JPS60227816A - Absorption tower of wet type stack gas desulfurization apparatus - Google Patents

Absorption tower of wet type stack gas desulfurization apparatus

Info

Publication number
JPS60227816A
JPS60227816A JP59083665A JP8366584A JPS60227816A JP S60227816 A JPS60227816 A JP S60227816A JP 59083665 A JP59083665 A JP 59083665A JP 8366584 A JP8366584 A JP 8366584A JP S60227816 A JPS60227816 A JP S60227816A
Authority
JP
Japan
Prior art keywords
liquid reservoir
liquid
absorption tower
suspension
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59083665A
Other languages
Japanese (ja)
Other versions
JPH0536087B2 (en
Inventor
Takeo Komuro
小室 武勇
Ryuichi Kaji
梶 隆一
Norio Arashi
紀夫 嵐
Keizo Otsuka
大塚 馨象
Shigeru Nozawa
野沢 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP59083665A priority Critical patent/JPS60227816A/en
Publication of JPS60227816A publication Critical patent/JPS60227816A/en
Publication of JPH0536087B2 publication Critical patent/JPH0536087B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To perform effectively the absorption and oxidation of SOX by dividing the liquid reservoir part of lower part of absorption tower into the liquid reservoir part of front stage free in contact with waste gas and the liquid reservoir part of rear stage incapable of contact with the waste gas by means of a partition board capable of overflow and a sealing separation plate. CONSTITUTION:The liquid reservoir part of absorption tower 800 is divided into front and rear stages with a partition board 500 and a separation plate 300 is provided in order to make the structure noncontacting with waste gas of the liquid reservoir part 200 of the rear stage. A suspension soln. is brought into contact with combustion waste gas 1 countercurrently in a gas- liquid contacting part 600 of the absorption tower 800 to absorb SOX and flowed down on the separation plate 300 and at first collected in the liquid reservoir part 100 of the front stage and thereafter overflowed on a partition board 500 between the separation plate 300 and the partition board 500 and entered the liquid reservoir 200 of the rear stage. In the front stage, the pH is low under contacting with the combustion waste gas high in CO2 partial pressure and the oxidation of SOX is accelerated and in the rear stage, the pH recovering velocity and the dissolving velocity of an alkaline absorbent are increased with the sealing effect of the separation plate 300 and the suspension soln. is made the state preferable for the circulation to the gas-liquid contacting part 600.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は湿式排煙脱硫装置の吸収塔に係り、特に燃焼排
ガス中に含まれる硫黄化合物の吸収と該吸収生成物の酸
化に好適な吸収塔の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to an absorption tower for a wet flue gas desulfurization system, and in particular to an absorption tower suitable for absorbing sulfur compounds contained in combustion exhaust gas and oxidizing the absorption products. It is related to the structure of

(発明の背景) 湿式排煙脱硫法は、水酸化カルシウムや炭酸カルシウム
などのアルカリ性吸収剤を懸濁液としたものと燃焼排ガ
スとを気液接触させて該排ガス中の硫黄酸化物(主とし
C3Oz)を除去するとともに、最終的にはこれを石膏
等の副生品として回収する方法である。
(Background of the Invention) The wet flue gas desulfurization method involves bringing a suspension of an alkaline absorbent such as calcium hydroxide or calcium carbonate into gas-liquid contact with combustion flue gas to remove sulfur oxides (mainly This method removes C3Oz) and ultimately recovers it as a by-product such as gypsum.

この場合、アルカリ性吸収剤例として炭酸カルシウムを
用いると、燃焼排ガス中の硫黄酸化物は懸濁液に吸収さ
れ、以下の反E (1)〜(6)により石膏(CaSO
4’)として回収される。
In this case, when calcium carbonate is used as an example of an alkaline absorbent, sulfur oxides in the combustion exhaust gas are absorbed into the suspension, and the following reaction E (1) to (6)
4').

SO2(ガス) + HxOd HzSOa −・・”
 ・n1・・(1)HiSOm d H+ HsOs 
・・・・・・・・・・・・・・・(2)H80s−d 
H++5Os−・・・・・・・・・・・・・・・(3)
CaCO5+ H” # C鳳0+にσ1・・・・・・
・・・・・・・・・(4)Ca +SOs =CaSO
s ・・・・・・・・・・・・・・・(5)CaSOs
 + 1/20x →Ca5Oa −−−・” ・” 
(6)しかるに、上記の反応は(6)式を除いていずれ
も平衡反応であるため、下記の配慮が必要とされている
。その1つは、燃焼排ガス中のCotは懸濁液に溶解し
て馬CO1を生じ、このものは下記(7)および(8)
式に示す通りHCOs−やCOs’−とほぼ平衡状態に
保たれる一方、(9)式に従って脱炭酸される。
SO2 (gas) + HxOd HzSOa -...”
・n1・・(1) HiSOm d H+ HsOs
・・・・・・・・・・・・・・・(2) H80s-d
H++5Os-・・・・・・・・・・・・・・・(3)
CaCO5+ H” # C Otori 0+ and σ1...
・・・・・・・・・(4) Ca + SOs = CaSO
s ・・・・・・・・・・・・・・・(5) CaSOs
+ 1/20x →Ca5Oa ---・”・”
(6) However, since all of the above reactions except for equation (6) are equilibrium reactions, the following considerations are required. One is that Cot in the combustion exhaust gas dissolves into a suspension to produce CO1, which is described in (7) and (8) below.
As shown in the equation, it is maintained in almost equilibrium with HCOs- and COs'-, while it is decarboxylated according to equation (9).

HnCOi HH” + HCOs−・・・・・・・・
・・・・・・・・・・・・・(7)Eα1d H” +
 CO5−・・・・・・・・・・・・・・・・・・・・
・(8)HxC(h d HzO+CO!↑ ・・・・
・・・・・・・・・・・・・・・・・(9)そのため、
上記一連の脱硫反応を通して重要なことは、(9)式の
脱炭酸反応を促進できれば(1)〜(8)式の平衡が右
側へ移行し、脱硫反応が好適に行われることである。こ
のため、このような目的に沿って従来から種々の方法が
提案されている(実開昭58−95217号、実開11
858−95218号、実開昭58−95216号、特
開昭58−98125号、特開昭58−92452号、
特開昭58−95543号、実開昭58−91428号
、l!#開昭58−104619号、特開昭58−98
126号、特開昭58−104620号等参viA)。
HnCOi HH” + HCOs−・・・・・・・・・・
・・・・・・・・・・・・・・・(7) Eα1d H” +
CO5-・・・・・・・・・・・・・・・・・・
・(8) HxC(h d HzO+CO!↑ ・・・・
・・・・・・・・・・・・・・・・・・(9) Therefore,
What is important through the series of desulfurization reactions described above is that if the decarboxylation reaction of formula (9) can be promoted, the equilibrium of formulas (1) to (8) will shift to the right, and the desulfurization reaction will be suitably performed. For this reason, various methods have been proposed for this purpose (Utility Model Application Publication No. 58-95217, Utility Model Application No. 11).
No. 858-95218, Japanese Utility Model Application No. 58-95216, Japanese Patent Application Publication No. 58-98125, Japanese Patent Application Publication No. 58-92452,
JP-A No. 58-95543, Utility Model Application No. 58-91428, l! #Kokai No. 58-104619, JP-A-58-98
No. 126, JP-A-58-104620, etc. viA).

これらの従来方法はいずれも、懸濁液に空気を供給して
バブリングすることを要旨としており、このようにすれ
ば見掛は上気相(燃焼排ガス)中の001分圧が下がり
、(9)式に示す脱炭酸反応は促進されることとなる。
The gist of all of these conventional methods is to supply air to the suspension to cause bubbling. In this way, the apparent 001 partial pressure in the upper gas phase (combustion exhaust gas) decreases, and (9 ) The decarboxylation reaction shown in the equation will be accelerated.

これにより前記(1)〜(9)式の平衡を右側へ移行さ
せることができ、結果とし【(4)式に従い炭酸カルシ
ウムの溶解度は高められることになる。
As a result, the equilibrium of equations (1) to (9) can be shifted to the right side, and as a result, the solubility of calcium carbonate is increased according to equation (4).

しかしながら、燃焼排ガス中には一般に10〜14−に
達する多量のC(hガスが含まれており、しかもこのC
otガスは溶解速度が大でかつ第9式に示すHxCOs
と平衡にあるので、このような状況下で空気曝気をする
場合、気相中の見掛けのCo2分圧は下げられるが、脱
炭酸を促進するためには多量の空気を必要とし、消費動
力の上昇が避けられない。
However, combustion exhaust gas generally contains a large amount of C (h gas) reaching 10 to 14-
ot gas has a high dissolution rate and is HxCOs shown in equation 9.
Therefore, if air aeration is performed under these conditions, the apparent partial pressure of Co2 in the gas phase will be lowered, but a large amount of air will be required to promote decarboxylation, and the power consumption will be reduced. A rise is inevitable.

他の1つは、懸濁液へのSozの吸収は懸濁液のpH値
が高いほど効果的であるため通常はpH>6以上で行わ
れるが、懸濁液中のCa5Osの酸化反応は4近傍とい
った低いpH値で行う場合に最も効率的であることであ
る。そのため、前記従来技術のように、吸収塔内の液溜
め部で上記酸化反応をSonの吸収と同時に進めること
は効率的でない。
Another reason is that the absorption of Soz into a suspension is more effective as the pH value of the suspension is higher, so it is usually carried out at pH > 6, but the oxidation reaction of CaOs in the suspension is It is most efficient when carried out at low pH values, such as around 4. Therefore, it is not efficient to proceed with the oxidation reaction at the same time as the absorption of Son in the liquid reservoir in the absorption tower, as in the prior art.

このような欠点を解消するため、pH領域を区分する方
法も提案されている。しかし、これらの改良方法は、気
液接触部に対し燃焼排ガスと接触状態にあった懸濁液を
そのまま循環使用する構成であるため、脱炭酸反応が緩
慢な1懸濁液のpH回復も遅く、かつ炭酸カルシウムの
溶解速度も低いという問題がある。また、液溜め部は完
全な混合状態とされているのでpH値の上昇が避けられ
ず、そのため酸化反応が遅くなる上、多量の空気供給を
余儀な鳴されるという問題もある。
In order to eliminate such drawbacks, a method of dividing pH ranges has also been proposed. However, these improved methods have a structure in which the suspension that was in contact with the combustion exhaust gas is recycled to the gas-liquid contact section, so the pH recovery of the suspension, which undergoes a slow decarboxylation reaction, is also slow. , and the dissolution rate of calcium carbonate is also low. Furthermore, since the liquid reservoir is in a completely mixed state, an increase in pH value is unavoidable, which slows down the oxidation reaction, and there is also the problem that a large amount of air must be supplied.

(発明の目的) 本発明の目的は、上記した従来技術の欠点をな(シ、燃
焼排ガス中に含まれる硫黄化合物の吸収と該吸収生成物
の酸化を効率的に行うことができる湿式排煙脱硫装置の
吸収塔を提供することにある。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned drawbacks of the prior art. The purpose of the present invention is to provide an absorption tower for a desulfurization device.

(発明の概要) 上記の目的を達成するため、本発明は、上部にアルカリ
性吸収剤を含む吸収液(以下、懸濁液と称することがあ
る)を散布下に燃焼排ガスと接触させ該排ガス中の硫黄
酸化物の吸収、除去を行う気液接触部と、下部に上記接
触後流下する、硫黄酸化物を吸収した懸濁液を受け入れ
、かつ空気供給下に該吸収硫黄酸化物の酸化を行5液溜
め部とを備えた湿式排煙脱硫装置の吸収塔において、上
記液溜め部を溢流可能な仕切板により流れに沿って前、
後段の少くとも2部分に分割するとともに、この仕切板
の上流において吸収液の液面下に達し、かつ吸収塔内を
上記前段液溜め部を含む部分と後段液溜め部を含む部分
とにシールする隔離板を設けたことを特徴とする。
(Summary of the Invention) In order to achieve the above object, the present invention involves spraying an absorbing liquid (hereinafter sometimes referred to as a suspension) containing an alkaline absorbent in the upper part and bringing it into contact with combustion exhaust gas. a gas-liquid contact section that absorbs and removes sulfur oxides, and a lower part that receives the suspension that has absorbed sulfur oxides that flows down after the above contact, and oxidizes the absorbed sulfur oxides while supplying air. 5 In an absorption tower of a wet flue gas desulfurization equipment equipped with a liquid reservoir, the liquid reservoir is arranged in front along the flow by a partition plate that allows overflow.
The rear stage is divided into at least two parts, reaches below the surface of the absorption liquid upstream of this partition plate, and seals the inside of the absorption tower into a part containing the first stage liquid reservoir and a part containing the second stage liquid reservoir. It is characterized by being provided with a separator plate.

本発明において、上記液溜め部にはバブリング用の空気
供給系統やアルカリ性吸収剤の補充系統等が設けること
ができる。その際、前段液溜め部にエゼクタを備えた懸
濁液の循環系統を設け、このエゼクタを介して空気を供
給すれば、空気の混合性が向上するので酸化反応を一段
と促進できる。
In the present invention, the liquid reservoir can be provided with an air supply system for bubbling, an alkaline absorbent replenishment system, and the like. In this case, if a suspension circulation system equipped with an ejector is provided in the pre-stage liquid reservoir and air is supplied through the ejector, the mixing properties of the air will be improved and the oxidation reaction can be further promoted.

また、アルカリ性吸収剤の補充はその溶解性が良好とな
る後段液溜め部に対して行うことが望ましい。
Further, it is desirable to replenish the alkaline absorbent to the latter liquid reservoir where its solubility is good.

このような本発明の構成とすれば、燃焼排ガスと向流接
触した懸濁液は、隔離板上を流下したのち先ず前段液溜
部に溜められ、次いで隔離板と仕切板の間を通ったのち
後者の上部から溢流し、後段液溜め部に溜められる。そ
して、各液溜め部に滞留中はそれぞれ空気供給下にバブ
リング処理されるが、その際、前段液溜め部の懸濁液は
、001分圧の高い燃焼排ガスとの接触下にあるため、
pH値が一般に4程度と低く、従って吸収硫黄酸化物の
酸化反応が好適に促進される。一方、後段液溜め部の懸
濁液は、隔離板のシール効果により燃焼排ガスとの接触
が絶たれた状態(気相中のCox分圧は低下する)にあ
るので、脱炭酸反応が良好に進行し、然してpHの回復
(上昇)速度とプルカリ性吸収剤の溶解速度がともに向
上し、気液接触部へ循環使用する際に好ましいものとな
る。
With this configuration of the present invention, the suspension that has come into countercurrent contact with the combustion exhaust gas flows down on the separator and is first collected in the former liquid reservoir, and then passes between the separator and the partition plate before being collected in the latter. It overflows from the top of the tank and is collected in the latter stage liquid reservoir. While the liquid remains in each reservoir, it is subjected to bubbling treatment while being supplied with air, but at that time, the suspension in the previous stage reservoir is in contact with combustion exhaust gas having a high 001 partial pressure.
The pH value is generally as low as about 4, and therefore the oxidation reaction of absorbed sulfur oxides is suitably promoted. On the other hand, the suspension in the latter stage liquid reservoir is in a state where contact with the combustion exhaust gas is cut off due to the sealing effect of the separator (the partial pressure of Cox in the gas phase decreases), so that the decarboxylation reaction is carried out well. As a result, both the pH recovery (increase) rate and the dissolution rate of the prucaric absorbent improve, which is preferable when circulating to the gas-liquid contact area.

(発明の実施例) 以下、図面に示す実施例により本発明をさらに詳しく説
明する。
(Embodiments of the Invention) The present invention will be explained in more detail below with reference to embodiments shown in the drawings.

s1図は、本発明の実施例に係る吸収塔の側断面を示す
もので、この吸収塔において、燃焼排ガス1は吸収塔8
00の中段部から導入され、次いで気液接触部600に
おいて後記によりライン4および3を経て循環後散布さ
れる懸濁液と向流接触される。この接触により含有硫黄
酸化物が吸収除去された排ガス2は吸収塔800の頂部
から大気へ放出される。一方、硫黄酸化物を吸収した懸
濁液は分散板700などを通って流下するが、その際、
仕切板500により仕切られた後段液溜め部200を燃
焼排ガスに対し非接触構造とするために設けられた隔離
板300上を流下し、先ず前段液溜め部100に集めら
れる。なお、隔離板300の下部400は液シールを可
能とするため前段液溜め部100の液面下に差し込まれ
た状態とされ、また、仕切板500は、第1図のA−N
線矢視図である第5図からも明らかな通り、その上部中
央に前段液溜め部の液を後段液溜め部へ溢流可能とする
溝501が設けられた構造とされる。
Figure s1 shows a side cross section of an absorption tower according to an embodiment of the present invention. In this absorption tower, the flue gas 1 is passed through the absorption tower 8.
00, and then in the gas-liquid contact section 600 is brought into countercurrent contact with the suspension that is circulated and sprayed via lines 4 and 3 as described later. The exhaust gas 2 from which the sulfur oxides contained therein have been absorbed and removed through this contact is discharged from the top of the absorption tower 800 to the atmosphere. On the other hand, the suspension that has absorbed sulfur oxides flows down through the dispersion plate 700, etc., but at that time,
The liquid flows down on the separator plate 300 provided to make the downstream liquid reservoir 200 partitioned by the partition plate 500 into a non-contact structure with respect to combustion exhaust gas, and is first collected in the preliminary liquid reservoir 100 . Note that the lower part 400 of the separator plate 300 is inserted below the liquid level of the pre-stage liquid reservoir 100 in order to enable liquid sealing, and the partition plate 500 is arranged as shown in FIG.
As is clear from FIG. 5, which is a view taken along the line, a groove 501 is provided in the center of the upper part to allow the liquid in the former liquid reservoir to overflow to the latter liquid reservoir.

上記により前段液溜め部A100に溜められた懸濁液は
常法により空気6の供給下に曝気されるが、この懸濁液
は燃焼排ガスとの接触下にあるのでpH値は4程度と低
く、そのため含有亜硫酸カルシウムの酸化反応が好適に
促進される、ただし、より完全な酸化反応を望む場合に
は、前段液溜め部100の底部に設けたライン7から懸
濁液を抜き、。
The suspension stored in the front liquid reservoir A100 as described above is aerated by supplying air 6 in a conventional manner, but since this suspension is in contact with the combustion exhaust gas, the pH value is as low as about 4. Therefore, the oxidation reaction of the contained calcium sulfite is suitably promoted. However, if a more complete oxidation reaction is desired, the suspension is drained from the line 7 provided at the bottom of the pre-liquid reservoir 100.

酸化塔やシラフナ等を備えた通常の酸化系統(図示省略
)へ送って処理し、生成する石膏を回収したのち未反応
物を含む懸濁液をライン8を経て再度前段液溜め部10
0へ戻せばよい。このように酸化処理された懸濁液は、
次いで隔離板の下部400と仕切板5000間隙部を上
昇したのち該仕切り板の上部溝部(第5図の501)を
通って後段液溜め部200内へ溢流し、かくして溜めら
れた懸濁液は空気5の供給下に曝気され、脱炭酸される
。この場合、懸濁液は隔離板の下部409のシール効果
により燃焼排ガスから絶縁されているので効率的な脱炭
酸が行われ、これによりpHの回復やCaCO5の溶解
が促進されることになる。
After being sent to a normal oxidation system (not shown) equipped with an oxidation tower, Silafuna, etc. for treatment and recovering the generated gypsum, the suspension containing unreacted materials is passed through line 8 and sent to the former liquid reservoir 10 again.
Just set it back to 0. The suspension treated in this way is
The suspension then rises through the gap between the lower part 400 of the separator plate and the partition plate 5000, passes through the upper groove part (501 in FIG. 5) of the partition plate, and overflows into the subsequent liquid reservoir 200, and the thus collected suspension is It is aerated under a supply of air 5 and decarboxylated. In this case, since the suspension is insulated from the combustion exhaust gas by the sealing effect of the lower part 409 of the separator, efficient decarboxylation takes place, thereby promoting pH recovery and dissolution of CaCO5.

なお、上記CaCO5の補充はライン1oを経て行われ
、また上記脱炭酸反応で生成したCOxガスを含む脱気
排ガスは、ライン9かも排出されたのち排ガス2などに
合流される。さらに、上記処理後の懸濁液はライン4か
ら抜き出されたのちポンプなど(図示省略)で昇圧され
、次いでライン3を通って気液接触部600に供給され
、既述と同様にして燃焼排ガス1と気液後され、以下こ
の繰り返しとなる。
Note that the CaCO5 is replenished through the line 1o, and the degassed exhaust gas containing the COx gas generated by the decarboxylation reaction is also discharged through the line 9 and then merged with the exhaust gas 2 and the like. Furthermore, the suspension after the above treatment is extracted from line 4, and then pressurized by a pump or the like (not shown), then supplied to gas-liquid contact section 600 through line 3, and combusted in the same manner as described above. After the exhaust gas 1 and gas liquid are removed, this process is repeated.

次に第2図は、本発明の他の実施例を示すもので、この
装置は、そのB −B’線矢視図である第6図からも明
らかな通り、直径状の仕切板500とその上流に平行し
て設げられたp4離板の下部4゜Oの代りに、それぞれ
円筒状の仕切板5oOA(501Aは溢流溝を示す)と
隔離板の下部400Aを設け、かつ該隔離板の下部から
漏斗状に延びた隔離板300Aを設ける以外は、第1図
に示す吸収塔と同様な構成としたものである。このよう
な構成とした場合でも、同様な機能を有する前段液溜め
部100と後段液溜め部200を互に独立して形成でき
るので、前記実施例と同様にして前段液溜め部100で
は懸濁液に吸収された硫黄酸化促進を、また、後段液溜
め部200では脱炭酸反応に基づく懸濁液のpH回復と
CaCO5の溶解をともに促進できる。
Next, FIG. 2 shows another embodiment of the present invention, and as is clear from FIG. 6, which is a view taken along the line B-B', this device has a diametrical partition plate 500. A cylindrical partition plate 5oOA (501A indicates an overflow groove) and a lower part 400A of the separator plate are provided in place of the lower part 4°O of the p4 separation plate provided in parallel upstream thereof, and The structure is similar to that of the absorption tower shown in FIG. 1, except that a separator plate 300A extending in a funnel shape from the bottom of the plate is provided. Even with such a configuration, the front liquid reservoir 100 and the rear liquid reservoir 200 having similar functions can be formed independently of each other, so that the front liquid reservoir 100 can be It is possible to promote the oxidation of sulfur absorbed in the liquid, and in the latter stage liquid reservoir section 200, it is possible to promote both the pH recovery of the suspension based on the decarboxylation reaction and the dissolution of CaCO5.

なお、この場合仕切板500Aに第8図の502に示す
ような吸収塔800の内壁に達する櫃を設ければ、後段
液溜め部200において懸濁液に旋回流(矢印参照)を
与えることが可能となるので、脱炭酸反応を一段と促進
することができる。
In this case, if the partition plate 500A is provided with a box that reaches the inner wall of the absorption tower 800 as shown at 502 in FIG. Therefore, the decarboxylation reaction can be further promoted.

また、第3図は、本発明の他の実施例を示すもので、こ
の装置は、そのc−c’線矢視図である第7図からも明
らかな通り、円筒状仕切板500人の内側に設けられた
同様形状の隔離板下部400AK替えて同外側に同様形
状の隔離板下部400Bを設け、かつこれから傘状に延
びた隔離板30oBを設ける以外は第2図に示す吸収塔
と同様な構成であり、このような構成においても同様な
効果が達成される。
Further, FIG. 3 shows another embodiment of the present invention, and as is clear from FIG. It is the same as the absorption tower shown in Fig. 2, except that a lower separator plate 400AK of the same shape provided on the inside is replaced with a lower separator plate 400B of the same shape on the outside, and a separator plate 30oB extending in an umbrella shape from this is provided. This is a similar configuration, and similar effects can be achieved with such a configuration.

さらに、第4図は本発明の実施例を示すもので、この装
置は、前段液溜め部100に順次ポンプ202とエゼク
タ201を備えた懸濁液の前段循環ライン31を付設す
る以外は第1図に示す吸収塔と同様な構成である。この
ような構成とすれば、エゼクタ201においてライン3
2から導入される空気と循環懸濁液との接触効率を高め
ることが可能となるので、吸収硫黄酸化物の酸化反応を
一段と促進することができる。
Furthermore, FIG. 4 shows an embodiment of the present invention, and this device has a first stage liquid circulation line 31 equipped with a pump 202 and an ejector 201 sequentially in the front stage liquid reservoir 100. The structure is similar to that of the absorption tower shown in the figure. With such a configuration, the line 3 in the ejector 201
Since it becomes possible to increase the contact efficiency between the air introduced from No. 2 and the circulating suspension, the oxidation reaction of the absorbed sulfur oxides can be further promoted.

以下、本発明の効果の確認のために実施した実験例に基
づき本発明をさらに詳しく説明する。
Hereinafter, the present invention will be explained in more detail based on experimental examples conducted to confirm the effects of the present invention.

実験例1 前記各実施例に示す吸収塔の液溜め部を想定して炭酸カ
ルシウム(飽和状態、18°c)o、oss舌ルを11
の水に添加した懸濁液を調製し、これにC(hをそれぞ
れ0.03俤、10チおよび100チの割合で含む模擬
ガスを懸濁液11当り1.21/分で流通させ、その際
の接触時間とpH値の関係をめたところ第9図の結果を
得た。なお、図中、AoXBoおよびCoは、気相中の
Cotがそれぞれ0.03優、10チおよび100チの
場合を示す。
Experimental Example 1 Assuming the liquid reservoir part of the absorption tower shown in each of the above examples, calcium carbonate (saturated state, 18 ° C) o, oss tongue was 11
A suspension was prepared by adding C (h) to water at a rate of 0.03 h, 10 h and 100 h, respectively, through which a simulated gas was passed at a rate of 1.21/min per 11 of the suspension. When we calculated the relationship between the contact time and pH value at that time, we obtained the results shown in Figure 9. In the figure, for AoXBo and Co, Cot in the gas phase was 0.03, 10, and 100, respectively. The case is shown below.

この結果から、模擬ガス(気相)中のC(h分圧が高く
なるに従いpHは低くなること、およびいずれのC(h
分圧の場合にも、接触時間の経過とともに既述の(4)
、(7)、(8)および(9)式の反応が平衡に達し、
pH値は一定になることがわかる。
From this result, it is clear that as the C(h partial pressure) in the simulated gas (gas phase) increases, the pH decreases, and that any C(h
Even in the case of partial pressure, as the contact time elapses, the above-mentioned (4)
, (7), (8) and (9) reactions reach equilibrium,
It can be seen that the pH value becomes constant.

実験例2 実験例1に従って気相中のCotと平衡状態に達した懸
濁液にCaCO5/ HxSOx = 20 (モル比
)となるようにHxSOsを添加してpH値の変化をめ
たところ、第11図に示す結果を得た。なお、同図中、
A20.13!0およびCooは、気相中のCOtがそ
れぞれ0.03%、10%および100%の場合を示す
。この結果゛からHzSOaを添加することによって既
述した(1)〜(9)式の反応が起りかつ時間の経過と
ともに平衡に達すること、および気相中のCO扮圧が低
い程上記平衡時のpH値は高くなることが知られる。こ
のことは、燃焼排ガス中のCot分圧が低くなる程懸濁
液中の炭酸カル7クムの溶解度は高まり、既述(1)〜
(9)式の平衡反応が右側へ移行すること、換dすれば
、懸濁液中へ空気をバブリングすると気相中の見掛けの
CQz分圧が下り、該懸濁液のpH回復速度と含有Ca
CO3の溶解速度がともに高められることを示唆するも
のである。
Experimental Example 2 According to Experimental Example 1, HxSOs was added to the suspension that had reached an equilibrium state with Cot in the gas phase so that CaCO5/HxSOx = 20 (molar ratio), and the pH value changed. The results shown in Figure 11 were obtained. In addition, in the same figure,
A20.13!0 and Coo indicate the case where COt in the gas phase is 0.03%, 10% and 100%, respectively. This result shows that by adding HzSOa, the reactions of equations (1) to (9) described above occur and reach equilibrium over time, and that the lower the CO pressure in the gas phase, the lower the It is known that the pH value increases. This means that the lower the Cot partial pressure in the combustion exhaust gas, the higher the solubility of calcium carbonate in the suspension.
In other words, bubbling air into the suspension lowers the apparent CQz partial pressure in the gas phase, and the pH recovery rate and content of the suspension decrease. Ca
This suggests that the dissolution rate of CO3 is increased as well.

実験例3 実験例1のBoのケース(気相中のco!分圧は0゜l
atwに保持される)を60分間実施して平衡状態を確
認したのち、実験例2のB2oのケースをさらに60分
間続けて既述(1)〜(9)式の平衡反応を確認し、そ
の後、気相のC0w分圧を0.05 atwに変える以
外は同様な処理を行い、かくして懸濁液。
Experimental example 3 Bo case of experimental example 1 (co! partial pressure in the gas phase is 0゜l)
atw) for 60 minutes to confirm the equilibrium state, continue the B2o case of Experimental Example 2 for another 60 minutes to confirm the equilibrium reactions of equations (1) to (9), and then , the same treatment was carried out except that the partial pressure of C0w in the gas phase was changed to 0.05 atw, and thus the suspension.

pH値回復状況を調べたところ第11図の結果を得た。When the pH value recovery status was investigated, the results shown in FIG. 11 were obtained.

この図から明らかな通り、気相中のco!分圧を下げた
D点以降では既述(9)式の脱炭酸反応が起り、炭酸カ
ルシウムは溶解され易くなったことが理解される。この
ように、pH回復速度と炭酸カルシウムの溶解速度は気
相中のCot分圧により大きく影響されるので、これを
促進するには、本発明の実施例に示したごとき燃焼排ガ
スに対し非接触状態とされた後段液溜め部を投げ、ここ
で懸濁液の空気曝気をすることが効果的であると言える
As is clear from this figure, co! It is understood that after the point D, where the partial pressure is lowered, the decarboxylation reaction of formula (9) described above occurs, and calcium carbonate becomes easier to dissolve. As described above, the pH recovery rate and the dissolution rate of calcium carbonate are greatly affected by the partial pressure of Cot in the gas phase, so in order to promote this, it is necessary to It can be said that it is effective to throw away the latter stage liquid reservoir and aerate the suspension with air.

(発明の効果) 以上、本発明によれば、懸濁液の液溜め部を燃焼排ガス
との接触が自由な前段液溜め部と同接触が不可能な後段
液溜め部とに分割したことにより、。
(Effects of the Invention) As described above, according to the present invention, the suspension liquid reservoir is divided into a front stage liquid reservoir that can freely come into contact with combustion exhaust gas and a rear stage liquid reservoir that cannot come into contact with the combustion exhaust gas. ,.

前者では酸化反応にとって好適な低pH下で懸濁液中の
吸収硫黄酸化物を酸化することができ、また、後者では
気相中のCO!分圧が低いので懸濁液の脱炭酸反応を効
率よく行5ことができ、これによりpHの回復速度とア
ルカリ性吸収剤の溶解速度を高め、気液接触部へ循環使
用するに好適な懸濁液を得ることが可能となる。
The former makes it possible to oxidize absorbed sulfur oxides in suspension under low pH conditions suitable for oxidation reactions, and the latter allows CO! in the gas phase to be oxidized. Since the partial pressure is low, the decarboxylation reaction of the suspension can be carried out efficiently5, which increases the pH recovery rate and the dissolution rate of the alkaline absorbent, making the suspension suitable for circulation to the gas-liquid contact area. It becomes possible to obtain liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る吸収塔の側断面図、第
2図および第3図は、それぞれ本発明の他の実施・列に
係る吸収塔の側断面図、第4図は、本発明の他の実施例
に係る吸収塔の側断面系統図、第5図は、第1図に示す
吸収塔のA−A′線に沿った矢視方向断面視図、第6図
および第8図は、それぞれ第2図に示す吸収塔のB −
B’線に沿った矢視方向断面視図、第7図は、第3図に
示す吸収塔のC−C/線に沿った矢視方向断面視図、第
9図は、COx含有ガスをCaCOx HzO系の懸濁
液に接触させた場合に、懸濁液のpHが接触時間ととも
に変化する様子をガス中のCO2濃度別に示す図、′1
g10図は、CO!含有ガxをCaCO5’khsOs
 −HzO系の懸濁液に接触させた場合に、懸濁液のp
Hが接触時間とともに変化する様子をガス中のCCh濃
度別に示す因、第11図は、co2含有ガスをCOzの
分圧−魔王で順次CaCO5H2O系およびCaC0s
−H2SOs HxO系の懸濁液に接触させたのち、C
Chの分圧を半減して同様に後者の懸濁液に接触させた
場合に、懸濁液のpHが接触時間とともに変化する様子
を示す図である。 1・・・燃焼排ガス、3.4・・・懸濁液循環ライン、
5.6・・・空気、7・・・懸濁液抜出ライン、8・・
・懸濁液戻しライン、9・・・鋭気排ガスライン、1o
・・・CaCO5補充ライン、31・・・懸濁液前段循
環ライン、32・・・空気ライン、100・・・前段液
溜め部、200・・・後段液溜め部、201・・・エゼ
クタ、2o2・・・ポンプ、300.300A、300
B・・・隔離板、400.400A、400B・・・隔
離板下部、5゜01500A・・・仕切板、501.5
01A・・・仕切板上部溝部、502・・・櫃、600
・・・気液接触部、800・・・吸収塔。 代理人 弁理士 川 北 武 長 第3図 第4図 第5図 第6図 第7図 第8図 第9図
FIG. 1 is a side cross-sectional view of an absorption tower according to an embodiment of the present invention, FIGS. 2 and 3 are side cross-sectional views of an absorption tower according to other embodiments and rows of the present invention, and FIG. , a side sectional system diagram of an absorption tower according to another embodiment of the present invention, FIG. 5 is a sectional view of the absorption tower shown in FIG. FIG. 8 shows B − of the absorption tower shown in FIG. 2, respectively.
FIG. 7 is a cross-sectional view of the absorption tower shown in FIG. 3 in the direction of arrows taken along line C-C/, and FIG. Diagram showing how the pH of the suspension changes with the contact time when it is brought into contact with a CaCOx HzO-based suspension, depending on the CO2 concentration in the gas, '1
g10 diagram is CO! Containing gas x CaCO5'khsOs
- When brought into contact with a HzO-based suspension, the p of the suspension
Figure 11 shows how H changes with contact time for each CCh concentration in the gas.
-H2SOs After contacting with HxO suspension, C
It is a figure which shows how the pH of a suspension changes with contact time when the partial pressure of Ch is halved and it is brought into contact with the latter suspension in the same way. 1... Combustion exhaust gas, 3.4... Suspension circulation line,
5.6... Air, 7... Suspension extraction line, 8...
・Suspension return line, 9... Sharp exhaust gas line, 1o
. . . CaCO5 replenishment line, 31 . . . Suspension front stage circulation line, 32 . . . Air line, 100 . . . ...Pump, 300.300A, 300
B...Separation plate, 400.400A, 400B...Separation plate lower part, 5゜01500A...Partition plate, 501.5
01A... Partition plate upper groove, 502... Chest, 600
... Gas-liquid contact section, 800 ... Absorption tower. Agent Patent Attorney Takenaga KawakitaFigure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)上部にアルカリ性吸収剤を含む吸収液の散布下に
燃焼排ガスと接触させ、該排ガス中の硫黄酸化物の吸収
、除去を行う気液接触部と、下部に上記接触後流下する
吸収液を受け入れ、かつ吸収した硫黄酸化物を空気供給
下に酸化する液溜め部とを備えた湿式排煙脱硫装置の吸
収塔において、上記液溜め部を溢流可能な仕切板により
流れに沿って前、後段の少くとも2部分に分割するとと
もに、この仕切板の上流におい【吸収液の液面下に達し
、かつ吸収塔内を上記前段液溜め部を含む部分と後段液
溜め部を含む部分とにシールする隔離板を設けたことを
特徴とする湿式排煙脱硫装置の吸収塔。 (乃特許請求の範囲第1項において、上記の前段液溜め
部に、吸収液に対し空気接触を行わせるため+1゜ のエゼクタを備えた吸収液の循環系統を付設したことを
特徴とする湿式排煙脱硫装置の吸収塔。
(1) A gas-liquid contact part in which an absorption liquid containing an alkaline absorbent is sprayed in the upper part and brought into contact with the combustion exhaust gas to absorb and remove sulfur oxides from the exhaust gas, and in the lower part, the absorption liquid flows down after the contact. In an absorption tower of a wet flue gas desulfurization equipment, the absorption tower is equipped with a liquid reservoir section that receives sulfur oxides and oxidizes the absorbed sulfur oxides while supplying air. , the rear stage is divided into at least two parts, and upstream of this partition plate [a part that reaches below the liquid level of the absorption liquid and that includes the above-mentioned front stage liquid reservoir part and a part containing the latter stage liquid reservoir part] An absorption tower for a wet flue gas desulfurization equipment, characterized by being provided with a separator for sealing. (In claim 1, the wet type is characterized in that the pre-stage liquid reservoir is provided with an absorption liquid circulation system equipped with a +1° ejector for bringing the absorption liquid into air contact.) Absorption tower of flue gas desulfurization equipment.
JP59083665A 1984-04-27 1984-04-27 Absorption tower of wet type stack gas desulfurization apparatus Granted JPS60227816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083665A JPS60227816A (en) 1984-04-27 1984-04-27 Absorption tower of wet type stack gas desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083665A JPS60227816A (en) 1984-04-27 1984-04-27 Absorption tower of wet type stack gas desulfurization apparatus

Publications (2)

Publication Number Publication Date
JPS60227816A true JPS60227816A (en) 1985-11-13
JPH0536087B2 JPH0536087B2 (en) 1993-05-28

Family

ID=13808754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083665A Granted JPS60227816A (en) 1984-04-27 1984-04-27 Absorption tower of wet type stack gas desulfurization apparatus

Country Status (1)

Country Link
JP (1) JPS60227816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2308585A3 (en) * 2009-10-12 2012-12-26 Babcock & Wilcox Power Generation Group, Inc. Segregated in-situ forced oxidation wet flue gas desulfurization for oxygen-fired fossil fuel combustion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179120A (en) * 1984-02-28 1985-09-13 Mitsubishi Heavy Ind Ltd Process for treating waste gas with separation and recovery of gypsum and dust
JPS60222132A (en) * 1984-04-19 1985-11-06 Mitsubishi Heavy Ind Ltd Method for adjusting concentration of carbonate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179120A (en) * 1984-02-28 1985-09-13 Mitsubishi Heavy Ind Ltd Process for treating waste gas with separation and recovery of gypsum and dust
JPS60222132A (en) * 1984-04-19 1985-11-06 Mitsubishi Heavy Ind Ltd Method for adjusting concentration of carbonate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2308585A3 (en) * 2009-10-12 2012-12-26 Babcock & Wilcox Power Generation Group, Inc. Segregated in-situ forced oxidation wet flue gas desulfurization for oxygen-fired fossil fuel combustion
US8795416B2 (en) 2009-10-12 2014-08-05 Babcock & Wilcox Power Generation Group, Inc. Segregated in-situ forced oxidation wet flue gas desulfurization for oxygen-fired fossil fuel combustion

Also Published As

Publication number Publication date
JPH0536087B2 (en) 1993-05-28

Similar Documents

Publication Publication Date Title
CA1303822C (en) Use of seawater in flue gas desulfurization
US5779999A (en) Method for scrubbing flue gases
US4085194A (en) Waste flue gas desulfurizing method
EP0756889B1 (en) Wet flue gas desulfurization apparatus
US20070134141A1 (en) Apparatus for treating flue gas using single-stage gas dispersing tray
JPS60227816A (en) Absorption tower of wet type stack gas desulfurization apparatus
JPS62193629A (en) Method for removing sulfur oxide contained in exhaust gas
JPS6115933Y2 (en)
CN106256776A (en) There is aeration and the seawater equipment of mixing recovery automatically
JPS58104619A (en) Absorbing tower of waste gas desulfurizing apparatus
JP4269379B2 (en) Wet flue gas desulfurization method and wet flue gas desulfurization apparatus
JPS5898126A (en) Desulfurization of stack gas
JP3068371B2 (en) Method and apparatus for desulfurizing gas containing high concentration sulfurous acid gas
JPS61259730A (en) Wet exhaust gas desulfurization apparatus
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JPH06285327A (en) Method and device for flue gas desulfurization
JPS5888023A (en) Desulfurization of waste gas producing gypsum as byproduct
JPS6018449B2 (en) Method for removing sulfur oxides from exhaust gas
JPS5892452A (en) Desulfurization of waste gas
JPH0244839Y2 (en)
JP2584942Y2 (en) Flue gas desulfurization equipment
JPH0159004B2 (en)
JPS6115932Y2 (en)
JPS5892451A (en) Desulfurization of waste gas
JPS5895543A (en) Desulfurizing method for waste gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term