JPS60230775A - Agc circuit - Google Patents

Agc circuit

Info

Publication number
JPS60230775A
JPS60230775A JP8518784A JP8518784A JPS60230775A JP S60230775 A JPS60230775 A JP S60230775A JP 8518784 A JP8518784 A JP 8518784A JP 8518784 A JP8518784 A JP 8518784A JP S60230775 A JPS60230775 A JP S60230775A
Authority
JP
Japan
Prior art keywords
voltage
video
amplifier
signal
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8518784A
Other languages
Japanese (ja)
Other versions
JPH0312832B2 (en
Inventor
Takuya Nishide
卓也 西出
Kazuhiko Kubo
一彦 久保
Hiroyasu Shinpo
新保 博康
Minoru Miyata
宮田 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8518784A priority Critical patent/JPS60230775A/en
Publication of JPS60230775A publication Critical patent/JPS60230775A/en
Publication of JPH0312832B2 publication Critical patent/JPH0312832B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Television Receiver Circuits (AREA)

Abstract

PURPOSE:To improve the sensitivity of weak electric field by using a comparator output to control charging and discharging currents, which generate a voltage proportional to the level of a video synchronizing signal, in an AGC circuit of peak-to-peak value type in a VIF block. CONSTITUTION:An IF signal input 1 from a tuner passes an IF amplifier 2 and a detector 4 and appears as a video detection output 25. This output 25 is amplified and is inputted to the base of a transistor TR6 of a differential amplifier. If the leading edge of the synchronizing signal of a video signal VB becomes lower than a base voltage VC of the TR6, discharging is stopped immediaely though a terminal voltage VA of a capacitor 18 is dropped. In the video period, the voltage VA rises because the video signal VB is higher than the voltage VC. In case of a weak electric field, if the voltage VA rises to exceed a voltage VD determined by the intersection between resistances 17 and 28, comparators 30 and 32 detect this state to make a TR29 conductive, and resistances 27 and 9 are connected in parallel, and a charging current i10 is increased, and the IF amplifier can have a maximum gain.

Description

【発明の詳細な説明】 本発明はテレビジョン受像機のVIFにおけるAGC回
路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AGC circuit in a VIF of a television receiver.

(従来例の構成とその問題点) 従来のVIP −AGC回路とその周辺ブロック図を第
1図に示す。チー−すからのIF信号が1よシ入力され
、2のIFアンプで増幅される。このアンプは’rイン
をコントロールでキ、ソのコントロールは端子24から
電圧を加えることにより行なう。
(Constitution of Conventional Example and its Problems) FIG. 1 shows a conventional VIP-AGC circuit and its peripheral block diagram. The IF signal from the cheese 1 is inputted and is amplified by the IF amplifier 2. In this amplifier, the 'r-in is controlled and the Ki and G inputs are controlled by applying voltage from the terminal 24.

一定出力まで増幅された信号3は検波器4によってビデ
オ信号として25に検波出力される。更にアンプ5で増
幅され、その出力は■8として次の差動アンプに加わる
。トランジスタ6.11で構成される差動アンプの一端
は電圧V。で固定され、他端は信号VBの同期信号先端
部を検出する。それは検波出力25が2V になる時に
その増幅された−p 信号VBの同期信号先端電圧がV。となりそれに合わせ
ている。ここで同期信号の先端がVCよりも下がるとト
ランジスタ11のコレクタに電流が流れコンデンサ18
から電荷を放電させる。又V、の同期信号部以外の電位
はV。よりも高いのでトランジスタ6に電流が流れ抵抗
7.ダイオード8の電位降下によシ抵抗9とトランジス
タ10はカレントばチーとして働き、その電流はコンデ
ンサ18に流れ充電される。この変化を詳しく記したの
が第2図でコンデンサの端子電圧VAは第2図(b)に
示すように充放電により上下する。特に第2図(a)の
送信ビデオ信号の等価・ぐルス期間及び垂直同期期間は
同期信号の・ぐルス幅と本数が異なシコンアンプ18へ
の充放電の様子も変化する。すなわち信号期間は同期信
号の間隔が長く充放電はこの期間をもとに設計され一定
を保つが等価パルスが始まると同期信号の間隔がせまく
なシ充電期間が短かくなる。するとコンデンサ18の電
圧vAは第2図(b)のごとく徐々に下がる。更に垂直
同期パルス期間となると充放電期間が逆転し■8は特に
下がる。しかしどんどん下がるのではなく途中で一定と
なる。
The signal 3 amplified to a constant output is detected by the detector 4 and output to 25 as a video signal. It is further amplified by amplifier 5, and its output is applied as 8 to the next differential amplifier. One end of the differential amplifier composed of transistors 6 and 11 has a voltage V. The other end detects the leading edge of the synchronization signal of the signal VB. That is, when the detection output 25 becomes 2V, the synchronization signal tip voltage of the amplified -p signal VB becomes V. It's in line with that. Here, when the tip of the synchronization signal falls below VC, current flows to the collector of the transistor 11 and the capacitor 18
Discharge the charge from the Also, the potential other than the synchronization signal part of V is V. Since the current is higher than that of transistor 6, current flows through transistor 6 and resistor 7. Due to the potential drop across diode 8, resistor 9 and transistor 10 act as a current band, and the current flows to capacitor 18 and charges it. FIG. 2 shows this change in detail, and the terminal voltage VA of the capacitor rises and falls due to charging and discharging, as shown in FIG. 2(b). In particular, during the equivalent pulse period and the vertical synchronization period of the transmission video signal shown in FIG. 2(a), the manner in which the synchronizing signal is charged and discharged to and from the remote control amplifier 18, which have different pulse widths and numbers, also changes. That is, the signal period has a long interval between synchronizing signals, and charging/discharging is designed based on this period and remains constant, but when the equivalent pulse starts, the interval between synchronizing signals becomes narrower and the charging period becomes shorter. Then, the voltage vA of the capacitor 18 gradually decreases as shown in FIG. 2(b). Further, during the vertical synchronization pulse period, the charging/discharging period is reversed, and the value of (1)8 is particularly reduced. However, it does not go down gradually, but becomes constant in the middle.

それはこのVB電圧をトランジスタ23.及び抵抗22
、ダイオード21.ツェナーダイオード20を介して端
子24からIFアンプへ導きケ゛インコントロールを行
なう為である。1からのIF大入力小さくなると検波出
力25も小さくなシトランジスタロへ加わる信号の同期
信号先端もvcよシ高くなる。するとコンデンサ18か
ら放電されなくなシミ圧vAの電位は高くなシ、この電
圧vAはII”アンプのゲインを増幅し検波器4の検波
出力25も増し一定を保つ◎逆にJF大入力大きいとA
GC電圧が下がfi IFアンプのケゝインを下げる。
It transfers this VB voltage to transistor 23. and resistance 22
, diode 21. This is to conduct key control by leading the signal from the terminal 24 to the IF amplifier via the Zener diode 20. When the IF large input from 1 becomes smaller, the detection output 25 also becomes smaller, and the synchronizing signal tip of the signal applied to the small transistor also becomes higher than vc. Then, the capacitor 18 is no longer discharged and the potential of the stain pressure vA is high. This voltage vA amplifies the gain of the II" amplifier and the detection output 25 of the detector 4 also increases and remains constant. ◎On the contrary, if the JF large input is large A
When the GC voltage decreases, the key of the fi IF amplifier decreases.

このようにAGC回路が動作し、検波出力25を一定に
保つ。しかし、前述したようにこの方式では波形の一部
(垂直同期パルス前後)はAGC電圧が下がる為、この
電圧でIFアンプをコントロールすると検波出力25は
第2図(c)のごとく(わかりゃすくする為負極性で図
示しだ)垂直同期期間が下がり忠実な波形再生をしない
。その結果、垂直同期が不安定に々ったり、垂直同期パ
ルスの最初のステッfパルスを用いたゴースト検出、又
、AGC電圧の変動によるIFアンプの変化がSIF出
カに位相変化となって音声SAが劣化する。この問題を
改善する方法として第1図の抵抗19を小さくすれば良
くなるが弱電界時の検波出力25が劣化してしまう。
The AGC circuit operates in this way to keep the detection output 25 constant. However, as mentioned above, in this method, the AGC voltage drops in a part of the waveform (before and after the vertical synchronization pulse), so if the IF amplifier is controlled with this voltage, the detection output 25 will be as shown in Figure 2 (c) (not easy to understand). Therefore, the vertical synchronization period (as shown in the figure with negative polarity) decreases and faithful waveform reproduction is not possible. As a result, vertical synchronization becomes unstable, ghost detection using the first step pulse of the vertical synchronization pulse, and changes in the IF amplifier due to fluctuations in the AGC voltage cause a phase change in the SIF output, resulting in audible audio. SA deteriorates. One way to improve this problem is to make the resistor 19 in FIG. 1 smaller, but the detection output 25 at the time of a weak electric field deteriorates.

(発明の目的) 本発明は上記の欠点を除去し、忠実な検波波形を保ち、
弱電界感度を上げるAGC回路を提供するものである。
(Objective of the invention) The present invention eliminates the above drawbacks, maintains a faithful detected waveform,
This provides an AGC circuit that increases weak electric field sensitivity.

(発明の構成) 本発明はVIP7′ロック中の尖頭値形AGC回路にお
いて、映像同期信号の先端を検出するコンパレータとそ
のコンパレータ出力を用い映像同期信号のレベルに比例
した電圧をコンデンサと抵抗を並列接続した回路に充放
電することによシ発生する回路をもち、かつ上記電圧を
検出し、映像同期信号のレベルに比例した電圧を作る充
放電電流をコントロールすることを特徴とするもので、
この構成により上記目的が達成される。
(Structure of the Invention) The present invention uses a comparator that detects the leading edge of a video synchronization signal and the output of the comparator to apply a voltage proportional to the level of the video synchronization signal to a capacitor and a resistor in a peak value type AGC circuit during VIP7' lock. It has a circuit that generates electricity by charging and discharging circuits connected in parallel, and is characterized by detecting the voltage and controlling the charging and discharging current to create a voltage proportional to the level of the video synchronization signal.
This configuration achieves the above object.

(実施例の説明) 以下本発明の一実施例について第3図を参照して説明す
る。
(Description of Embodiment) An embodiment of the present invention will be described below with reference to FIG. 3.

チューナからのIF信号人力1はIFアンf2と検波器
4を通し映像検波出力25として現われる。
The IF signal input 1 from the tuner passes through the IF amplifier f2 and the detector 4 and appears as a video detection output 25.

更にそれをアンプ5で増幅しトランジスタ6.11から
なる差動アンプのトランジスタ6側ベースへ入力する。
Furthermore, it is amplified by the amplifier 5 and inputted to the base of the transistor 6 side of the differential amplifier consisting of transistors 6 and 11.

映像信号■8の同期信号先端がトランジスタ11のペー
スに加わる電圧■。より下がると(検波出力25が予め
定めた振幅、例えば2V、。
The voltage ■ applied to the sync signal tip of the video signal ■8 to the pace of the transistor 11. (The detection output 25 has a predetermined amplitude, for example, 2V.

を越えた時)トランジスタ11は導通し、トランジスタ
6はカットオフとなシダイオード8.抵抗7.9そして
トランジスタ10も電流は流れず、トランジスタ11が
導通するとその電流はコンデンサ18からの放電電流と
して行なわれコンデンサ18の端子電圧VAli降下す
る。しかし、水平同期信号は幅が4μsea Lかなく
、すぐ放電は停止する。次に映像信号VBは映像期間に
はいるがその電圧はvcよシも高いので今度はトランジ
スタ6が導通し電流j6が流れ、抵抗7,9に電流が流
れる(抵抗9(抵抗値R2)に流れる電流’+oは抵抗
7(抵抗値R,)の抵抗比で決まるi、。−16x F
 )とトランジスタ10を通しコンデンサ18に充電電
流となり電圧VAは上昇する。しかし充電電流はその一
部が充電合流抵抗19にも分流される。この映像期間は
長く徐々に充電電圧が上昇する。次の水平同期信号がく
れば又放電となシvA電圧は一定を保つが、等価パルス
期間及び垂直同期パルス期間は上記の充放電時間が異な
り■え電圧は降下し、段差を作り、弊害をもたらす。こ
とで、コンデンサ18の充電分流抵抗19を小さくして
ゆくと充電分流が増す為コンデンサ18への充電電流が
減少する。すると水平同期期間のvAレベルが下がシ垂
直同期期間との段差はなくなシ当初の弊害は減少する。
) Transistor 11 is conductive, transistor 6 is cut off, and diode 8. No current flows through the resistor 7.9 or the transistor 10, and when the transistor 11 becomes conductive, the current flows as a discharge current from the capacitor 18, and the terminal voltage VAli of the capacitor 18 drops. However, the width of the horizontal synchronizing signal is less than 4 μsea L, and the discharge immediately stops. Next, the video signal VB enters the video period, but its voltage is higher than VC, so this time the transistor 6 conducts, a current j6 flows, and current flows through the resistors 7 and 9 (resistance 9 (resistance value R2) The flowing current '+o is determined by the resistance ratio of resistor 7 (resistance value R,) i,.-16x F
) and the transistor 10, a charging current is generated in the capacitor 18, and the voltage VA increases. However, part of the charging current is also shunted to the charging merging resistor 19. This video period is long and the charging voltage gradually increases. When the next horizontal synchronization signal comes, the discharge occurs again.The voltage remains constant, but the charging and discharging times mentioned above are different during the equivalent pulse period and the vertical synchronization pulse period, and the voltage drops, creating a step and causing harmful effects. bring. Therefore, as the charging shunt resistor 19 of the capacitor 18 is made smaller, the charging shunt increases, so the charging current to the capacitor 18 decreases. Then, when the vA level of the horizontal synchronization period is lowered, there is no difference in level from the vertical synchronization period, and the initial problem is reduced.

ところが電波の入力が減少し、AGC電圧VCが上昇し
、IFアアン2のケゞインを一杯近くにすると、検波出
力25にノイズが増し、水平同期信号部の前後がノイズ
により恰も水平同期信号・、07レス幅が広くなった形
となる。すると今までコンデンサ18への充放電がバラ
ンスをとり、■Fのケゝインをコントロールしていたの
が上記の為放電電流が増す。すなわちAGC電圧vAが
下がりIFアンフ02のケ8インも最大にならない。本
発明はこの弱電界時、電圧■9が上昇しその電圧■□が
抵抗17と28の交点で決まる電圧VDを越すことをト
ランジスタ30.32のコントロールで検出し、トラン
ジスタ32を導通させ、その電流でトランジスタ29も
導通させると抵抗27(抵抗値R3とする)は抵R2十
R5 となシ増加する。放電電流は変わらないのでAGC電圧
vAは上昇し、十分IFアンプを最大ケゝインにもって
ゆくことができる。
However, when the input of radio waves decreases, the AGC voltage VC rises, and the key of IF amplifier 2 is brought close to full, noise increases in the detection output 25, and the noise before and after the horizontal synchronization signal section causes the horizontal synchronization signal/ , 07 has a wider response width. Then, the discharge current increases because the charging and discharging to the capacitor 18 has been balanced, and the key of ■F has been controlled as described above. That is, the AGC voltage vA decreases and the input of the IF amplifier 02 does not reach its maximum value. The present invention detects, by controlling the transistors 30 and 32, that during this weak electric field, the voltage ■9 rises and the voltage ■□ exceeds the voltage VD determined by the intersection of the resistors 17 and 28, and makes the transistor 32 conductive. When the transistor 29 is also made conductive by the current, the resistance 27 (assumed to have a resistance value R3) increases to a resistance R20R5. Since the discharge current remains unchanged, the AGC voltage vA rises, and the IF amplifier can be brought to its maximum gain.

(発明の効果) 以上のように本発明は映像信号の忠実な再生をし、垂直
同期の不安定さを減少し、垂直同期パルスの最初のステ
ップパルスを用いたゴースト検出の忠実性及びAGC電
圧変動によるIFアンプの変化がSIF出力に位相変化
となって音声Sβ劣化となることを防ぎ、かつ映像検波
出力の最大感度を十分上げることができる。
(Effects of the Invention) As described above, the present invention faithfully reproduces a video signal, reduces the instability of vertical synchronization, and improves the fidelity of ghost detection using the first step pulse of the vertical synchronization pulse and the AGC voltage. It is possible to prevent a change in the IF amplifier due to fluctuation from causing a phase change in the SIF output and cause audio Sβ deterioration, and to sufficiently increase the maximum sensitivity of the video detection output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例におけるAGC装置の回路図、第2図は
第1図の動作説明のための波形図、第3図は本発明の一
実施例におけるAGC装置の回路図である。 2・・・IFアンノ、4・・・検波器、5・・・アンプ
、6゜10.11,29.30.32・・・トランジス
タ、7.9,17,27,28・・・抵抗、18・・・
コンデンサ、19・・・充電分流抵抗。 第1図
FIG. 1 is a circuit diagram of an AGC device in a conventional example, FIG. 2 is a waveform diagram for explaining the operation of FIG. 1, and FIG. 3 is a circuit diagram of an AGC device in an embodiment of the present invention. 2... IF antenna, 4... Detector, 5... Amplifier, 6°10.11, 29.30.32... Transistor, 7.9, 17, 27, 28... Resistor, 18...
Capacitor, 19... Charging shunt resistance. Figure 1

Claims (1)

【特許請求の範囲】[Claims] テレビジョン受像機VIPゾロツク中の尖頭値形AGC
回路において、映像同期信号の先端を検出するコンツク
レータとそのコンノぐレータ出力ヲ用イ、映像同期信号
のレベルに比例した電圧をコンデンサと抵抗を並列接続
した回路に充放電することにより発生する回路をもちか
つ上記電圧を検出し、映像同期信号のレベルに比例した
電圧を作る充放電電流をコントロールすることを特徴と
するAGC回路。
Peak value type AGC in the VIP television receiver
In the circuit, there is a converter that detects the leading edge of the video synchronization signal, and a circuit that generates a voltage proportional to the level of the video synchronization signal by charging and discharging a voltage proportional to the level of the video synchronization signal to a circuit connected in parallel with a capacitor and a resistor. An AGC circuit characterized by detecting the above voltage and controlling a charging/discharging current to create a voltage proportional to the level of a video synchronization signal.
JP8518784A 1984-04-28 1984-04-28 Agc circuit Granted JPS60230775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8518784A JPS60230775A (en) 1984-04-28 1984-04-28 Agc circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8518784A JPS60230775A (en) 1984-04-28 1984-04-28 Agc circuit

Publications (2)

Publication Number Publication Date
JPS60230775A true JPS60230775A (en) 1985-11-16
JPH0312832B2 JPH0312832B2 (en) 1991-02-21

Family

ID=13851651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8518784A Granted JPS60230775A (en) 1984-04-28 1984-04-28 Agc circuit

Country Status (1)

Country Link
JP (1) JPS60230775A (en)

Also Published As

Publication number Publication date
JPH0312832B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US4254303A (en) Automatic volume adjusting apparatus
US4112384A (en) Controlled recovery automatic gain control amplifier
US9154098B2 (en) Amplifier circuit and amplification method
JPS6051810B2 (en) Spurious signal suppression circuit
US6191879B1 (en) Offset control for burst-mode optical receiver
US4667242A (en) Automatic gain control circuit
JPH0532948B2 (en)
JPS60230775A (en) Agc circuit
WO1999030534A1 (en) Peak to peak signal detector for audio system
JPS60226283A (en) Agc circuit
JPH09130330A (en) Optical receiver
JPH0614265Y2 (en) Voice control amplifier circuit
JPH0417510B2 (en)
JP2814501B2 (en) Automatic gain control amplifier
JP3200494B2 (en) SSB receiving circuit
JP2937880B2 (en) Clamp circuit
JPS6139713A (en) Automatic gain control circuit
JP3714651B2 (en) Control signal playback circuit for video equipment
JPS5824493Y2 (en) automatic volume adjustment device
JPS6165699A (en) Power amplifier
JPH04243309A (en) Automatic level control circuit
JPH1188085A (en) Quick charging circuit and alc circuit provided with the same
JPH05110994A (en) Automatic gain control circuit
JPH0552707B2 (en)
JPH05218900A (en) High-speed pull-in circuit for automatic line equalizer