder 6 and the shift angle of the absorbing angle of the specimen 2 to be measured can be calculated instantaneously.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は吸収軸ズレ測定方法、詳しくは各種偏光板等の
各位置における吸収軸のズレ角を測定する方法に関する
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for measuring absorption axis deviation, and more particularly to a method for measuring the absorption axis deviation angle at each position of various polarizing plates.

〈従来技術〉 各種偏光板は表示装置、特に液晶を用いた表示装置には
必要不可欠なものである。ところが、この用途の場合、
偏光板の吸収軸がずれていると可視光透過率が規格範囲
から外れる。またそのままセルとして組立てた場合には
色むらが生ずるなどの問題が起っていた。
<Prior Art> Various polarizing plates are essential for display devices, especially display devices using liquid crystals. However, for this purpose,
If the absorption axis of the polarizing plate is misaligned, the visible light transmittance will deviate from the standard range. Further, when assembled as a cell as it is, problems such as uneven coloring occur.

〈発明が解決しようとする問題点〉 そこで、従来から各種偏光板の吸収軸のズレ角を測定し
ようと種々の方法が検討されてきているが、末だ確実な
方法が見出されていない。
<Problems to be Solved by the Invention> Therefore, various methods have been studied to measure the deviation angle of the absorption axes of various polarizing plates, but no reliable method has yet been found.

本発明は各種偏光板等の各位置における吸収軸のズレ角
を測定できる方法の提供を目的とする。
An object of the present invention is to provide a method that can measure the deviation angle of the absorption axis at each position of various polarizing plates.

く問題点を解決するための手段〉 本発明は光源、2つの偏光子、受光器を一軸方向に配列
した直交ニコル光学系により、前記2つの偏光子間に置
かれた被測定試料を前記直交ニコル光学系の軸の回りに
回転しつつその透過光強度を測定し、透過光強度が最低
となる回転位置までの回転角を測定することにより被測
定試料の吸収軸のズレを測定するようにしている。
Means for Solving the Problems> The present invention uses an orthogonal Nicol optical system in which a light source, two polarizers, and a light receiver are arranged in a uniaxial direction, so that a sample to be measured placed between the two polarizers is While rotating around the axis of the Nikol optical system, the transmitted light intensity is measured, and the deviation of the absorption axis of the sample to be measured is measured by measuring the rotation angle to the rotational position where the transmitted light intensity is the lowest. ing.

〈実施例〉 図は本発明の方法を実施する装置の斜視図である。<Example> The figure is a perspective view of an apparatus for carrying out the method of the invention.

光源1と、互いに吸収軸が直交するように配設された2
個の偏光子3a、3bと、受光器4から直交ニコル光学
系が構成される。上記両側光子3a、3b間にチップ状
の被測定試料2をその面が前記直交ニコル光学系の軸X
と直交するように挿入し、軸Xの回りに回転させつつ、
各回転位置での透過光を受光器4でとらえ、透過光強度
を測定する。5は試料ホルダである。透過光強度はレコ
ーダ6でペン書きすることができる。この場合用紙6a
の移動速度は前記被測定試料2の回転角速度と予め対応
するようにしておく。
A light source 1 and a light source 2 arranged so that their absorption axes are orthogonal to each other.
The polarizers 3a, 3b and the light receiver 4 constitute an orthogonal Nicol optical system. A chip-shaped sample to be measured 2 is placed between the photons 3a and 3b on both sides, with its surface facing the axis X of the orthogonal Nicol optical system.
Insert it so that it is perpendicular to the
The transmitted light at each rotational position is captured by the light receiver 4, and the transmitted light intensity is measured. 5 is a sample holder. The transmitted light intensity can be recorded with a pen on the recorder 6. In this case, paper 6a
The moving speed is made to correspond in advance to the rotational angular velocity of the sample to be measured 2.

被測定試料2の吸収軸のズレ角yの測定を説明する。The measurement of the deviation angle y of the absorption axis of the sample to be measured 2 will be explained.

いま被測定試料2を偏光子3a、偏光子3b間に挿入し
、光源1から平行光線を照射し、透過光を受光器4でさ
らえると、その透過光強度は、I ==A2ein2(
2、g) −Elin” (J / 2)但し δ=2
π・Δn−d/λ A:定数 0:吸収軸ズレ角 Δn:屈折率差 d:被測定試料の厚さ λ:光源の波長 で表わされる。
Now, when the sample 2 to be measured is inserted between the polarizer 3a and the polarizer 3b, parallel light is irradiated from the light source 1, and the transmitted light is picked up by the receiver 4, the intensity of the transmitted light is I = = A2ein2 (
2, g) −Elin” (J / 2) where δ=2
π·Δn−d/λ A: Constant 0: Absorption axis deviation angle Δn: Refractive index difference d: Thickness of the sample to be measured λ: Represented by the wavelength of the light source.

ここでΔn、dおよびλは同一の装置で、同一の試料で
あれば変化せず、故に5in2(δ/2)の値は一定で
ある。したがって透過光強度工は吸収軸のズレ角yだけ
の関数となる。すなわち、エベ:5in2(20) となる。
Here, Δn, d, and λ do not change if the same device is used and the same sample is used, and therefore the value of 5in2 (δ/2) is constant. Therefore, the transmitted light intensity is a function only of the deviation angle y of the absorption axis. That is, Ebe: 5in2 (20).

したがって、理論的には透過光強度がゼロとなるまでの
回転角yがその被測定試料2の吸収軸のズレ角yになる
が、実際的にはノイズもあるので透過光強度が最低とな
る回転位置までの回転角〆をもって吸収軸のズレ角yと
決定することができる。レコーダ6を用いて透過光の強
度と回転角との関係を表示することにより、被測定試料
2の吸収軸ズレ角〆を即座に視認することができる。ま
た同一ロッドからの多数の被測定試料の吸収軸のズレ角
2を測定する場合は、1つの被測定試料について回転さ
せて、その透過光強度と吸収軸のズレ角yとの関係を予
め明らかにしておくことにより、他の被測定試料につい
ては回転させることなく、その位置での透過光強度を測
定するだけで、それに対応する吸収軸のズレ角グの値を
知ることができる。
Therefore, theoretically, the rotation angle y until the transmitted light intensity becomes zero is the deviation angle y of the absorption axis of the sample 2 to be measured, but in reality, since there is noise, the transmitted light intensity is the lowest. The rotation angle up to the rotation position can be determined as the deviation angle y of the absorption axis. By displaying the relationship between the intensity of the transmitted light and the rotation angle using the recorder 6, the absorption axis deviation angle of the sample to be measured 2 can be visually confirmed immediately. In addition, when measuring the deviation angle 2 of the absorption axes of many samples to be measured from the same rod, rotate one sample to be measured and clarify the relationship between the transmitted light intensity and the deviation angle y of the absorption axis in advance. By setting the position to , it is possible to know the value of the corresponding deviation angle of the absorption axis by simply measuring the transmitted light intensity at that position without rotating other samples to be measured.

〈効果〉 本発明は以上の構成よりなり、被測定試料の吸収軸のズ
レ角を容易に、確実に知ることができる。
<Effects> With the above configuration, the present invention allows the deviation angle of the absorption axis of the sample to be measured to be easily and reliably known.

測定も迅速におこなうことができるので、偏光板の品質
管理や、生産管理に適用できる。
Since measurements can be performed quickly, it can be applied to quality control of polarizing plates and production control.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施する装置斜視図である。 1・・光源、2・・被測定試料、3a、3b・・偏光子
、4・・受光器、6・・レコーダ、X・・直交ニコル光
学系の軸。 特許出願人 日東電気工業株式会社 代 理 人 弁理士西1) 新
The figure is a perspective view of a device implementing the method of the invention. 1. Light source, 2. Sample to be measured, 3a, 3b. Polarizer, 4. Light receiver, 6. Recorder, X. Axis of orthogonal Nicol optical system. Patent applicant: Nitto Electric Industry Co., Ltd. Agent: Patent Attorney Nishi 1) Shin

Claims (1)

【特許請求の範囲】[Claims] 光源、2つの偏光子、受光器を一軸方向に配列した直交
ニコル光学系によシ、前記2つの偏光子間に置かれた被
測定試料を前記直交ニコル光学系の軸の回りに回転しつ
つその透過光強度を測定し、透過光強度が最低となる回
転位置までの回転角を測定することによシ被測定試料の
吸収軸のズレ角を測定することを特徴とする吸収軸ズレ
測定方法
Using a crossed Nicol optical system in which a light source, two polarizers, and a light receiver are arranged in a uniaxial direction, a sample to be measured placed between the two polarizers is rotated around the axis of the crossed Nicol optical system. An absorption axis deviation measuring method characterized by measuring the deviation angle of the absorption axis of the sample to be measured by measuring the intensity of the transmitted light and measuring the rotation angle to the rotational position where the intensity of the transmitted light is the lowest.
JP8887784A 1983-12-30 1984-05-01 Measurement of shift of absorbing axis Granted JPS60231105A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8887784A JPS60231105A (en) 1984-05-01 1984-05-01 Measurement of shift of absorbing axis
US06/687,403 US4684256A (en) 1983-12-30 1984-12-28 Apparatus and method for continuously measuring polarizing property
DE19843447878 DE3447878A1 (en) 1983-12-30 1984-12-31 DEVICE AND METHOD FOR CONTINUOUSLY MEASURING THE POLARIZATION PROPERTY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8887784A JPS60231105A (en) 1984-05-01 1984-05-01 Measurement of shift of absorbing axis

Publications (2)

Publication Number Publication Date
JPS60231105A true JPS60231105A (en) 1985-11-16
JPH0444941B2 JPH0444941B2 (en) 1992-07-23

Family

ID=13955228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8887784A Granted JPS60231105A (en) 1983-12-30 1984-05-01 Measurement of shift of absorbing axis

Country Status (1)

Country Link
JP (1) JPS60231105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435418A (en) * 1987-07-30 1989-02-06 Matsushita Electric Ind Co Ltd Method for evaluating liquid crystal orientational capacity of oriented film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435418A (en) * 1987-07-30 1989-02-06 Matsushita Electric Ind Co Ltd Method for evaluating liquid crystal orientational capacity of oriented film

Also Published As

Publication number Publication date
JPH0444941B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
JPH01313736A (en) Method and apparatus for measuring refractive index n of material
JPH0478137B2 (en)
US3741661A (en) Universal polarimeter
JP3379287B2 (en) Birefringent layer gap thickness measurement method
KR100351267B1 (en) Method and apparatus for measuring the retardation of a composite layer
JP4031643B2 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP3063843B2 (en) Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device
JPS60231105A (en) Measurement of shift of absorbing axis
McBain et al. Optical surface thickness of pure water
US3016789A (en) Polarimetric apparatus
US3967902A (en) Method and apparatus for investigating the conformation of optically active molecules by measuring parameters associated with their luminescence
JPH08201277A (en) Method and apparatus for measuring double refraction
US5157259A (en) Measuring method and measuring arrangement for determining the orientation ratio of flexible magnetic recording media
JP2791506B2 (en) Birefringence measurement device
JPS581743B2 (en) Refractive index dispersion measuring device
JPH06288899A (en) Measuring method of polarization transmissivity characteristic of film
JP4926003B2 (en) Polarization analysis method
JPS6190025A (en) Surface stress measuring instrument
JPH0552657A (en) Polarization measurement equipment
JPS60242309A (en) Strain measuring instrument suitable for measuring small optical path difference
JPH08152399A (en) Method and apparatus for measuring retardation of composite layer
US2999418A (en) Polarimetric apparatus
JPH06317519A (en) Method for measuring retardation of compound sheet
JP3554374B2 (en) Polarimeter
JPH02118406A (en) Liquid crystal cell gap measuring device