JP2000084351A - Desulfurization of waste gas - Google Patents

Desulfurization of waste gas

Info

Publication number
JP2000084351A
JP2000084351A JP10255597A JP25559798A JP2000084351A JP 2000084351 A JP2000084351 A JP 2000084351A JP 10255597 A JP10255597 A JP 10255597A JP 25559798 A JP25559798 A JP 25559798A JP 2000084351 A JP2000084351 A JP 2000084351A
Authority
JP
Japan
Prior art keywords
desulfurization
liquid
cod
magnesium
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255597A
Other languages
Japanese (ja)
Inventor
Satoru Shimatani
哲 島谷
Hideyuki Michiki
英之 道木
Hisashi Miyagawa
久司 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP10255597A priority Critical patent/JP2000084351A/en
Publication of JP2000084351A publication Critical patent/JP2000084351A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce the ratio of the circulating quantity of a liquid absorbent to the quantity of gas to be treated by constructing a desulfurizing column to be vertical, dividing the inside of the desulfurizing column into plural divisions with trays and supplying a part of a treated liquid in an oxidation process for treating the treated liquid after dasulfurizing process with a gas containing oxygen to any of the divisions. SOLUTION: The desulfurizing column liquid absorbent containing magnesium hydroxide flows down and is circulated in the desulfurizing column and is brought into contact with a waste gas containing sulfur oxide in parallel flow to absorb and fix the sulfur oxide as magnesium sulfite or the like. The desulfurizing column is divided into plural divisions 11:14 with the trays, which enable to pass and make the liquid absorbent to flow down. The liquid absorbent containing magnesium hydroxide is sprayed in the division 11, flows down and is circulated and the waste gas containing sulfurous acid gas is introduced from the upper part of the desulfurizing column and is brought into contact with the liquid absorbent in parallel flow. A part of the liquid absorbent in the desulfurizing column is taken out to an oxidation vessel to oxidize COD in the liquid absorbent into nearly zero by blowing air to obtain an oxidized liquid mainly containing magnesium sulfate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重油、石炭などの
燃焼排ガスなどの硫黄酸化物を含有する各種排ガスの脱
硫技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desulfurization technique for various kinds of exhaust gas containing sulfur oxides such as combustion exhaust gas of heavy oil and coal.

【0002】[0002]

【従来の技術】マグネシウムを脱硫剤とする脱硫方法と
して大別して、次の2つの方法が知られている。
2. Description of the Related Art The following two methods are generally known as desulfurization methods using magnesium as a desulfurizing agent.

【0003】(1)硫黄酸化物を含む排ガスを脱硫塔に
てマグネシウム系脱硫剤を含む吸収液と接触させ排ガス
中に含まれる硫黄酸化物を亜硫酸マグネシウムまたは酸
性亜硫酸マグネシウムとして吸収除去し、さらに酸化槽
にて酸化し、水に対する溶解度の小さい亜硫酸マグネシ
ウムまたは酸性亜硫酸マグネシウムを溶解度の高い硫酸
マグネシウムに変換して放流する方法。この方法では、
脱硫剤も吸収された排ガス中の硫黄酸化物もともに廃棄
される。
(1) An exhaust gas containing sulfur oxides is brought into contact with an absorbing solution containing a magnesium-based desulfurizing agent in a desulfurization tower to absorb and remove sulfur oxides contained in the exhaust gas as magnesium sulfite or acidic magnesium sulfite, and further oxidize. A method of oxidizing in a tank, converting magnesium sulfite or acidic magnesium sulfite having low solubility in water into magnesium sulfate having high solubility, and discharging the same. in this way,
Both the desulfurizing agent and the sulfur oxides in the absorbed exhaust gas are discarded.

【0004】(2)脱硫剤として使用されるマグネシウ
ム塩を再生利用するため、上記硫酸マグネシウムを塩基
性カルシウム化合物と反応させて硫酸マグネシウムを水
酸化マグネシウムに変換再生させマグネシウム資源の有
効利用を計るとともに、吸収した硫黄酸化物を石膏とし
て回収利用する方法。
(2) In order to recycle the magnesium salt used as a desulfurizing agent, the above magnesium sulfate is reacted with a basic calcium compound to convert the magnesium sulfate into magnesium hydroxide to regenerate and to utilize magnesium resources effectively. A method of recovering and utilizing absorbed sulfur oxides as gypsum.

【0005】本出願人は、(2)の方法の一つとして特
願平9−167469で次の方法を提案した。すなわ
ち、「硫黄酸化物を含む排ガスをマグネシウム系脱硫剤
を含む吸収液と接触させ排ガス中に含まれる硫黄酸化物
を吸収除去する脱硫工程と、脱硫工程後の処理液を酸素
を含むガスで処理する酸化工程とからなる前工程と、前
記酸化工程後の処理液を塩基性カルシウム化合物と反応
させる複分解工程を含み、複分解工程で再生した水酸化
マグネシウムを含む複分解工程後のスラリーを二水石膏
を含む状態で前工程に返送し、脱硫工程後および/また
は酸化工程後の処理液から二水石膏を取り出す石膏分離
工程を含む脱硫方法において、脱硫工程吸収液のpHを
5.5−7.0の範囲とし、化学的酸素要求量(CO
D)を吸収液中の硫酸マグネシウム濃度で定まる上限値
を超えない範囲とする排ガスの脱硫方法」を提案した。
The present applicant has proposed the following method in Japanese Patent Application No. 9-167469 as one of the methods (2). That is, "a desulfurization step of contacting an exhaust gas containing sulfur oxides with an absorbent containing a magnesium-based desulfurizing agent to absorb and remove sulfur oxides contained in the exhaust gas, and treating the treatment liquid after the desulfurization step with a gas containing oxygen. A pre-process consisting of an oxidation process and a metathesis process in which the treatment solution after the oxidation process is reacted with a basic calcium compound, and the slurry after the metathesis process containing magnesium hydroxide regenerated in the metathesis process is converted to gypsum dihydrate. In a desulfurization method including a gypsum separation step of returning gypsum from the treatment liquid after the desulfurization step and / or after the oxidation step, the pH of the desulfurization step absorbent is adjusted to 5.5 to 7.0. And the chemical oxygen demand (CO
D) A method for desulfurizing exhaust gas in which D) does not exceed the upper limit determined by the concentration of magnesium sulfate in the absorbent.

【0006】上記方法は、複分解反応で生成した二水石
膏と水酸化マグネシウムとを分離せず脱硫塔へ戻す脱硫
方法において、亜硫酸石膏の生成を抑え、副生石膏の品
質を向上させると同時に生成する二水石膏の分離を容易
となし、安定な操業を可能とする改良された脱硫方法で
ある。
The above-mentioned method is a desulfurization method in which gypsum and magnesium hydroxide produced by the metathesis reaction are returned to the desulfurization tower without being separated, while the production of gypsum is suppressed and the quality of by-product gypsum is improved. This is an improved desulfurization method that facilitates separation of gypsum and enables stable operation.

【0007】[0007]

【発明が解決しようとする課題】亜硫酸ガスの濃度の高
い排ガスを処理する場合、吸収液が多量の亜硫酸ガスを
吸収すると、吸収液のCODが高くなる。上記(1)の
方法では、吸収液中の亜硫酸マグネシウム、酸性亜硫酸
マグネシウムの濃度が高くなり、ここで亜硫酸マグネシ
ウム、酸性亜硫酸マグネシウムの水に対する溶解度は
0.64g/100g水)と小さいため、これらが析出
してくる可能性がある。したがって、吸収液のCODを
下げるため吸収液を希釈する必要がある。
In the treatment of exhaust gas having a high concentration of sulfurous acid gas, if the absorbing solution absorbs a large amount of sulfurous acid gas, the COD of the absorbing solution increases. In the above method (1), the concentrations of magnesium sulfite and magnesium magnesium sulfite in the absorbing solution are high, and the solubility of magnesium sulfite and magnesium magnesium sulfite in water is as low as 0.64 g / 100 g water. There is a possibility of precipitation. Therefore, it is necessary to dilute the absorbing solution in order to reduce the COD of the absorbing solution.

【0008】(2)の方法においても、亜硫酸石膏の生
成を抑制するため、吸収液のCODを吸収液中の硫酸マ
グネシウム濃度によって定まるある範囲内に保って処理
する必要があり、そのために希釈してCODを下げる場
合がある。希釈することによって吸収液量が増加し、処
理すべき排ガス量(G)と脱硫塔吸収液量(L)の比で
あるL/Gが大きくなるという問題点がある。循環液量
が増加するとポンプ容量、動力を増加する必要がある。
Also in the method (2), in order to suppress the formation of gypsum, it is necessary to treat the COD of the absorbing solution within a certain range determined by the magnesium sulfate concentration in the absorbing solution. COD may be reduced. There is a problem that the dilution increases the amount of absorbing liquid, and the ratio L / G, which is the ratio of the amount of exhaust gas to be treated (G) to the amount of absorbing liquid (L) in the desulfurization tower, increases. As the circulating fluid volume increases, the pump capacity and power need to be increased.

【0009】本発明の目的は高濃度亜硫酸ガスを含む排
ガスを処理する場合、L/Gの増大を抑えてCODを下
げる方法を提供することにある。
An object of the present invention is to provide a method of suppressing COD by suppressing an increase in L / G when treating an exhaust gas containing a high concentration of sulfurous acid gas.

【0010】[0010]

【課題を解決するための手段】上記課題は下記の本発明
の1または2によって解決される。
The above object is achieved by one or two aspects of the present invention described below.

【0011】1.硫黄酸化物を含む排ガスを脱硫塔にて
マグネシウム系脱硫剤を含む吸収液と接触させ排ガス中
に含まれる硫黄酸化物を吸収除去する脱硫工程と、脱硫
工程後の処理液を酸素を含むガスで処理する酸化工程を
含み、脱硫工程吸収液のpHを5.5−7.0の範囲と
し、化学的酸素要求量を吸収液の温度または吸収液中の
硫酸マグネシウム濃度で定まる上限値を超えない範囲で
排ガスの脱硫を行う脱硫方法において、脱硫塔を縦型と
し、脱硫塔内を吸収液が滞留・通過可能なトレイでもっ
て複数の区画に分割し、最上部の区画から吸収液をシャ
ワー状に流下させ、排ガスと吸収液とを並流で接触さ
せ、酸化工程処理液の一部を前記トレイで上下に区画さ
れたいずれかの区画内へ供給することを特徴とする脱硫
方法。
1. A desulfurization step of contacting an exhaust gas containing sulfur oxides with an absorbent containing a magnesium-based desulfurizing agent in a desulfurization tower to absorb and remove sulfur oxides contained in the exhaust gas, and treating the treated liquid after the desulfurization step with a gas containing oxygen Including the oxidizing step for treatment, the pH of the desulfurizing step absorbent is in the range of 5.5 to 7.0, and the chemical oxygen demand does not exceed the upper limit determined by the temperature of the absorbent or the concentration of magnesium sulfate in the absorbent. In the desulfurization method of desulfurizing exhaust gas in a range, the desulfurization tower is made vertical, the inside of the desulfurization tower is divided into a plurality of sections by a tray through which the absorbent can stay and pass, and the absorbent is showered from the uppermost section. A desulfurization method, wherein the exhaust gas and the absorbing solution are brought into contact with each other in parallel, and a part of the treatment liquid for the oxidation step is supplied into one of the upper and lower compartments of the tray.

【0012】2.前記硫黄酸化物を吸収除去する脱硫工
程と、脱硫工程後の酸化工程に加えて、酸化工程後の処
理液を塩基性カルシウム化合物と反応させる複分解工
程、および複分解工程で再生した水酸化マグネシウムを
含む複分解工程後のスラリーを、二水石膏を含む状態で
脱硫工程または/および酸化工程に返送し、脱硫工程ま
たは/および酸化工程の処理液から二水石膏を取り出す
石膏分離工程をさらに含む上記1に記載の脱硫方法。
2. In addition to the desulfurization step of absorbing and removing the sulfur oxides, and the oxidation step after the desulfurization step, a metathesis step of reacting the treatment liquid after the oxidation step with a basic calcium compound, and magnesium hydroxide regenerated in the metathesis step The gypsum separation step further comprising the step of returning the slurry after the metathesis step to the desulfurization step or / and the oxidation step in a state containing gypsum, and removing the gypsum from the treatment liquid in the desulfurization step or / and the oxidation step. The desulfurization method described.

【0013】[0013]

【発明の実施の形態】以下本発明を図を用いてより詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings.

【0014】発明1は図6に示す脱硫塔1、酸化槽3お
よび付帯のポンプ・配管からなる装置による脱硫プロセ
スに適用できる。
The invention 1 can be applied to a desulfurization process using an apparatus including the desulfurization tower 1, the oxidation tank 3, and the accompanying pumps and pipes shown in FIG.

【0015】図1は本発明に使用される脱硫塔の模式図
である。
FIG. 1 is a schematic view of a desulfurization tower used in the present invention.

【0016】図1に示すように、脱硫塔1は縦型で塔底
には脱硫塔吸収液のpH測定装置(符号pH)と化学的
酸素要求量測定装置(符号COD)が設置されている。
ここで化学的酸素要求量(以下CODと略記する。)と
は、よう素滴定法による亜硫酸イオンおよび酸性亜硫酸
イオン濃度の合計量をJISK0102の40(亜硫酸
イオン)にしたがい測定し、酸素要求量として酸素換算
濃度mg/lで表現したものである。COD測定器はよ
う素滴定法により滴定時の対象液の電導度などの変化を
読み取り液のCODを測定する。CODの値は吸収液中
の亜硫酸イオン濃度または酸性亜硫酸イオン濃度を測定
し、平衡データより計算で算出してもよい。CODの測
定は連続的または適宜行い、亜硫酸マグネシウムの析出
防止のため吸収液中のCODを図2に示す範囲に保つ必
要がある。即ち、図2に示す通り、脱硫率を損なわない
pHおよびCODの最適範囲は、pH6.0以下ではC
OD3000mg/1以下、pH6.0以上では温度お
よびpHで定まるCOD値以下とする必要がある。
As shown in FIG. 1, the desulfurization tower 1 is of a vertical type, and a pH measuring device (symbol pH) and a chemical oxygen demand measuring device (symbol COD) are installed at the bottom of the desulfurization tower. .
Here, the chemical oxygen demand (hereinafter abbreviated as COD) is defined as the oxygen demand measured by measuring the total amount of sulfite ion and acid sulfite ion concentration by iodometric titration according to 40 (sulfite ion) of JIS K0102. It is expressed in terms of oxygen equivalent concentration mg / l. The COD measuring device reads a change in the electrical conductivity of the target liquid at the time of titration by an iodine titration method and measures the COD of the liquid. The value of COD may be calculated by measuring the sulfite ion concentration or acidic sulfite ion concentration in the absorbing solution and calculating from the equilibrium data. The COD measurement is performed continuously or appropriately, and it is necessary to keep the COD in the absorbing solution within the range shown in FIG. 2 in order to prevent precipitation of magnesium sulfite. That is, as shown in FIG. 2, the optimal range of pH and COD that does not impair the desulfurization rate is C at pH 6.0 or lower.
If the OD is 3000 mg / 1 or less, and the pH is 6.0 or more, the COD value must be lower than the COD value determined by the temperature and pH.

【0017】脱硫塔1には、水酸化マグネシウムを含む
脱硫塔吸収液が水スラリーとしてシャワー状に流下、循
環され、硫黄酸化物を含む排ガスと並流で気液接触し硫
黄酸化物は亜硫酸マグネシウムや酸性亜硫酸マグネシウ
ムとして吸収・固定される。
In the desulfurization tower 1, the desulfurization tower absorption liquid containing magnesium hydroxide is circulated as a water slurry in the form of a shower and circulated, and comes into gas-liquid contact with the exhaust gas containing sulfur oxides in parallel with the sulfur oxides. And absorbed as acid magnesium sulfite.

【0018】 Mg(OH)2 +SO2 =MgSO3 +H2 O (1) MgSO3 +SO2 +H2 O=Mg(HSO32 (2) Mg(HSO32 +Mg(OH)2 =2MgSO3 +2H2 O (3) 脱硫塔処理後の液はポンプにより酸化槽3に送られ酸素
を含むガス(酸素富化空気または空気が使用可能である
が通常は空気が用いられる。)により酸化され、亜硫酸
マグネシウムおよび酸性亜硫酸マグネシウムは易溶性の
硫酸マグネシウムおよび硫酸に変換される。生成した硫
酸はさらにpH調整のため供給される水酸化マグネシウ
ムと反応し硫酸マグネシウムに変換される。
Mg (OH) 2 + SO 2 = MgSO 3 + H 2 O (1) MgSO 3 + SO 2 + H 2 O = Mg (HSO 3 ) 2 (2) Mg (HSO 3 ) 2 + Mg (OH) 2 = 2 MgSO 3 + 2H 2 O (3) The liquid after the desulfurization tower treatment is sent to the oxidation tank 3 by a pump and oxidized by a gas containing oxygen (oxygen-enriched air or air can be used, but usually air is used). Magnesium sulfite and acidic magnesium sulfite are converted to readily soluble magnesium sulfate and sulfuric acid. The generated sulfuric acid further reacts with magnesium hydroxide supplied for pH adjustment and is converted into magnesium sulfate.

【0019】 MgSO3 +1/2O2 =MgSO4 (4) Mg(HSO32 +O2 =MgSO4 +H2 SO4 (5) H2 SO4 +Mg(OH)2 =MgSO4 +2H2 O (6) 脱硫塔1内では式(1),(2)および(3)によって
亜硫酸マグネシウムおよび酸性亜硫酸マグネシウムが生
成するため、その濃度が溶解度以上にならないよう酸化
槽3から酸化槽処理液(COD=0の液)を戻し希釈す
る。稀釈と同時に脱硫塔1の底部からは酸素を含むガス
を吹き込み上記反応式(1),(2)および(3)によ
り生成した亜硫酸マグネシウムおよび酸性亜硫酸マグネ
シウムの一部は酸化槽3での反応と同様に脱硫塔内で酸
化され易溶性の硫酸マグネシウムに変換される。この操
作は、排ガス中の亜硫酸ガス濃度が高い場合は特に必要
である。
MgSO 3 + 1 / 2O 2 = MgSO 4 (4) Mg (HSO 3 ) 2 + O 2 = MgSO 4 + H 2 SO 4 (5) H 2 SO 4 + Mg (OH) 2 = MgSO 4 + 2H 2 O (6 In the desulfurization tower 1, since magnesium sulfite and acidic magnesium sulfite are produced by the formulas (1), (2) and (3), the oxidation tank treatment liquid (COD = 0) is supplied from the oxidation tank 3 so that the concentration does not exceed the solubility. Back and dilute. Simultaneously with the dilution, a gas containing oxygen is blown from the bottom of the desulfurization tower 1 and a part of the magnesium sulfite and the magnesium acid sulfite generated by the above-mentioned reaction formulas (1), (2) and (3) react with the reaction in the oxidation tank 3. Similarly, it is oxidized in the desulfurization tower and converted into easily soluble magnesium sulfate. This operation is particularly necessary when the sulfur dioxide gas concentration in the exhaust gas is high.

【0020】脱硫塔吸収液は水酸化マグネシウム、水酸
化マグネシウムと排気ガス中に含まれる亜硫酸ガスとの
反応物である亜硫酸マグネシウム、酸性亜硫酸マグネシ
ウムおよび硫酸、硫酸マグネシウムとの混合溶液とな
る。空気を吹き込んで亜硫酸マグネシウムや酸性亜硫酸
マグネシウムを硫酸マグネシウムに変換するとき、副生
する硫酸のため処理液のpHは低くなり、亜硫酸ガスの
吸収効率が低下する。
The desulfurization tower absorption liquid is a mixed solution of magnesium hydroxide, magnesium sulfite which is a reaction product of magnesium hydroxide and sulfur dioxide contained in the exhaust gas, acidic magnesium sulfite, sulfuric acid, and magnesium sulfate. When air is blown to convert magnesium sulfite or acidic magnesium sulfite into magnesium sulfate, the pH of the treatment liquid is reduced due to by-produced sulfuric acid, and the sulfur dioxide gas absorption efficiency is reduced.

【0021】本願発明は、脱硫塔吸収液と排気ガスとが
接触し、吸収液中のCODが一番高くなった時点で希釈
することが排ガス量(G)と吸収液量(L)との比であ
るL/Gを小にするため一番効果的であることから本発
明に至ったものである。
According to the present invention, the desulfurization tower absorption liquid and the exhaust gas come into contact with each other, and when the COD in the absorption liquid becomes the highest, the dilution is performed by comparing the exhaust gas amount (G) and the absorption liquid amount (L). The present invention is the most effective in reducing the ratio L / G, which has led to the present invention.

【0022】図1に示す通り、脱硫塔1は、吸収液が滞
留・流下可能なトレイあるいは網でもって複数の区画
(図1では11,12,13,14の4つの区画に分割
されている。)に分割されている。
As shown in FIG. 1, the desulfurization tower 1 is divided into a plurality of sections (four sections 11, 12, 13, and 14 in FIG. 1) by means of a tray or a net in which the absorbent can stay and flow. )).

【0023】吸収液は最上段の区画11からシャワー状
に流下し、排ガスは吸収液と並流で接触する。吸収液の
循環量をL、区画11で噴射される吸収液のCOD濃度
をCとし、区画12内で吸収される亜硫酸ガス量(CO
D換算値)をS1とし、吸収塔内で最終的に吸収される
亜硫酸ガス量(COD換算値)をStとすれば最下段で
の区画14から排出される吸収液のCOD濃度はC+S
t/Lとなる。これを酸化槽からの戻り液(COD=0
の液)のみで希釈してCとする場合の戻り液量Lr(C
OD=0の液)はSt/Cとなる。実際には酸化槽から
戻される処理液(COD=0の液)での稀釈のほかに、
脱硫塔底部に吹き込まれる空気による酸化がCODを減
少させるのでCODの値をCとするためのLrはSt/
Cより小でよい(Lr<St/C)。
The absorbing liquid flows down in a shower form from the uppermost section 11 and the exhaust gas contacts the absorbing liquid in parallel. Let the amount of circulation of the absorbent be L, the COD concentration of the absorbent injected in section 11 be C, and the amount of sulfurous acid gas absorbed in section 12 (CO
D), the COD concentration of the absorbing solution discharged from the lowermost section 14 is C + S, where S1 is the amount of sulfurous acid gas finally absorbed in the absorption tower (COD converted value).
t / L. This is returned from the oxidation tank (COD = 0
Of the return liquid Lr (C
(OD = 0) is St / C. Actually, in addition to dilution with the processing liquid (COD = 0 liquid) returned from the oxidation tank,
Since oxidation by air blown into the bottom of the desulfurization tower reduces COD, Lr for setting the value of COD to C is St /
It may be smaller than C (Lr <St / C).

【0024】この条件で吸収液のCODの許容される最
大値はC+St/Lであり、この値は吸収液のマグネシ
ウム濃度で定まる上限値を超えない値である。
Under this condition, the maximum allowable COD of the absorbing solution is C + St / L, which does not exceed the upper limit determined by the magnesium concentration of the absorbing solution.

【0025】吸収液循環量をL1(L1<L)としたと
きの区画12でのCODはC+S1/L1となり、以下
の条件を満たす必要がある。(吸収液の多寡によらず必
要量の水酸化マグネシウムが含まれていれば吸収される
亜硫酸ガス量は変わらない。) C+S1/L1≦C+St/L すなわち、 L1≧(S1/St)L このままでは下方の区画で亜硫酸ガスを吸収しCODは
許容量を超えてしまうため、この時点で酸化槽からの戻
り液Lrで希釈し下方の区間の何れの区間でもCODが
許容量以下とする必要がある。
When the circulation amount of the absorbent is L1 (L1 <L), the COD in the section 12 is C + S1 / L1, and it is necessary to satisfy the following conditions. (The amount of sulfurous acid gas absorbed does not change if the required amount of magnesium hydroxide is contained irrespective of the amount of the absorbing solution.) C + S1 / L1 ≦ C + St / L That is, L1 ≧ (S1 / St) L Since the lower section absorbs sulfurous acid gas and the COD exceeds the allowable amount, it is necessary to dilute with the return liquid Lr from the oxidizing tank at this point and to make the COD equal to or less than the allowable amount in any of the lower sections. .

【0026】区画14でのCODは(L1C+St)/
(L1+Lr)となる。吸収液の空気吹き込みによる酸
化に起因するCODの減少を考えない場合、 (L1C+St)/(L1+Lr)=C すなわち、Lr=St/C となる。
The COD in the section 14 is (L1C + St) /
(L1 + Lr). If the reduction of COD due to oxidation caused by blowing air into the absorbing liquid is not considered, (L1C + St) / (L1 + Lr) = C That is, Lr = St / C.

【0027】以上の考察から脱硫塔吸収液の循環量を概
念的にトレイで区画された最上段区画12で吸収される
亜硫酸ガス量と脱硫塔で吸収される全亜硫酸ガス量の比
に相当する割合まで減少させることが可能となることが
理解される。実際の条件では亜硫酸ガスの自然酸化など
でCODに寄与しない部分もあるため必ずしもこの通り
ではない。
From the above considerations, the circulation amount of the desulfurization tower absorption liquid conceptually corresponds to the ratio of the amount of sulfurous acid gas absorbed in the uppermost section 12 divided by trays to the total amount of sulfurous acid gas absorbed in the desulfurization tower. It is understood that it is possible to reduce to a percentage. Under actual conditions, this is not always the case because there is a portion that does not contribute to COD due to natural oxidation of sulfurous acid gas or the like.

【0028】以上のように、通常酸化槽からの戻り液を
供給する区間は最上段の区間で亜硫酸ガスを吸収した液
と混合することになるが、いずれにしても各区間毎の吸
収液がCODの許容量を超えないように設計される。
As described above, the section for supplying the return liquid from the oxidation tank is usually mixed with the liquid that has absorbed the sulfurous acid gas in the uppermost section. It is designed not to exceed the COD allowance.

【0029】次に発明2につき説明する。Next, the second invention will be described.

【0030】発明2の対象となる装置の一例は図5に示
す脱硫塔1、石膏分離器2、酸化槽3、複分解槽4、水
酸化カルシウム供給タンク5、水酸化マグネシウムスラ
リー供給タンク6および付帯のポンプ・配管からなる構
成のものである。
An example of the apparatus to which the invention 2 is applied is a desulfurization tower 1, a gypsum separator 2, an oxidation tank 3, a double decomposition tank 4, a calcium hydroxide supply tank 5, a magnesium hydroxide slurry supply tank 6, and ancillary equipment shown in FIG. It is a configuration consisting of a pump and piping.

【0031】脱硫塔1は発明1と同じで図1に示すよう
に、脱硫塔吸収液のpH測定装置と化学的酸素要求量測
定装置が設置されている。CODの値は吸収液中の亜硫
酸イオン濃度または酸性亜硫酸イオン濃度を前述した方
法で測定し、あるいは平衡データより計算で算出しても
よい。CODの測定は連続的または適宜行い、亜硫酸石
膏の析出防止のため吸収液中の硫酸マグネシウム濃度に
応じて定められる上限値を超えない範囲に保つ必要があ
る。吸収液中の硫酸マグネシウム濃度が変動すると、吸
収液中の硫酸マグネシウム濃度に応じて定められるCO
Dの値も同時に変化するため、硫酸マグネシウム濃度が
一定となるよう制御することが好ましい。
As shown in FIG. 1, the desulfurization tower 1 is provided with a pH measuring device for a desulfurizing column absorption liquid and a chemical oxygen demand measuring device as shown in FIG. The value of COD may be calculated by measuring the sulfite ion concentration or acidic sulfite ion concentration in the absorbing solution by the method described above, or by calculating from the equilibrium data. The measurement of COD needs to be performed continuously or appropriately and kept within a range not exceeding an upper limit determined according to the concentration of magnesium sulfate in the absorbing solution in order to prevent the precipitation of gypsum sulfite. When the concentration of magnesium sulfate in the absorbing solution fluctuates, CO determined according to the concentration of magnesium sulfate in the absorbing solution
Since the value of D also changes at the same time, it is preferable to control the magnesium sulfate concentration to be constant.

【0032】脱硫塔1には複分解槽4で再生された水酸
化マグネシウムと二水石膏の混合物が導入されるととも
に、水酸化マグネシウムを含む脱硫塔吸収液が水スラリ
ーとしてシャワー状に流下、循環され、硫黄酸化物を含
む排ガスと気液接触し硫黄酸化物は亜硫酸マグネシウム
や酸性亜硫酸マグネシウムとして吸収・固定される。脱
硫塔1における水酸化マグネシウムと亜硫酸ガスとの反
応および酸化槽3での反応は前述の式(1)−(6)で
表される。
The mixture of magnesium hydroxide and gypsum regenerated in the double decomposition tank 4 is introduced into the desulfurization tower 1, and the desulfurization tower absorption liquid containing magnesium hydroxide is circulated in the form of a shower as a water slurry. Gas and liquid contact with exhaust gas containing sulfur oxides, and the sulfur oxides are absorbed and fixed as magnesium sulfite or acidic magnesium sulfite. The reaction between the magnesium hydroxide and the sulfur dioxide gas in the desulfurization tower 1 and the reaction in the oxidation tank 3 are represented by the above-mentioned formulas (1) to (6).

【0033】脱硫塔1内では式(1)−(3)によって
亜硫酸マグネシウムおよび酸性亜硫酸マグネシウムが生
成するため、その濃度によって定まるCODが吸収液中
の硫酸マグネシウム濃度によって定まる値以上にならな
いよう酸化槽3から酸化槽処理液を戻し希釈する。希釈
と同時に脱硫塔1の底部からは酸素を含むガスを吹き込
み上記反応式(1),(2)および(3)により生成し
た亜硫酸マグネシウムおよび酸性亜硫酸マグネシウムの
一部は酸化槽3での反応と同様に脱硫塔内で酸化され易
溶性の硫酸マグネシウムに変換される。この操作は、排
ガス中の亜硫酸ガス濃度が高い場合は特に必要である。
In the desulfurization tower 1, magnesium sulfite and acidic magnesium sulfite are formed by the formulas (1) to (3), so that the COD determined by the concentrations does not exceed the value determined by the magnesium sulfate concentration in the absorbing solution. The oxidation tank treatment liquid is returned from step 3 and diluted. At the same time as the dilution, a gas containing oxygen is blown from the bottom of the desulfurization tower 1 and a part of the magnesium sulfite and the acidic magnesium sulfite generated by the above-mentioned reaction formulas (1), (2) and (3) are reacted with the reaction in the oxidation tank 3. Similarly, it is oxidized in the desulfurization tower and converted into easily soluble magnesium sulfate. This operation is particularly necessary when the sulfur dioxide gas concentration in the exhaust gas is high.

【0034】酸化槽で処理された液は複分解槽4に送ら
れ水酸化カルシウム供給タンク5から供給される水酸化
カルシウムと反応し硫酸マグネシウムは水酸化マグネシ
ウムと二水石膏に変換され、再び脱硫塔に返送される。
この反応を式(7)に示す。
The liquid treated in the oxidation tank is sent to a double decomposition tank 4 and reacts with calcium hydroxide supplied from a calcium hydroxide supply tank 5 to convert magnesium sulfate into magnesium hydroxide and gypsum. Will be returned to
This reaction is shown in equation (7).

【0035】 MgSO4 +Ca(OH)2 +2H2 O =Mg(OH)2 +CaSO4 ・2H2 O (7) 複分解槽4で再生された水酸化マグネシウムを、同時に
生じた二水石膏から分離せずに脱硫塔1に返送するた
め、脱硫塔吸収液は水酸化マグネシウム、二水石膏、水
酸化マグネシウムと排気ガス中に含まれる亜硫酸ガスと
の反応物である亜硫酸マグネシウム、酸性亜硫酸マグネ
シウムおよび硫酸、硫酸マグネシウムとの混合溶液とな
る。空気を吹き込んで亜硫酸マグネシウムや酸性亜硫酸
マグネシウムを硫酸マグネシウムに変換するとき、副生
する硫酸のため処理液のpHは低くなり、亜硫酸ガスの
吸収効率が低下する。また、亜硫酸石膏は二水石膏より
その溶解度が小さいので、吸収液のpHおよびCODの
条件次第では吸収液中のカルシウムイオンと亜硫酸イオ
ンとから亜硫酸石膏が生成し析出する可能性がある。亜
硫酸石膏の析出は、二水石膏の結晶性を阻害し、かつ、
品質を著しく低下させる。二水石膏の濾過性を良好に保
ち装置の操業を安定的に可能とするためには、亜硫酸石
膏の析出を防ぐ必要がある。
MgSO 4 + Ca (OH) 2 + 2H 2 O = Mg (OH) 2 + CaSO 4 .2H 2 O (7) The magnesium hydroxide regenerated in the double decomposition tank 4 is not separated from the gypsum produced simultaneously. To be returned to the desulfurization tower 1, the desulfurization tower absorption liquid is magnesium hydroxide, dihydrate gypsum, magnesium sulfite which is a reaction product of magnesium hydroxide and sulfur dioxide gas contained in exhaust gas, magnesium acid sulfite and sulfuric acid, sulfuric acid, It becomes a mixed solution with magnesium. When air is blown to convert magnesium sulfite or acidic magnesium sulfite into magnesium sulfate, the pH of the treatment liquid is reduced due to by-produced sulfuric acid, and the sulfur dioxide gas absorption efficiency is reduced. Further, gypsum sulfite has a lower solubility than gypsum gypsum, and depending on the pH and COD conditions of the absorbing solution, calcium sulfite and sulfite ions in the absorbing solution may form and precipitate gypsum. Precipitation of sulfite gypsum inhibits the crystallinity of gypsum dihydrate, and
Significantly degrades quality. In order to maintain the filterability of gypsum and maintain the operation of the apparatus stably, it is necessary to prevent the precipitation of gypsum.

【0036】亜硫酸石膏の析出を防ぎ、脱硫率を損なわ
ないpHおよびCODの最適範囲を図示すると図3のよ
うになる。すなわち、亜硫酸石膏の析出を防ぐために
は、脱硫塔吸収液のpHは5.5−7.0、CODは吸
収液中の硫酸マグネシウムの濃度により異なるが、図3
に示すとおり硫酸マグネシウム濃度が5重量%の場合1
500mg/1以下とし、硫酸マグネシウム量が1重量
%の場合600mg/l以下とする必要がある。なお、
図3は二水石膏が飽和した状態でのCODを示してい
る。図3に示す硫酸マグネシウム濃度によって定まるC
OD以下では飽和している二水石膏に起因する亜硫酸石
膏の析出はない。
FIG. 3 shows the optimum ranges of pH and COD which prevent the precipitation of gypsum sulfite and do not impair the desulfurization rate. That is, in order to prevent the precipitation of gypsum, the pH of the desulfurization tower absorption solution is 5.5-7.0, and the COD varies depending on the concentration of magnesium sulfate in the absorption solution.
As shown in the figure, when the magnesium sulfate concentration is 5% by weight
When the amount of magnesium sulfate is 1% by weight, the content needs to be 600 mg / l or less. In addition,
FIG. 3 shows the COD when the gypsum is saturated. C determined by the concentration of magnesium sulfate shown in FIG.
Below OD, there is no precipitation of sulfite gypsum due to saturated gypsum.

【0037】亜硫酸イオンと酸性亜硫酸イオンとは両者
併せてCODとして示されるが、亜硫酸イオンは式
(2)に示すように亜硫酸ガスの吸収能力があるが酸性
亜硫酸イオンは亜硫酸ガスの吸収能力はない。亜硫酸イ
オンと酸性亜硫酸イオンとは平衡にあり、pHの低い場
合には酸性亜硫酸イオンが優勢であり、pHが高い状態
で亜硫酸イオンが優勢となる。pHが低くなる原因はH
SO3 -の増加にある(酸化によって硫酸に変化すること
も含む)。このためpHが低くなりすぎることは亜硫酸
ガスの吸収のためには好ましくない。
The sulfite ion and the acid sulfite ion are both indicated as COD. The sulfite ion has an ability to absorb sulfur dioxide gas as shown in the formula (2), but the acid sulfite ion has no ability to absorb sulfur dioxide gas. . The sulfite ion and the acid sulfite ion are in equilibrium. When the pH is low, the acid sulfite ion is dominant, and when the pH is high, the sulfite ion is dominant. The cause of the low pH is H
SO 3 - is increasing (including changing the sulfuric acid by oxidation). For this reason, an excessively low pH is not preferable for absorption of sulfurous acid gas.

【0038】図3に示すように脱硫塔吸収液のpHとC
ODの許容範囲は吸収液中の硫酸マグネシウム濃度によ
って変動する。CODは硫酸マグネシウム濃度に対する
許容範囲で上限値として示されている。硫酸マグネシウ
ムの濃度は1−10重量%の範囲で調整可能であるが、
一般的に3−8重量%が採用されている。CODの設定
値は硫酸マグネシウム濃度で定まるため、硫酸マグネシ
ウム濃度を一定に保つことによってCODの制御も容易
になる。
As shown in FIG. 3, the pH and C
The allowable range of OD varies depending on the concentration of magnesium sulfate in the absorbing solution. COD is shown as an upper limit in the allowable range for magnesium sulfate concentration. The concentration of magnesium sulfate can be adjusted in the range of 1-10% by weight,
Generally, 3-8% by weight is employed. Since the set value of COD is determined by the concentration of magnesium sulfate, controlling the COD becomes easy by keeping the concentration of magnesium sulfate constant.

【0039】脱硫塔吸収液のpH、硫酸マグネシウム濃
度およびCODを変動させる要因は排ガス中に含まれる
硫黄酸化物の量、複分解工程から返送されてくる水酸化
マグネシウム量、補充用の水酸化マグネシウム量、空気
吹き込み量、酸化工程への抜き出し量などである。これ
らの量が一定の条件では脱硫塔吸収液のpH、硫酸マグ
ネシウム濃度およびCODは疑似平衡状態になってい
る。
Factors that change the pH, magnesium sulfate concentration and COD of the desulfurization tower absorption liquid are the amount of sulfur oxide contained in the exhaust gas, the amount of magnesium hydroxide returned from the metathesis process, and the amount of magnesium hydroxide for replenishment. , The amount of air blown, the amount extracted to the oxidation step, and the like. Under the conditions where these amounts are constant, the pH, magnesium sulfate concentration and COD of the desulfurization column absorption liquid are in a pseudo equilibrium state.

【0040】このような脱硫塔吸収液に関わる制約下、
高濃度の亜硫酸ガスを含む排ガスを処理すると脱硫塔吸
収液中の亜硫酸イオン、酸性亜硫酸イオンの濃度が高く
なり、吸収液のCODは大きな値となり、亜硫酸石膏の
生成が促進される。CODを低下させるためには、吸収
液を希釈する、生成した亜硫酸イオン・酸性亜硫酸イオ
ンを酸素を含むガスを供給することで酸化させるなどの
手段をとってCODを所定の値以下に減少させる必要が
ある。
Under such restrictions on the desulfurization tower absorption liquid,
When an exhaust gas containing a high concentration of sulfurous acid gas is treated, the concentration of sulfite ions and acidic sulfite ions in the desulfurization tower absorption liquid increases, the COD of the absorption liquid becomes large, and the production of gypsum sulfite is promoted. In order to reduce the COD, it is necessary to reduce the COD to a predetermined value or less by taking measures such as diluting the absorbing solution and oxidizing the generated sulfite ion / acid sulfite ion by supplying a gas containing oxygen. There is.

【0041】一般的には酸素を含むガスを所定量供給し
ながら酸化工程処理液を一部戻して希釈する方法が採ら
れる。
In general, a method is employed in which the treatment liquid for the oxidation step is partially returned and diluted while supplying a predetermined amount of gas containing oxygen.

【0042】本願発明は、脱硫塔吸収液と排気ガスとが
接触し、吸収液のCODが一番高くなった時点で希釈す
ることが排ガス量(G)と吸収液量(L)との比である
L/Gを小さくさせるため一番効果的であることから本
発明に至ったものである。
According to the present invention, the ratio between the amount of exhaust gas (G) and the amount of absorbent (L) is determined by the fact that the desulfurization tower absorbent and the exhaust gas come into contact with each other and the COD of the absorbent reaches the highest level. Therefore, the present invention is the most effective for reducing L / G, which is the present invention.

【0043】脱硫塔1の構造は発明1でも発明2でも変
わることはない。また、脱硫塔1内の反応、吸収液の循
環量、希釈量に関する考察も基準となるCODの値が異
なるだけで同様であり、繰り返しの説明となるため割愛
する。
The structure of the desulfurization tower 1 does not change between Invention 1 and Invention 2. Further, the considerations regarding the reaction in the desulfurization tower 1, the circulation amount of the absorbing solution, and the dilution amount are the same except that the reference COD value is different.

【0044】[0044]

【実施例】以下実施例でより詳細に本願発明を説明す
る。
The present invention will be described in more detail with reference to the following examples.

【0045】実施例1 図6に示すプロセスにおいて、図1に示した脱硫塔を用
いて脱硫試験を実施した。
Example 1 In the process shown in FIG. 6, a desulfurization test was performed using the desulfurization tower shown in FIG.

【0046】図1に示すように脱硫塔はトレイが3段設
けられ上下4つの区画に分けられ、区画11からCOD
3,000mg/lの水酸化マグネシウムを含む吸収液
が1,400m3 /hでスプレーされ循環流下してい
る。吸収液中の硫酸マグネシウム濃度は8重量%であっ
た。脱硫塔上部から亜硫酸ガス3,500ppmを含む
排ガス175,000Nm3 /hが導入され吸収液と並
流で接触させた。脱硫塔底部の吸収液のCODを3,0
00mg/lに保つため脱硫塔底部から空気が2,40
0m3 /hで導入された。脱硫塔の吸収液の一部を酸化
槽へ抜きだし、空気を吹き込み吸収液中のCODをほぼ
0まで酸化し、硫酸マグネシウムを主体とする酸化液を
得た。酸化槽から脱硫塔への戻り液36.4m3 /hを
区画12に導入し、吸収液を希釈してCOD値を下げ
た。吸収液のCODは排ガス中の亜硫酸ガスを吸収する
ことにより増加し、最下段の区画14では3,140m
g/lであった。残りの酸化液はSS分を除去後、放流
された。
As shown in FIG. 1, the desulfurization tower has three trays and is divided into four upper and lower sections.
An absorbing solution containing 3,000 mg / l magnesium hydroxide is sprayed at 1,400 m 3 / h and circulates down. The magnesium sulfate concentration in the absorbing solution was 8% by weight. An exhaust gas containing 175,000 Nm 3 / h containing 3,500 ppm of sulfurous acid gas was introduced from the upper part of the desulfurization tower, and was brought into contact with the absorbing liquid in a parallel flow. The COD of the absorption liquid at the bottom of the desulfurization tower is 3,0
Air from the bottom of the desulfurization tower to maintain
It was introduced at 0 m 3 / h. A part of the absorption solution in the desulfurization tower was drawn out to an oxidation tank, and air was blown into the solution to oxidize COD in the absorption solution to almost 0, thereby obtaining an oxidizing solution mainly composed of magnesium sulfate. 36.4 m 3 / h of the return liquid from the oxidation tank to the desulfurization tower was introduced into the section 12, and the absorption liquid was diluted to lower the COD value. The COD of the absorbing solution is increased by absorbing sulfurous acid gas in the exhaust gas.
g / l. The remaining oxidizing solution was discharged after removing SS.

【0047】本例でのL/Gは約8.0である。脱硫塔
下部から排出される処理ガス中の亜硫酸ガスは100p
pmであり、脱硫効率は97%であった。
L / G in this example is about 8.0. The sulfur dioxide gas in the processing gas discharged from the lower part of the desulfurization tower is 100p
pm, and the desulfurization efficiency was 97%.

【0048】比較例1 図6に示すプロセスにおいて、図4に示した脱硫塔を用
いて脱硫試験を実施した。この脱硫塔においては、酸化
槽処理液が塔底に導入されるところが前記実施例の図1
の塔と異なる。
Comparative Example 1 In the process shown in FIG. 6, a desulfurization test was carried out using the desulfurization tower shown in FIG. In this desulfurization tower, the place where the treatment liquid for the oxidation tank is introduced into the bottom of the tower is the same as in FIG.
Different from the tower.

【0049】区画11からCOD3,000mg/lで
水酸化マグネシウムを含む吸収液が1,930m3 /h
でスプレー状に循環流下させた。吸収液中の硫酸マグネ
シウムの濃度は8重量%であった。脱硫塔上部から亜硫
酸ガス3,500ppmを含む排ガス175,000N
3 /hが導入され吸収液と並流で接触させた。
The absorption liquid containing 3,000 mg / l of COD and containing magnesium hydroxide from the section 11 was 1,930 m 3 / h
And circulated down in the form of a spray. The concentration of magnesium sulfate in the absorbing solution was 8% by weight. 175,000N exhaust gas containing 3,500 ppm of sulfurous acid gas from the top of the desulfurization tower
m 3 / h was introduced and brought into contact with the absorbing solution in cocurrent.

【0050】吸収液のCODを3,000mg/lに保
つため脱硫塔底部から空気が2,400m3 /hで導入
されるとともに、酸化槽処理液が36.4m3 /hで導
入された。
In order to keep the COD of the absorbing solution at 3,000 mg / l, air was introduced from the bottom of the desulfurization tower at 2,400 m 3 / h, and the treatment liquid for the oxidation tank was introduced at 36.4 m 3 / h.

【0051】この条件で吸収液のCODはスプレー時で
は3,000mg/lであるが排ガス中の亜硫酸ガスを
吸収することにより増加し、区画14でのCODは3,
160mg/lであった。
Under these conditions, the COD of the absorbing solution is 3,000 mg / l at the time of spraying, but increases by absorbing sulfurous acid gas in the exhaust gas.
It was 160 mg / l.

【0052】脱硫塔下部から排出される処理ガス中の亜
硫酸ガスは100ppmで、脱硫効率は97%となり、
実施例と同じであったが、L/Gは約11.0であり、
実施例と比べ約38%多く必要とした。
The sulfur dioxide in the processing gas discharged from the lower part of the desulfurization tower is 100 ppm, the desulfurization efficiency is 97%,
Same as Example, but L / G is about 11.0,
Approximately 38% more was required than in the example.

【0053】実施例2 図5に示すプロセスにおいて、図1に示した脱硫塔を用
いて実施した。図1に示すように脱硫塔はトレイが3段
設けられ上下4つの区画に分けられ、区画11からCO
D750mg/lの水酸化マグネシウムを含む吸収液が
840m 3 /hでスプレーされ循環流下している。吸収
液中の硫酸マグネシウム濃度は6重量%であった。脱硫
塔上部から亜硫酸ガス3,400ppmを含む排ガス1
00,000Nm3/hが導入され吸収液と並流で接触
させた。脱硫塔の吸収液の一部を酸化槽へ抜きだし、空
気を吹き込み吸収液中のCODをほぼ0まで酸化し、硫
酸マグネシウムを主体とする酸化液を得た。酸化槽から
脱硫塔への戻り液90m3 /hを区画12に導入し、吸
収液を希釈しCOD値を下げた。吸収液のCODは排ガ
ス中の亜硫酸ガスを吸収することにより増加し、最下段
の区画14では830mg/lであった。塔底吸収液の
COD750mg/l以下に保つため脱硫塔底部から空
気が1,259Nm3 /hで導入された。酸化液の残り
は複分解槽へ送られた。複分解槽ではpHが9−11と
なるように消石灰が供給され、硫酸マグネシウムとの反
応の結果、水酸化マグネシウムと石膏の混合スラリーを
得た。この混合スラリー中の水酸化マグネシウムはpH
調節用として脱流塔及び酸化槽へ供給され、石膏は吸収
液中から石膏分離器を経て回収された。
Example 2 In the process shown in FIG. 5, the desulfurization tower shown in FIG. 1 was used.
It was carried out. As shown in Fig. 1, the desulfurization tower has three trays
It is provided and divided into four upper and lower sections.
Absorbent solution containing D750mg / l magnesium hydroxide
840m Three / H and is circulating down. absorption
The magnesium sulfate concentration in the liquid was 6% by weight. Desulfurization
Exhaust gas 1 containing 3,400 ppm of sulfurous acid gas from the top of the tower
00,000NmThree/ H is introduced and comes into contact with the absorbing liquid in parallel
I let it. Drain a part of the absorption liquid in the desulfurization tower into the oxidation tank,
Air to oxidize COD in the absorbent to almost 0,
An oxidizing solution mainly composed of magnesium acid was obtained. From the oxidation tank
90m return liquid to desulfurization towerThree / H into the compartment 12 and
The collected liquid was diluted to lower the COD value. COD of absorption liquid is exhaust gas
Increased by absorbing sulfurous acid gas in the
In the section 14 of, it was 830 mg / l. Of bottom liquid
Empty from the bottom of the desulfurization tower to keep COD at 750 mg / l or less.
I feel 1,259NmThree / H. Oxidation liquid residue
Was sent to the double decomposition tank. In the double decomposition tank, the pH is 9-11.
Slaked lime is supplied so that
As a result, a mixed slurry of magnesium hydroxide and gypsum
Obtained. Magnesium hydroxide in this mixed slurry has pH
Gypsum is supplied to the outflow tower and oxidation tank for adjustment, and gypsum is absorbed
It was recovered from the liquid via a gypsum separator.

【0054】本例でのL/Gは約8.4である。脱硫塔
下部から排出される処理ガス中の亜硫酸ガスは100p
pmであり、脱硫効率は97%であった。
L / G in this example is about 8.4. The sulfur dioxide gas in the processing gas discharged from the lower part of the desulfurization tower is 100p
pm, and the desulfurization efficiency was 97%.

【0055】比較例2 図6に示すプロセスにおいて、図4に示した脱硫塔を用
いて実施した。区画11からCOD750mg/lで水
酸化マグネシウムを含む吸収液が1,130m3 /hで
スプレー状に循環流下させた。吸収液中の硫酸マグネシ
ウムの濃度は6重量%であった。脱硫塔上部から亜硫酸
ガス3,400ppmを含む排ガス100,000Nm
3 /hが導入され吸収液と並流で接触させた。
Comparative Example 2 The process shown in FIG. 6 was performed using the desulfurization tower shown in FIG. An absorption liquid containing magnesium hydroxide at a COD of 750 mg / l was circulated from the section 11 in a spray form at 1,130 m 3 / h. The concentration of magnesium sulfate in the absorbing solution was 6% by weight. 100,000 Nm of exhaust gas containing 3,400 ppm of sulfurous acid gas from the top of the desulfurization tower
3 / h were introduced and brought into contact with the absorbing solution in cocurrent.

【0056】吸収液のCODを750mg/lに保つた
め脱硫塔底部から空気が1,250Nm3 /hで導入さ
れるとともに、酸化槽処理液が90m3 /hで導入され
た。この条件で吸収液のCODはスプレー時では750
mg/lであるが、排ガス中の亜硫酸ガスを吸収するこ
とにより増加し、区画14でのCODは850mg/l
であった。
In order to maintain the COD of the absorbing solution at 750 mg / l, air was introduced from the bottom of the desulfurization tower at 1,250 Nm 3 / h, and the treatment liquid for the oxidation tank was introduced at 90 m 3 / h. Under these conditions, the COD of the absorbing solution is 750 at the time of spraying.
mg / l, but increased by absorbing sulfurous acid gas in the exhaust gas, and the COD in the compartment 14 was 850 mg / l.
Met.

【0057】脱硫塔下部から排出される処理ガス中の亜
硫酸ガスは100ppmで、脱硫効率は97%となり、
実施例と同じであったが、L/Gは約11.3であり、
実施例2と比べ約35%の増加を必要とした。
The sulfur dioxide gas in the processing gas discharged from the lower part of the desulfurization tower is 100 ppm, the desulfurization efficiency is 97%,
Same as Example, but L / G is about 11.3,
It required an increase of about 35% compared to Example 2.

【0058】[0058]

【発明の効果】本発明の方法によれば、トレイ、網など
で区画した脱硫塔の区画内に酸化槽処理液の一部を導入
して希釈してCODを下げているため塔底に導入する従
来の方法に比べ吸収液の循環量と処理量ガスの比L/G
を大巾に下げることができる。
According to the method of the present invention, a part of the treatment liquid in the oxidation tank is introduced into the section of the desulfurization tower partitioned by trays, nets, etc. to dilute and reduce the COD. The ratio L / G of the circulating amount of the absorbing solution and the gas to be processed is different from that of the conventional method.
Can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法が適用される脱硫装置の脱硫塔の
一例の概念図である。
FIG. 1 is a conceptual diagram of an example of a desulfurization tower of a desulfurization apparatus to which the method of the present invention is applied.

【図2】吸収液中の温度およびpHとCODとの関係を
示す図である。
FIG. 2 is a diagram showing a relationship between temperature and pH in an absorbing solution and COD.

【図3】吸収液中の硫酸マグネシウム量とCODの関係
を示す図である。
FIG. 3 is a graph showing the relationship between the amount of magnesium sulfate in the absorbing solution and COD.

【図4】従来の脱硫塔の一例を示す概念図である。FIG. 4 is a conceptual diagram showing an example of a conventional desulfurization tower.

【図5】従来の脱硫プロセスの全体を示す概念図であ
る。
FIG. 5 is a conceptual diagram showing the entire conventional desulfurization process.

【図6】従来の放流法プロセスの全体を示す概念図であ
る。
FIG. 6 is a conceptual diagram showing an entire conventional discharge process.

【符号の説明】[Explanation of symbols]

1 脱硫塔 2 石膏分離器 3 酸化槽 4 複分解槽 5 水酸化カルシウム供給タンク 6 水酸化マグネシウム供給タンク 11−14 脱硫塔区画 G1 脱硫前の排ガス G2 脱硫後の排ガス pH pH測定装置 COD 化学的酸素要求量測定装置 DESCRIPTION OF SYMBOLS 1 Desulfurization tower 2 Gypsum separator 3 Oxidation tank 4 Double decomposition tank 5 Calcium hydroxide supply tank 6 Magnesium hydroxide supply tank 11-14 Desulfurization tower section G1 Exhaust gas before desulfurization G2 Exhaust gas after desulfurization pH pH measuring device COD Chemical oxygen demand Quantity measuring device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D002 AA02 BA02 BA05 CA01 CA02 DA05 DA06 DA12 EA02 EA03 EA07 EA11 EA12 EA13 EA14 FA03 GB01 GB06 GB09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D002 AA02 BA02 BA05 CA01 CA02 DA05 DA06 DA12 EA02 EA03 EA07 EA11 EA12 EA13 EA14 FA03 GB01 GB06 GB09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硫黄酸化物を含む排ガスを脱硫塔にてマ
グネシウム系脱硫剤を含む吸収液と接触させ排ガス中に
含まれる硫黄酸化物を吸収除去する脱硫工程と、脱硫工
程後の処理液を酸素を含むガスで処理する酸化工程を含
み、脱硫工程吸収液のpHを5.5−7.0の範囲と
し、化学的酸素要求量を吸収液の温度または吸収液中の
硫酸マグネシウム濃度で定まる上限値を超えない範囲で
排ガスの脱硫を行う脱硫方法において、脱硫塔を縦型と
し、脱硫塔内を吸収液が滞留・通過可能なトレイでもっ
て複数の区画に分割し、最上部の区画から吸収液をシャ
ワー状に流下させ、排ガスと吸収液とを並流で接触さ
せ、酸化工程処理液の一部を前記トレイで上下に区画さ
れたいずれかの区画内へ供給することを特徴とする脱硫
方法。
1. A desulfurization step of contacting an exhaust gas containing sulfur oxides with an absorbent containing a magnesium-based desulfurizing agent in a desulfurization tower to absorb and remove sulfur oxides contained in the exhaust gas. Including an oxidation step of treating with a gas containing oxygen, the pH of the desulfurization step absorbent is set in the range of 5.5 to 7.0, and the chemical oxygen demand is determined by the temperature of the absorbent or the concentration of magnesium sulfate in the absorbent. In the desulfurization method of performing desulfurization of exhaust gas within the range not exceeding the upper limit, the desulfurization tower is vertical, the interior of the desulfurization tower is divided into a plurality of sections with a tray that allows the liquid to stay and pass, and the top section is The absorption liquid is caused to flow down in a shower shape, the exhaust gas and the absorption liquid are brought into contact in parallel, and a part of the oxidation process treatment liquid is supplied into one of the upper and lower compartments of the tray. Desulfurization method.
【請求項2】 前記硫黄酸化物を吸収除去する脱硫工程
と、脱硫工程後の酸化工程に加えて、酸化工程後の処理
液を塩基性カルシウム化合物と反応させる複分解工程、
および複分解工程で再生した水酸化マグネシウムを含む
複分解工程後のスラリーを、二水石膏を含む状態で脱硫
工程または/および酸化工程に返送し、脱硫工程または
/および酸化工程の処理液から二水石膏を取り出す石膏
分離工程をさらに含む請求項1に記載の脱硫方法。
2. A desulfurization step of absorbing and removing the sulfur oxide, and a metathesis step of reacting the treatment solution after the oxidation step with a basic calcium compound in addition to the oxidation step after the desulfurization step.
And the slurry after the metathesis step containing magnesium hydroxide regenerated in the metathesis step is returned to the desulfurization step or / and the oxidation step in a state containing the gypsum, and the dihydrate gypsum from the treatment liquid in the desulfurization step or / and the oxidation step The desulfurization method according to claim 1, further comprising a gypsum separation step of taking out gypsum.
JP10255597A 1998-09-09 1998-09-09 Desulfurization of waste gas Pending JP2000084351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255597A JP2000084351A (en) 1998-09-09 1998-09-09 Desulfurization of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255597A JP2000084351A (en) 1998-09-09 1998-09-09 Desulfurization of waste gas

Publications (1)

Publication Number Publication Date
JP2000084351A true JP2000084351A (en) 2000-03-28

Family

ID=17280943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255597A Pending JP2000084351A (en) 1998-09-09 1998-09-09 Desulfurization of waste gas

Country Status (1)

Country Link
JP (1) JP2000084351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444935C (en) * 2007-02-14 2008-12-24 杭州能源环境工程有限公司 Sewage biological desulphurizing device
CN103480257A (en) * 2013-08-27 2014-01-01 新乡市胜利环保有限责任公司 Resistance-free desulfurization tower
CN113082962A (en) * 2021-04-21 2021-07-09 江苏联慧资源环境科技有限公司 Secondary mixed magnesium method flue gas desulfurization process and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444935C (en) * 2007-02-14 2008-12-24 杭州能源环境工程有限公司 Sewage biological desulphurizing device
CN103480257A (en) * 2013-08-27 2014-01-01 新乡市胜利环保有限责任公司 Resistance-free desulfurization tower
CN113082962A (en) * 2021-04-21 2021-07-09 江苏联慧资源环境科技有限公司 Secondary mixed magnesium method flue gas desulfurization process and device
CN113082962B (en) * 2021-04-21 2023-01-17 江苏联慧资源环境科技有限公司 Secondary mixed magnesium method flue gas desulfurization process and device

Similar Documents

Publication Publication Date Title
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
JP3573950B2 (en) Exhaust gas desulfurization method
KR0159827B1 (en) Method for desulfurizing exhaust gas
TW201517975A (en) Desulfurization method and desulfurization device for gas containing sulfur oxides
JP3751340B2 (en) Exhaust gas desulfurization method
JP2000084351A (en) Desulfurization of waste gas
JP3836048B2 (en) Wet flue gas desulfurization method and apparatus
JP3174665B2 (en) Flue gas desulfurization method
JP3504427B2 (en) Exhaust gas desulfurization method
JPH091160A (en) Removing method of oxidizing substance and wet type flue gas desulfurization equipment
JP3068371B2 (en) Method and apparatus for desulfurizing gas containing high concentration sulfurous acid gas
JP3902861B2 (en) Exhaust gas desulfurization method
JP3532028B2 (en) Exhaust gas desulfurization method
JP3704181B2 (en) Exhaust gas desulfurization method
JPS631090B2 (en)
JP3752133B2 (en) Absorbent replenishment method in flue gas desulfurization method
JP2592760B2 (en) How to treat incinerator waste gas
JPS6321523B2 (en)
JPS6018449B2 (en) Method for removing sulfur oxides from exhaust gas
JPS62193628A (en) Wet desulfurizing method using magnesium compound
JPH09225258A (en) Desulferizing method of exhaust gas
JPS6115933Y2 (en)
CA1077240A (en) Process and apparatus for the purification of flue and other waste gas
JPH0536087B2 (en)
JP2567023B2 (en) Method of removing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070509