JPS60228898A - Heat transfer tube made of titanium - Google Patents

Heat transfer tube made of titanium

Info

Publication number
JPS60228898A
JPS60228898A JP8582884A JP8582884A JPS60228898A JP S60228898 A JPS60228898 A JP S60228898A JP 8582884 A JP8582884 A JP 8582884A JP 8582884 A JP8582884 A JP 8582884A JP S60228898 A JPS60228898 A JP S60228898A
Authority
JP
Japan
Prior art keywords
tube
annular
titanium
heat transfer
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8582884A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Katsumi Sato
克己 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8582884A priority Critical patent/JPS60228898A/en
Publication of JPS60228898A publication Critical patent/JPS60228898A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/086Heat exchange elements made from metals or metal alloys from titanium or titanium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain the heat transfer tube of titanium, which is prevented from stress concentration of annular protuberance and improved in the rigidity thereof, by a method wherein a plural rails of axial protuberances, intersecting orthogonally to the annular protuberances of inner surface of the tube, are provided in the heat transfer tube. CONSTITUTION:The annular protuberances 11 are arranged axially on the inner wall of main body 10 of the tube with constant spaces. The annular protuberances 11 are formed so as to have vertical surfaces 12 in order to improve the overall heat-transfer coifficient efficiently and slanted surfaces 13 are formed from the vertical surfaces 12 toward the downstream side of heat medium. Four rails of axial protuberances 14 are formed axially along the inner wall of main body 10 of the tube. The section of the axial protuberance 14 is circular and is connected to the inner wall of the tube main body 10 smoothly with a curvature (r). In case the impact force of steam or the like, for example, is exerted vertically on the outer periphery of the heat transfer tube of titanium of such constitution, the impact force may be supported by the axial protuberances of the tube and, as a result, the stress concentration, effecting on the roots of vertical surfaces 12 of the annular protuberances 11, may be mitigated.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は復水器等に用いられるチタン製伝熱管に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a titanium heat exchanger tube used in a condenser or the like.

[発明の技術的前傾とその問題点] 例えば原子力発電プラントでは、タービンで仕事を終え
た蒸気を冷却水により凝縮させ、復水とするため復水器
が配設されている。
[Technical advancement of the invention and its problems] For example, in a nuclear power plant, a condenser is installed to condense the steam that has finished its work in the turbine using cooling water and convert it into condensate.

第2図はこのような復水器を示すもので、図において符
号1は本体胴を示している。本体胴1の片側側面には人
口水室2が形成され、他の側面には出口水室3が形成さ
れている。入口水室2および出口水室3にはそれぞれ管
板4.5が配設されており、これらの管板4.5間を接
続して多数の伝熱管6が接続されている。
FIG. 2 shows such a condenser, and in the figure, reference numeral 1 indicates the main body. An artificial water chamber 2 is formed on one side of the body trunk 1, and an outlet water chamber 3 is formed on the other side. A tube plate 4.5 is provided in each of the inlet water chamber 2 and the outlet water chamber 3, and a large number of heat transfer tubes 6 are connected between these tube plates 4.5.

このような復水器では、本体胴1の上部から流入した蒸
気7は伝熱管6内を流れる冷却水により凝縮され復水と
される。
In such a condenser, steam 7 flowing from the upper part of the main body shell 1 is condensed by the cooling water flowing in the heat transfer tubes 6 and turned into condensed water.

一般にこのような復水器では、伝熱管6を通る冷却水と
して海水が用いられることが多く、この海水中には海棲
生物等多くの不純物が含まれているため、これらが伝熱
管6内壁に付着し伝熱管6を腐食させる原因となってい
る。
Generally, in such a condenser, seawater is often used as the cooling water that passes through the heat exchanger tubes 6, and this seawater contains many impurities such as marine organisms. This causes the heat exchanger tubes 6 to corrode.

そこで、従来、冷却水となる海水中に硫酸第1鉄を混入
し伝熱管6の内面に保護被膜を形成し、海棲生物の伝熱
管6内壁への付着を防止し、これにより伝熱管6の腐食
を防止している。
Therefore, conventionally, ferrous sulfate is mixed into the seawater used as cooling water to form a protective film on the inner surface of the heat exchanger tube 6 to prevent marine organisms from adhering to the inner wall of the heat exchanger tube 6. prevents corrosion.

一方、最近の発電プラントでは、ボイラ給水の水質管理
の目的から、給水へヒドラジン、アンモニア等の注入を
行なっている。ヒドラジンは高温下において分解しアン
モニアを発生し、このアンモニアは蒸気とともにタービ
ンを経由し復水器内に排出され、不凝縮性ガスとして復
水器内に蓄積され、伝熱管6の外壁を腐食させるという
問題がある。
On the other hand, in recent power plants, hydrazine, ammonia, etc. are injected into the water supply for the purpose of water quality control of the boiler supply water. Hydrazine decomposes under high temperature and generates ammonia, which is discharged together with steam into the condenser via the turbine, accumulates in the condenser as a non-condensable gas, and corrodes the outer wall of the heat transfer tube 6. There is a problem.

他方において、従来、伝熱管6は、アルミニウムプラス
、ギュプロニッケル等により形成されているが、このよ
うな伝熱管6では腐食の問題から硫酸第一鉄の注入を行
なうことができず、またアンモニアにより、多大な腐食
を被るという問題がある。
On the other hand, conventionally, the heat exchanger tube 6 has been formed of aluminum plus, gupronickel, etc., but in such a heat exchanger tube 6, ferrous sulfate cannot be injected due to corrosion problems, and ammonia Therefore, there is a problem in that it suffers from a large amount of corrosion.

そこで、近時、伝熱管6を耐食性に優れたチタンにより
形成したものが使用されている。このチタンからなる伝
熱管は、従来の伝熱管に比較し非常に耐食性に優れてい
るが、材料が高価であるため製品が割高になるという問
題がある。
Therefore, recently, heat exchanger tubes 6 made of titanium, which has excellent corrosion resistance, have been used. Heat exchanger tubes made of titanium have much better corrosion resistance than conventional heat exchanger tubes, but the problem is that the material is expensive, making the product relatively expensive.

このような理由からチタンからなる伝熱管を装備した復
水器では、熱貫流率を向上させ伝熱面積を従来より大幅
に削減することが要求される。
For these reasons, condensers equipped with heat transfer tubes made of titanium are required to improve the heat transfer coefficient and reduce the heat transfer area to a greater extent than in the past.

一般に、復水器の性能は熱貫流率で評価され、この熱貫
流率は下式で定義される。
Generally, the performance of a condenser is evaluated by the heat transmission coefficient, and this heat transmission coefficient is defined by the following formula.

1/に= 1/h + + 1/h o +t /k 
+RFここで、 K:熱貫流率 hI :冷却水側熱伝達係数 ho:蒸気側熱伝達係数 に:管材の熱伝導率 [:管肉厚 RF:汚れ係数 である。
1/to = 1/h + + 1/h o +t /k
+RF Here, K: Heat transfer coefficient hI: Cooling water side heat transfer coefficient ho: Steam side heat transfer coefficient: Thermal conductivity of the pipe material [: Pipe wall thickness RF: Contamination coefficient.

一般に、火力、原子力発電プラント等の復水器の性能は
、冷却水側熱伝達係数により規定されるため、熱貫流率
を大にするには冷却水側熱伝達係数を改善する必要があ
る。
In general, the performance of condensers in thermal power plants, nuclear power plants, etc. is determined by the heat transfer coefficient on the cooling water side. Therefore, in order to increase the heat transfer coefficient, it is necessary to improve the heat transfer coefficient on the cooling water side.

このような冷却水側熱伝達係数を改善する手段として、
第3図に示すように伝熱管6内壁に垂直に立ち上がる環
状突起8を設け、ここで冷却水の流れを乱すことが有効
であり、チタンからなる伝熱管6にも適用することがで
きる。
As a means of improving the heat transfer coefficient on the cooling water side,
As shown in FIG. 3, it is effective to provide an annular protrusion 8 vertically rising on the inner wall of the heat exchanger tube 6 to disturb the flow of cooling water, and this can also be applied to the heat exchanger tube 6 made of titanium.

しかしながら、発電プラント、特に原子力発電プラント
では電力系統事故によりタービン発電機負荷遮断が生じ
た場合に、原子炉を停止することなく、原子炉発生蒸気
を復水器へバイパスするとともに、原子炉出力を減少さ
せ、安全に所内単独運転に移行するためのタービンバイ
パスシステムが設置されており、このタービンバイパス
システム作動時における流入蒸気の衝撃力により伝熱管
6が破損するおそれがあるという問題がある。
However, in power plants, especially nuclear power plants, when a turbine generator load is cut off due to a power system accident, the steam generated by the reactor is bypassed to the condenser without shutting down the reactor, and the reactor output is reduced. A turbine bypass system is installed to reduce the amount of steam and safely shift to isolated operation within the plant, but there is a problem that the heat transfer tubes 6 may be damaged due to the impact force of the incoming steam when the turbine bypass system is activated.

すなわち、タービンバイパスシステム作動時には、原子
炉で発生した蒸気は減温、減圧された後、復水器内に導
入されるが、第3図に示すように、伝熱管6は流入蒸気
7による管垂直方向への衝撃力により曲げ応力を受け、
この曲げ応力が環状突起8の垂直立ち上がり部9に応力
集中を生ぜしめ、伝熱管6がこの部から破損し冷却水漏
洩事故を招来するおそれがあった。
That is, when the turbine bypass system is in operation, the steam generated in the nuclear reactor is introduced into the condenser after its temperature and pressure are reduced. As shown in FIG. It receives bending stress due to impact force in the vertical direction,
This bending stress causes stress concentration on the vertically rising portion 9 of the annular protrusion 8, which may cause the heat exchanger tube 6 to break from this portion and cause a cooling water leakage accident.

[発明の目的] 本発明はかかる従来の事情に対処してなされたもので、
伝熱管内に形成される環状突起への応力集中を防止し、
伝熱管の剛性を高めたチタン製伝熱管を提供しようとす
るものである。
[Object of the invention] The present invention has been made in response to such conventional circumstances,
Prevents stress concentration on the annular protrusion formed inside the heat exchanger tube,
The present invention aims to provide a titanium heat exchanger tube with increased rigidity.

[発明の概要] 本発明のチタン製伝熱管は、チタンからなる管内面に、
軸方向に間隔をおいて形成される複数の環状突起と、周
方向に間隔をおいて管全長にわたって直線的に形成され
前記環状突起と直交する複数条の軸方向突起とを備えて
なり、前記環状突起は、前記管内面よりわずかに垂直に
立ち上がる垂直面と、この垂直面に連なり下流側に向か
い流路を徐々に拡大しその終端を前記管内面に接続され
る傾斜面とを有し、前記軸方向突起は、横断面をほぼ半
円形状に形成されこの半円形状の両側を前記管内面に滑
らかに接続されていることを特徴とする。
[Summary of the Invention] The titanium heat exchanger tube of the present invention has an inner surface of the titanium tube with
The tube comprises a plurality of annular projections formed at intervals in the axial direction, and a plurality of axial projections formed linearly over the entire length of the tube at intervals in the circumferential direction and perpendicular to the annular projections, The annular protrusion has a vertical surface that rises slightly perpendicularly from the inner surface of the tube, and an inclined surface that is connected to the vertical surface and gradually expands the flow path toward the downstream side, and whose terminal end is connected to the inner surface of the tube, The axial protrusion is characterized in that its cross section is formed into a substantially semicircular shape, and both sides of the semicircular shape are smoothly connected to the inner surface of the tube.

[発明の実施例] 以下本発明の詳細を図面に示す一実施例について説明す
る。
[Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第4図は本発明のチタン製伝熱管の一実施例を示すもの
で、図において符号10は海水からなる冷却水のような
熱媒体を流通する、例えばチタンからなる管本体を示し
ている。この管本体10の内壁には軸方向に一定間隔を
おいて環状突起11が配設されている。この環状突起1
1は熱媒体流入端を管本体10内壁から垂直に起立する
垂直面12とされている。この垂直面12から熱媒体下
流側に向は管本体10内壁に接続される傾斜面13が形
成されている。なお、環状突起11を管本体10内壁に
対し垂直に起立させたのは、これにより熱貫流率を効率
よく向上することができるからである。 また、伝熱管
の管径を例えば25作〜38.miとすると、環状突起
11の高さを0.3mm〜0.5mm、環状突起11の
間隔を環状突起11の高さの30〜60倍程度に設定す
るのが望ましい。
FIG. 4 shows an embodiment of the titanium heat transfer tube of the present invention, and in the figure, reference numeral 10 indicates a tube body made of, for example, titanium, through which a heat medium such as cooling water made of seawater flows. Annular protrusions 11 are arranged on the inner wall of the tube body 10 at regular intervals in the axial direction. This annular projection 1
Reference numeral 1 designates a heat medium inflow end as a vertical surface 12 that stands up perpendicularly from the inner wall of the tube body 10 . An inclined surface 13 connected to the inner wall of the tube body 10 is formed on the downstream side of the heat medium from this vertical surface 12 . Note that the reason why the annular projection 11 is made to stand perpendicularly to the inner wall of the tube body 10 is that the heat transmission coefficient can thereby be efficiently improved. In addition, the tube diameter of the heat exchanger tube may be set, for example, from 25 mm to 38 mm. Assuming mi, it is desirable that the height of the annular projections 11 be set to 0.3 mm to 0.5 mm, and the interval between the annular projections 11 be set to about 30 to 60 times the height of the annular projections 11.

そして管本体10の内壁に沿って軸方向に4条の軸方向
突起14が形成されている。
Four axial protrusions 14 are formed along the inner wall of the tube body 10 in the axial direction.

この軸方向突起14は第1図に示すように、横断面半円
形状をしており、管本体10の内壁に曲線rにより滑か
に接続されている。これにより接続部の応力集中を防止
することができる。なお、軸方向突起14の条数は伝熱
管に作用する衝撃力の大小により、その条数を増減する
のが望ましい。
As shown in FIG. 1, this axial projection 14 has a semicircular cross section and is smoothly connected to the inner wall of the tube body 10 by a curve r. This can prevent stress concentration at the connection portion. Note that the number of axial protrusions 14 is preferably increased or decreased depending on the magnitude of the impact force acting on the heat exchanger tube.

以上のJ:うに構成されたチタン製伝熱管では、例えば
、チタン製伝熱管の外周に直角に蒸気等の衝撃力が作用
した場合には、この衝撃力が軸方向突起14により支持
され、この結果、従来環状突起11の垂直面9根元部に
作用していた応力集中を緩和することができる。これに
より伝熱管の剛性を従来より大幅に増加することができ
、伝熱管の破損を防止することかできる。
In the titanium heat exchanger tube configured as J: above, for example, when an impact force such as steam is applied perpendicularly to the outer periphery of the titanium heat exchanger tube, this impact force is supported by the axial protrusion 14, and this impact force is supported by the axial projection 14. As a result, the stress concentration that conventionally acts on the root portion of the vertical surface 9 of the annular projection 11 can be alleviated. As a result, the rigidity of the heat exchanger tube can be significantly increased compared to the conventional one, and damage to the heat exchanger tube can be prevented.

[発明の効果コ 以上述べたように本発明のチタン製伝熱管によれば、チ
タン製伝熱管の環状突起の垂直両立ち上がり部に生ずる
応力集中を緩和することができ、剛性の高い、破損の少
ないチタン製伝熱管を提供することができる。
[Effects of the Invention] As described above, according to the titanium heat exchanger tube of the present invention, it is possible to alleviate the stress concentration that occurs at both vertical rising portions of the annular projection of the titanium heat exchanger tube, and the titanium heat exchanger tube has high rigidity and is resistant to breakage. It is possible to provide fewer titanium heat exchanger tubes.

【図面の簡単な説明】 第1図は第4図のI−I線に沿う横断面図、第2図は従
来の復水器を示す縦断面図、第3図は従来の伝熱管を示
す縦断面図、第4図は第1図の■−■線に沿う縦断面図
、第5図は本発明のチタン製伝熱管を用いた復水器を示
す縦断面図である。 10・・・・・・・・・・・・管本体 11・・・・・・・・・・・・環状突起12・・・・・
・・・・・・・垂直面 13・・・・・・・・・・・・傾斜面 14・・・・・・・・・・・・軸方向突起代理人弁理士
 須 山 佐 − 第3図 第1図
[Brief Description of the Drawings] Figure 1 is a cross-sectional view taken along the line I-I in Figure 4, Figure 2 is a longitudinal cross-sectional view showing a conventional condenser, and Figure 3 is a conventional heat exchanger tube. FIG. 4 is a vertical cross-sectional view taken along the line ■-■ in FIG. 1, and FIG. 5 is a vertical cross-sectional view showing a condenser using the titanium heat exchanger tube of the present invention. 10......Tube body 11......Annular protrusion 12...
・・・・・・Vertical plane 13 ・・・・・・・・・・・・ Inclined plane 14 ・・・・・・・・・・・・ Axial protrusion Attorney Patent attorney Sa Suyama − 3rd Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)チタンからなる管内面に、軸方向に間隔をおいて
形成される複数の環状突起と、周方向に間隔をおいて管
全長にわたって直線的に形成され前記環状突起と直交す
る複数条の軸方向突起とを備え°Cなり、前記環状突起
は、前記管内面よりわずかに垂直に立ち上がる垂直面と
、この垂直面に連なり下流側に向かい流路を徐々に拡大
しその終端を前記管内面に接続される傾斜面とを有し、
前記軸方向突起は、横断面をほぼ半円形状に形成されこ
の半円形状の両側を前記管内面に滑らかに接続されてい
ることを特徴とするチタン製伝熱管。
(1) A plurality of annular protrusions formed on the inner surface of a titanium tube at intervals in the axial direction, and a plurality of stripes formed linearly over the entire length of the tube at intervals in the circumferential direction and perpendicular to the annular protrusions. The annular protrusion has a vertical surface slightly perpendicular to the inner surface of the tube, and the annular protrusion is connected to this vertical surface to gradually expand the flow path toward the downstream side, and the end of the annular protrusion is connected to the inner surface of the tube. and an inclined surface connected to the
The titanium heat exchanger tube is characterized in that the axial protrusion has a substantially semicircular cross section, and both sides of the semicircle are smoothly connected to the inner surface of the tube.
(2)軸方向突起の高さは、環状突起の高さとほぼ同一
の高さである特許請求の範囲第1項記載のチタン製伝熱
管。
(2) The titanium heat exchanger tube according to claim 1, wherein the height of the axial projection is substantially the same as the height of the annular projection.
JP8582884A 1984-04-27 1984-04-27 Heat transfer tube made of titanium Pending JPS60228898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8582884A JPS60228898A (en) 1984-04-27 1984-04-27 Heat transfer tube made of titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8582884A JPS60228898A (en) 1984-04-27 1984-04-27 Heat transfer tube made of titanium

Publications (1)

Publication Number Publication Date
JPS60228898A true JPS60228898A (en) 1985-11-14

Family

ID=13869706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8582884A Pending JPS60228898A (en) 1984-04-27 1984-04-27 Heat transfer tube made of titanium

Country Status (1)

Country Link
JP (1) JPS60228898A (en)

Similar Documents

Publication Publication Date Title
US5850831A (en) Loose-tight-loose twist, twisted-tape insert solar central receiver
US3811498A (en) Industrial technique
US6269754B1 (en) Steam generator for superheated steam for incineration plants with corrosive flue gases
US4148281A (en) Steam generator and pressurized-water nuclear reactors
EP0057746B1 (en) Heat flux limiting sleeves
JPS60228898A (en) Heat transfer tube made of titanium
JPH0718522B2 (en) Pressurized water reactor steam generator
US4867234A (en) Heat exchanger
JPS6151236B2 (en)
KR0119478B1 (en) Rod baffle heat exchanger
SU980547A1 (en) Fuel element
JPS6086394A (en) Heat exchanger
JPS5847994A (en) Heat exchanger tube
JPS61190286A (en) Heat exchanger
JPH0842806A (en) Waste heat boiler for high-temperature high-pressure gas
SE9702474D0 (en) A nuclear fuel assembly
JPS6246796B2 (en)
RU1802289C (en) Heat exchanger
JP2544441B2 (en) Manufacturing method of parallel flow multi-tube heat exchanger
JPS6089681A (en) Condensor
JPS61107100A (en) Multi-pipe type heat exchanger
JPS59229186A (en) Multipipe type heat exchanger
Engineer et al. NUCLEAR HEATED STEAM GENERATORS
RU1801200C (en) Steam turbine condenser of deep-sea vehicle
GB2076517A (en) Modifying heat exchange in tubular heat exchangers