JPS6089681A - Condensor - Google Patents

Condensor

Info

Publication number
JPS6089681A
JPS6089681A JP19704083A JP19704083A JPS6089681A JP S6089681 A JPS6089681 A JP S6089681A JP 19704083 A JP19704083 A JP 19704083A JP 19704083 A JP19704083 A JP 19704083A JP S6089681 A JPS6089681 A JP S6089681A
Authority
JP
Japan
Prior art keywords
cooling
pipe
flow
condenser
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19704083A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Katsumi Sato
克己 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19704083A priority Critical patent/JPS6089681A/en
Publication of JPS6089681A publication Critical patent/JPS6089681A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium

Abstract

PURPOSE:To improve a rate of thermal flow and prevent a cooling pipe from being cracked by a method wherein annular projections water and some inclination surfaces gradually descending downstream of the raised surfaces are arranged axially in a spaced-apart relation to each other at the inner surfaces of the cooling pipes and the inner surfaces at a part contacting with pipe plates of the cooling pipes, is made as a smooth flat surface. CONSTITUTION:Annular projections 11 are arranged and spaced apart axially, i.e. in a direction of flow of fluid at the inner surfaces of titanium cooling pipes 10 for use in connecting a pipe plate 4 of an inlet water chamber 2 to a pipe plaste 5 for outlet water chamber 3. The annular projections 11 are formed by surfaces 12 crossing at a right angle to a direction of flow positioned upstream of the flow direction of fluid and inclination surfaces 14 communicating gradually with the inner surface 13 of the cooling pipe from the surfaces 12 toward the downstream of the flow direction. Truncated conical space 15 is axially spaced apart and defined by the inclination surfaces of annular projections 11 of which areas are enlarged in a direction of flow of cooling water.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷却管の内周面に環状突起を設け、伝熱効果
を上げ得るようにした復水器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a condenser in which an annular projection is provided on the inner circumferential surface of a cooling pipe to improve the heat transfer effect.

〔発明の技術的背景〕[Technical background of the invention]

たとえば原子力発電プラントでは、タービンで仕事を終
えた蒸気を、復水器に導き、復水器内に横設した冷却管
を通る冷却水により蒸気を凝縮させ、生成される凝縮水
をボイラに戻すようにしている。
For example, in a nuclear power plant, steam that has completed its work in a turbine is guided to a condenser, where it is condensed by cooling water that passes through cooling pipes installed horizontally within the condenser, and the resulting condensed water is returned to the boiler. That's what I do.

上記復水器は、第1図に示すように、本体胴1の一側に
入口水室2を、他側に出口水室3を設け、入口水室2の
管板4と出口水室3の管板5を、横設した多数の冷却管
6,6・・・で連結して構成されており、冷却管6を通
る冷却水として、海水を用いているものが多い。上記海
水中には海棲生物等多くの不純物が含まれ、冷却管内面
に付着し、冷却管を腐食させる因となっている。
As shown in FIG. 1, the above condenser is provided with an inlet water chamber 2 on one side of a main body 1 and an outlet water chamber 3 on the other side, and a tube plate 4 of the inlet water chamber 2 and an outlet water chamber 3. The tube plate 5 is connected to a large number of horizontally installed cooling pipes 6, 6, . . . , and seawater is often used as the cooling water passing through the cooling pipes 6. The seawater contains many impurities such as marine organisms, which adhere to the inner surface of the cooling pipe and cause corrosion of the cooling pipe.

そこで冷却水となる海水中に、硫酸第1鉄を混入して、
冷却管の内面に保護皮膜を形成し、海棲生物の内面への
付着による冷却管の腐食を防ぐよ5にしている。
Therefore, ferrous sulfate is mixed into the seawater that serves as the cooling water.
A protective film is formed on the inner surface of the cooling tube to prevent corrosion of the cooling tube due to marine organisms adhering to the inner surface.

しかし海水中に混入した硫酸第1鉄は、海水とともに海
中に排出されるため、海水汚染の因となり、公害対策上
の問題により、使用することが難かしくなっている。
However, ferrous sulfate mixed into seawater is discharged into the sea together with the seawater, causing seawater pollution, making it difficult to use it due to problems in pollution control.

一方最近の発電プラントでは、ボイラ給水の水質管理の
目的から、ヒドラジンやアンモニア等の注入を行なって
おり、ヒドラジンは高温下におい”l解u、−’C、ア
ンモニアを発生し、このアンモニアは、蒸気とともに、
タービンを経由し、復水器に排出され、不凝縮ガスとし
て復水器内に蓄積され、冷却管の外面を腐食させること
がある。
On the other hand, in recent power plants, hydrazine, ammonia, etc. are injected for the purpose of water quality control of boiler feed water.Hydrazine generates ammonia under high temperature, and this ammonia is with steam,
It passes through the turbine and is discharged to the condenser, where it accumulates as non-condensable gas and can corrode the outer surface of the cooling pipes.

他方冷却管は、アルミニウムプラス、キュプロニッケル
等により作られているが、硫酸第1鉄の注入ができない
こと、およびアンモニアによる腐食を防ぐために、最近
冷却管を、耐食性に優れたチタンを用いて作ったものも
使用されている。チタン冷却管は通常の冷却管に比較し
て耐食性に優れているが、材料が高価であるため製品が
割高になる。
On the other hand, cooling pipes are made of aluminum plus, cupronickel, etc., but recently cooling pipes have been made of titanium, which has excellent corrosion resistance, because ferrous sulfate cannot be injected and to prevent corrosion due to ammonia. It is also used. Titanium cooling pipes have better corrosion resistance than regular cooling pipes, but the material is expensive, making the product more expensive.

しかしてチタン冷却管を装備した復水器では、熱貫流率
を向上させ、伝熱面積の大幅な削減を図ることがより一
層要求されることになる。
Therefore, condensers equipped with titanium cooling pipes are required to improve the heat transfer coefficient and significantly reduce the heat transfer area.

一般に復水器の性能は、熱貫流率で評価され、熱貫流率
は下式で定義される。
Generally, the performance of a condenser is evaluated by the heat transfer coefficient, and the heat transfer coefficient is defined by the following formula.

ここでに:熱貫流率、h、:冷却水側熱伝達係数、ho
=蒸気側熱伝達係数、に:管材の熱伝導率、t:管肉厚
、チ:汚れ係 数 火力、原子力発電プラントの復水器の性能は、冷却水側
熱伝袢襟廠hi によって規定されるので、熱貫流率K
を犬にするには、冷却水側熱伝達係数h1 を改善する
必要がある。
Here: Heat transfer coefficient, h, Cooling water side heat transfer coefficient, ho
= Steam side heat transfer coefficient, N: Thermal conductivity of the pipe material, t: Pipe wall thickness, CH: Fouling coefficient thermal power, The performance of a condenser in a nuclear power plant is defined by the cooling water side heat transfer coefficient. Therefore, the heat transfer coefficient K
In order to improve this, it is necessary to improve the heat transfer coefficient h1 on the cooling water side.

冷却水側熱伝達を改善する手段として管内面に突起を設
けることが有効であり、チタン冷却管にも適用されるが
、管板との溶接部からの冷却水の漏洩を防ぐために、冷
却管の端部を拡管し、この拡管部を管板に挿着し、両者
を溶接している。
Providing projections on the inner surface of the tube is an effective means of improving heat transfer on the cooling water side, and is also applied to titanium cooling tubes. The end of the pipe is expanded, the expanded part is inserted into the tube plate, and both are welded.

〔背景技術の問題点〕[Problems with background technology]

しかし上記形式の復水器では、管板と冷却管の接触部分
を、冷却管内側より拡管し、溶接するので、拡管時に、
突起部分に応力が集中し、割れが生じたり、欠陥が内在
することがある。かがる内在欠陥の検出を行なうことは
現在まで十分でなく、これを放置すると、最終的にはメ
ーピン系への冷却水漏洩事故を招来するという難点があ
る。
However, in the above type of condenser, the contact area between the tube plate and the cooling tube is expanded from the inside of the cooling tube and welded, so when expanding the tube,
Stress may concentrate on the protruding parts, causing cracks or defects. Up to now, it has not been possible to sufficiently detect such inherent defects, and if left untreated, this will eventually lead to a cooling water leakage accident into the Maypin system.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みてなされたもので、内面に突
起を設けた冷却管を装備しながら、冷却管の突起部分へ
の応力集中を防ぎ、冷却管の割れの発生を防ぐようにし
た復水器を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and is equipped with a cooling pipe having protrusions on the inner surface, and prevents stress concentration on the protruding portion of the cooling pipe, thereby preventing the occurrence of cracks in the cooling pipe. The purpose is to provide condensers.

〔発明の概要〕[Summary of the invention]

本発明は、冷却管の内面に、冷却水の流れ方向上流側に
起立面およびこの起立面から下流側になだらかに下降す
る傾斜面を有するいわゆる冷却水の流れ方向に面積を拡
大するようにした傾斜面を有する環状突起を軸線方向に
間隔を置いて設けるとともに、冷却管の管板に接触する
部位の内面を平滑面とし、熱貫流率を向上させるととも
に、拡管時の突起への応力集中を防ぎ、冷却管に割れが
生じないようにしたものである。
In the present invention, the inner surface of the cooling pipe has an upright surface on the upstream side in the cooling water flow direction and an inclined surface that gently descends from the upright surface to the downstream side, so that the area is expanded in the cooling water flow direction. In addition to providing annular protrusions with inclined surfaces at intervals in the axial direction, the inner surface of the portion of the cooling tube that contacts the tube plate is made a smooth surface to improve heat transfer coefficient and reduce stress concentration on the protrusions during tube expansion. This prevents the cooling pipe from cracking.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面につき説明する。 An embodiment of the present invention will be described below with reference to the drawings.

なお、第2図において第1図と同一部材については同一
符号を付す。
In FIG. 2, the same members as in FIG. 1 are given the same reference numerals.

第2図において符号10は、入口水室2の管板4と、出
口水室3の管板5を接続するチタン製冷却管であって、
この冷却管10の内面には、軸線方向すなわち流体の流
れ方向に間隔を置いて環状突起11 、11が設けられ
ている。
In FIG. 2, reference numeral 10 denotes a titanium cooling pipe connecting the tube plate 4 of the inlet water chamber 2 and the tube plate 5 of the outlet water chamber 3,
On the inner surface of the cooling pipe 10, annular protrusions 11, 11 are provided at intervals in the axial direction, that is, in the fluid flow direction.

上記環状突起11は、第3図に示すように、流体の流れ
方向の上流側に位置する流れ方向に直交する面12と、
この面ルから流れ方向下流側になだらかに冷却管内面1
3に連らなる傾斜面14から形成されており、この環状
突起11の冷却水の流れ方向に面積が拡大した傾斜面に
より截頭円錐形空間15が軸線方向に改数画成される。
As shown in FIG. 3, the annular protrusion 11 has a surface 12 located on the upstream side in the fluid flow direction and perpendicular to the fluid flow direction;
The cooling pipe inner surface 1 is gently flowed downstream from this surface in the flow direction.
3, and a frusto-conical space 15 is defined in the axial direction by the inclined surface of the annular protrusion 11 whose area is expanded in the direction of flow of the cooling water.

実験的には、環状突起11の高さを0.3〜0.5詭、
環状突起110間隔を高さの30〜60倍程度に程度と
最適条件となる。
Experimentally, the height of the annular protrusion 11 was set to 0.3 to 0.5 mm,
The optimum condition is that the interval between the annular protrusions 110 is approximately 30 to 60 times the height.

一方上記冷却管10の管板4,5と接触する部位の内面
は、環状突起11を有していない面13と同じ面をなし
ており、この部分には環状突起11を有していない。
On the other hand, the inner surface of the portion of the cooling pipe 10 that contacts the tube plates 4 and 5 is the same surface as the surface 13 that does not have the annular projection 11, and does not have the annular projection 11 in this portion.

しかして冷却管lOを拡管して管板4,5に溶接する場
合に、冷却管に割れが生じることがなく、また環状突起
が管板に対応する部位に形成されていないので、応力集
中による内在欠陥が発生することがない。
Therefore, when the cooling pipe 10 is expanded and welded to the tube sheets 4 and 5, there is no cracking in the cooling pipe, and no annular protrusion is formed in the part corresponding to the tube sheet, so stress concentration can occur. No inherent defects occur.

なお管内乱流熱伝達においては、管の入口からある程度
の距離までは、境界層が完全に発達していない助走区間
となり、この助走区間では、局所的な熱伝達係数は発達
した乱流に対する熱伝達係数の数倍にも達する。局所的
な熱伝達係数の増加に影響を持つ区間は、管の入口から
管内径の20倍程度までの距離が限度であり、管の入口
側から境界層は、次第に発達し、これにつれて熱伝達係
数は、漸次低下し、最終的に境界層が完全に発達すると
、管内側熱伝達係数はDittus−Boelferの
式などによって与えられる値となる。復水器の管板は3
0〜40朋程度の厚みであるから、冷却管入口側の管板
と接触する部分の内面を平滑面としても伝熱性能には影
響を与えない。
In turbulent heat transfer in a pipe, a certain distance from the entrance of the pipe becomes a run-up section where the boundary layer is not fully developed, and in this run-up section, the local heat transfer coefficient is the heat transfer coefficient for the developed turbulence. It reaches several times the transmission coefficient. The area that has an effect on increasing the local heat transfer coefficient is limited to a distance from the tube inlet to about 20 times the tube inner diameter, and the boundary layer gradually develops from the tube inlet side, and the heat transfer increases accordingly. The coefficient gradually decreases, and finally, when the boundary layer is completely developed, the tube inside heat transfer coefficient reaches a value given by the Dittus-Boelfer equation or the like. The condenser tube plate is 3
Since the thickness is approximately 0 to 40 mm, the heat transfer performance is not affected even if the inner surface of the portion that contacts the tube sheet on the cooling tube inlet side is made smooth.

なお上記実施例では復水器に突起を有する冷却管を用い
たものについて説明したが、復水器だけでなく、同じ作
用をする熱交換器にも適用し得るのはもちろんである。
In the above embodiment, a condenser using a cooling pipe having protrusions has been described, but it is of course applicable not only to a condenser but also to a heat exchanger having the same function.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、冷却管の内向に冷却
水の流れ方向に’dEiRを拡大した傾斜面を有する環
状突起を設り゛ても、溶接時にこの環状突起に応力集中
がなく、したがって冷却管に割れや内在欠陥が生ぜず、
しかも環状突起の形状を特定することで、熱貫流率が向
上し、効率のよい熱伝達を行ない得るという効果を奏す
る。
As described above, according to the present invention, even if an annular projection having an inclined surface with an enlarged 'dEiR in the cooling water flow direction is provided inwardly of a cooling pipe, there is no stress concentration on this annular projection during welding. , so there are no cracks or inherent defects in the cooling tubes.
Furthermore, by specifying the shape of the annular protrusion, it is possible to improve the heat transmission coefficient and achieve efficient heat transfer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の復水器の一部を断面で示す側面図、第2
図は本発明による復水器の要部拡大断面図、第3図は環
状突起の形状を示す図である。 4.5・・・管板、lO・・・冷却管、11・・・環状
突起、12・・・直交面、13・・・冷却管内面、14
・・・傾斜面、15・・・截頭円錐形空間。 出願人代理人 猪 股 清
Figure 1 is a side view showing a part of a conventional condenser in cross section;
The figure is an enlarged cross-sectional view of a main part of a condenser according to the present invention, and FIG. 3 is a diagram showing the shape of an annular projection. 4.5... Tube plate, lO... Cooling pipe, 11... Annular projection, 12... Orthogonal surface, 13... Cooling pipe inner surface, 14
... Inclined surface, 15 ... truncated conical space. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 1、本体胴の一側に入口氷室を他側に出口氷室をそれぞ
れ設け、これら雨氷室を複数の冷却管で接続して相互に
連通せしめ、本体胴に送られた蒸気を冷却管を通る冷却
水で凝縮させるようにした復水器において、上記冷却管
の内面に軸線方向に間隔を置いて、冷却水の流れ方向に
面積を拡大するようにした傾斜面を有する環状突起を設
けるとともに、冷却管の管板に接触する部位の内面を平
滑面としたことを特徴とする復水器。 2、冷却管内面に設けた環状突起により截頭円錐形の流
路空間を形成するようにしたことを特徴とする特許請求
の範囲第1項記載の復水器。
[Claims] 1. An inlet ice chamber is provided on one side of the main body shell, and an outlet ice chamber is provided on the other side, and these rain ice chambers are connected by a plurality of cooling pipes to communicate with each other, and the steam sent to the main body shell is In the condenser, the condenser is configured to condense the cooling water through the cooling pipe, and the cooling pipe has an annular inner surface having inclined surfaces spaced apart in the axial direction and whose area expands in the flow direction of the cooling water. A condenser characterized by being provided with protrusions and having a smooth inner surface at a portion of the cooling tube that contacts the tube plate. 2. The condenser according to claim 1, wherein a truncated conical flow path space is formed by an annular projection provided on the inner surface of the cooling tube.
JP19704083A 1983-10-21 1983-10-21 Condensor Pending JPS6089681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19704083A JPS6089681A (en) 1983-10-21 1983-10-21 Condensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19704083A JPS6089681A (en) 1983-10-21 1983-10-21 Condensor

Publications (1)

Publication Number Publication Date
JPS6089681A true JPS6089681A (en) 1985-05-20

Family

ID=16367720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19704083A Pending JPS6089681A (en) 1983-10-21 1983-10-21 Condensor

Country Status (1)

Country Link
JP (1) JPS6089681A (en)

Similar Documents

Publication Publication Date Title
AU2007207217B2 (en) Tube bundle heat exchanger
JPS57142493A (en) Aluminum heat exchanger
US4396059A (en) Insert for a condenser tube
JPH1183352A (en) Heat exchanger
US3814178A (en) Heat exchanger
JPS6089681A (en) Condensor
US3451472A (en) Two-stage baffle for high pressure feedwater heaters
CN110285695A (en) Telescopic channel heat exchanger
SE467893B (en) CAR COOLERS WHEN THE RUBBER END WAS WELDED IN THE FLANES ON THE COOLING SIDE OF THE END PLATES AND LOADED ON THE AIR SIDE
CN208313077U (en) A kind of heat exchanging body
JPS5636352A (en) Manufacture of high-temperature gas flowing tube having bending part
US4442052A (en) Form for refractory-faced tube sheets
CN211040088U (en) Desulfurization, denitration bellows structure
JPS63254397A (en) Built-in fan type heat exchange tube
JPS5847994A (en) Heat exchanger tube
EP0122667A1 (en) Heat exchanger and central heating boiler comprising such a heat exchanger
JPS60228898A (en) Heat transfer tube made of titanium
JPS5553698A (en) Finned tube type heat exchanger
CN1401582A (en) Composite rough rib face high-efficiency heat pipe sea water desalination device and heat transfer enhancing method thereof
JPS6226707Y2 (en)
JPS5849512Y2 (en) Acoustic vibration prevention device
JPS57212350A (en) Annular multi-division type water cooled combustion chamber
JPS63251790A (en) Heat exchanger
SU1122143A1 (en) Heat-exchanging member
JPS5913507Y2 (en) High speed particle heat exchanger