JPH09225258A - Desulferizing method of exhaust gas - Google Patents

Desulferizing method of exhaust gas

Info

Publication number
JPH09225258A
JPH09225258A JP8038274A JP3827496A JPH09225258A JP H09225258 A JPH09225258 A JP H09225258A JP 8038274 A JP8038274 A JP 8038274A JP 3827496 A JP3827496 A JP 3827496A JP H09225258 A JPH09225258 A JP H09225258A
Authority
JP
Japan
Prior art keywords
desulfurization
treatment liquid
magnesium
metathesis
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8038274A
Other languages
Japanese (ja)
Other versions
JP3728000B2 (en
Inventor
Kenichi Nakagawa
健一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP03827496A priority Critical patent/JP3728000B2/en
Publication of JPH09225258A publication Critical patent/JPH09225258A/en
Application granted granted Critical
Publication of JP3728000B2 publication Critical patent/JP3728000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To desulferize exhaust gas by a double alkali method with simple and small-sized equipment by supplying an excess quantity of treating liquid to a double decomposition process, and also adding Ca(OH)2 in the double decomposition process such that pH in a desulferizing process becomes constant. SOLUTION: A desulferizing process treating liquid is fed from a desulferizing tower 1 to an oxidation tank 3 with a pump 2 and piping L2, and aerated with air to oxidize and produce MgSO4 and a small quantity of H2 SO4 aqueous solution. The oxidation process treating liquid is fed to a double decomposition tank 4 with piping L3 in more excess than a theoretical flow rate. A water slurry of Ca(OH)2 is added to the double decomposition tank 4 from a Ca(OH)2 supply tank 5 with piping L4 under being controlled such that pH of the treating liquid in the desulferizing tower 1 becomes 5.9. Then, the MgSO4 and H2 SO4 are reacted with Mg(OH)2 , and solid particles of gypsum dihydrate and Mg(OH)2 are produced. Thus, absorption efficiency of sulfur oxide with the treating liquid becomes high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石油や石炭等の燃
焼排ガスのような硫黄酸化物を含有する排ガスの脱硫方
法に関する。
TECHNICAL FIELD The present invention relates to a method for desulfurizing exhaust gas containing sulfur oxides such as combustion exhaust gas of petroleum and coal.

【0002】[0002]

【従来の技術】各種の排ガスの湿式脱硫方法の代表的な
ものとして、石灰石膏法が知られている。この方法は、
脱硫塔へ炭酸カルシウムや水酸化カルシウムを吸収剤と
して直接加えるため、処理液中にカルシウムイオンが溶
解している。そのため、これが脱硫塔内で硫黄酸化物等
と反応すると、二水石膏、二水亜硫酸カルシウム、炭酸
カルシウム等の析出物からなるスケールが脱硫塔や配管
内で生じるため、円滑な運転の維持が困難であるととも
にその除去に大変手間がかかった。また、水酸化カルシ
ウムは本来二分子の亜硫酸ガスを吸収可能な脱硫剤であ
るが、一分子の亜硫酸ガスを吸収した脱硫剤である亜硫
酸カルシウムは、同様な脱硫剤である亜硫酸マグネシウ
ムと比較すると大幅に溶解度が低いため、処理液の硫黄
酸化物の吸収効率が低く、脱硫塔や循環ポンプ等設備の
大型化を招き、経済性の面でも問題があった。
2. Description of the Related Art The limestone gypsum method is known as a typical method for wet desulfurization of various exhaust gases. This method
Since calcium carbonate or calcium hydroxide is directly added to the desulfurization tower as an absorbent, calcium ions are dissolved in the treatment liquid. Therefore, when this reacts with sulfur oxides etc. in the desulfurization tower, it is difficult to maintain smooth operation because scales composed of precipitates of gypsum dihydrate, calcium dihydrosulfite, calcium carbonate, etc. occur in the desulfurization tower and piping. However, it took a lot of time to remove it. In addition, calcium hydroxide is originally a desulfurizing agent that can absorb two molecules of sulfurous acid gas, but calcium sulfite, which is a desulfurizing agent that absorbs one molecule of sulfurous acid gas, is significantly larger than magnesium sulfite, which is a similar desulfurizing agent. Since the solubility is low, the absorption efficiency of the sulfur oxide in the treatment liquid is low, which leads to an increase in the size of equipment such as a desulfurization tower and a circulation pump, which is a problem in terms of economy.

【0003】一方、脱硫塔での硫黄酸化物の吸収を塩基
性ナトリウム、アンモニアあるいは塩基性マグネシウム
等の塩基性脱硫剤を使用して行い、脱硫塔外で生石灰を
用いて複分解を行なって脱硫剤を再生するダブルアルカ
リ法も知られている。ダブルアルカリ法はスケールの発
生が生じにくく、特に塩基性マグネシウムを脱硫剤とし
て用いる方法は、硫黄酸化物の吸収効率もよく、生成し
た亜硫酸マグネシウムの溶解度が大きく、吸収塔でのス
ケールの発生の少ない方法の一つである。しかし、塩基
性脱硫剤を用いるこの方法では、複分解工程で二水石膏
と水酸化マグネシウムという二種類の結晶が析出し、そ
の分離が容易ではないため、装置が複雑になるという問
題点があった。
On the other hand, the absorption of sulfur oxides in the desulfurization tower is carried out by using a basic desulfurization agent such as basic sodium, ammonia or basic magnesium, and the desulfurization agent is carried out outside the desulfurization tower by using a quick lime for metathesis. The double alkali method for regenerating is also known. The double alkali method is less likely to cause scale generation. Particularly, the method using basic magnesium as a desulfurizing agent also has a high absorption efficiency of sulfur oxides, has a high solubility of the generated magnesium sulfite, and has little scale generation in the absorption tower. It is one of the methods. However, in this method using a basic desulfurizing agent, two types of crystals, gypsum dihydrate and magnesium hydroxide, precipitate in the metathesis process, and their separation is not easy, so there is a problem that the device becomes complicated. .

【0004】また、石灰石膏法とダブルアルカリ法との
折衷的な方法として川崎マグネシウム石膏法が知られて
いる(実用公害防止技術集覧(1)、化学工業社出版、
p.14)。この方法は脱硫剤に水酸化マグネシウムと
水酸化カルシウムの混合スラリーを用いて脱硫工程で硫
黄酸化物を吸収させ、次いでこの処理液を硫酸によりp
Hを2.0−4.0に調整しつつ空気等により酸化する
ことにより硫酸マグネシウムと二水石膏を生成させ、沈
降分離工程と遠心分離器により二水石膏と硫酸マグネシ
ウム水溶液とに分離する。分離された硫酸マグネシウム
水溶液は水酸化マグネシウムと水酸化カルシウムの混合
スラリーが加えられる脱硫剤再生工程に循環供給され、
ここで混合スラリー中の水酸化カルシウムの一部と複分
解反応することにより水酸化マグネシウムと二水石膏が
生成し、これと残部の水酸化カルシウムを含む混合液は
脱硫剤として吸収工程へ循環供給される。しかし、この
方法は脱硫塔内に水酸化カルシウムまたは炭酸カルシウ
ムと二水石膏とを導く点では石灰石膏法と同じであり、
脱硫塔内や循環ポンプ・配管へのスケール付着が起こり
やすいという問題点は解消していない。
The Kawasaki magnesium gypsum method is known as an eclectic method of the lime gypsum method and the double alkali method (Practical pollution control technology list (1), published by Kagaku Kogyosha,
p. 14). In this method, a mixed slurry of magnesium hydroxide and calcium hydroxide is used as a desulfurizing agent to absorb sulfur oxides in a desulfurization process, and then the treatment liquid is treated with sulfuric acid to remove p
While adjusting H to 2.0-4.0, it is oxidized with air or the like to generate magnesium sulfate and gypsum dihydrate, and separated into gypsum dihydrate and an aqueous magnesium sulfate solution by a sedimentation separation step and a centrifuge. The separated magnesium sulfate aqueous solution is circulated and supplied to the desulfurizing agent regeneration step in which a mixed slurry of magnesium hydroxide and calcium hydroxide is added,
Here, a metathesis reaction with a part of the calcium hydroxide in the mixed slurry produces magnesium hydroxide and gypsum dihydrate, and a mixed liquid containing this and the balance calcium hydroxide is circulated and supplied to the absorption step as a desulfurizing agent. It However, this method is the same as the lime gypsum method in that it introduces calcium hydroxide or calcium carbonate and gypsum dihydrate into the desulfurization tower,
The problem that scale adheres easily to the desulfurization tower and to the circulation pump and piping has not been solved.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、処理
液の硫黄酸化物の吸収効率が高く、簡略かつ小型の設備
で実施可能な排ガスの脱硫方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas desulfurization method which has a high absorption efficiency of sulfur oxides in a treatment liquid and can be carried out by a simple and small-sized facility.

【0006】本発明の他の目的は、脱硫塔内や循環ポン
プ・配管へのスケールの付着や閉塞を阻止し、円滑な運
転が維持できる排ガスの脱硫方法を提供することにあ
る。
Another object of the present invention is to provide an exhaust gas desulfurization method capable of preventing the scale from adhering to or blocking the inside of the desulfurization tower or the circulation pump / pipe so that smooth operation can be maintained.

【0007】[0007]

【課題を解決するための手段】本発明者は、マグネシウ
ム系脱硫剤を使用するダブルアルカリ法におけるプロセ
スの簡略化につき鋭意検討した結果、従来は複分解工程
で得られた二水石膏と水酸化マグネシウムを分離して、
水酸化マグネシウムスラリーだけを脱硫塔へ戻していた
が、脱硫塔へ戻す処理液中に水酸化カルシウムが含まれ
ないようにすれば、二水石膏と水酸化マグネシウムを分
離せずに混合スラリーとして脱硫塔へ戻しても脱硫塔内
でスケールが発生せず、また脱硫工程での処理液のpH
を基準にして複分解工程で塩基性カルシウム化合物を添
加すれば、負荷変動があっても複分解工程以降に大容量
の緩衝槽を設けずに処理液を直接脱硫工程へ戻しても安
定した運転が可能であることを見い出し本発明を完成す
るに至った。
Means for Solving the Problems As a result of earnest studies on simplification of the process in the double alkali method using a magnesium-based desulfurizing agent, the present inventor has found that dihydrate gypsum and magnesium hydroxide conventionally obtained by a metathesis process. To separate the
Only the magnesium hydroxide slurry was returned to the desulfurization tower, but if calcium hydroxide is not included in the treatment liquid returned to the desulfurization tower, desulfurization is performed as a mixed slurry without separating gypsum dihydrate and magnesium hydroxide. No scale is generated in the desulfurization tower even when returned to the tower, and the pH of the treatment liquid in the desulfurization process
If a basic calcium compound is added in the metathesis process based on the standard, stable operation is possible even if the load changes and the process liquid is returned directly to the desulfurization process without providing a large-capacity buffer tank after the metathesis process. Therefore, the present invention has been completed.

【0008】すなわち、本発明は、硫黄酸化物を含む排
ガスをマグネシウム系脱硫剤を含む処理液と接触させ排
ガス中に含まれる硫黄酸化物を処理液中に吸収させる脱
硫工程と、脱硫工程処理液を酸素を含むガスと接触させ
処理液中のマグネシウム塩を硫酸マグネシウムに変換す
る酸化工程と、酸化工程処理液に塩基性カルシウム化合
物を添加し、処理液中の硫酸マグネシウムを水酸化マグ
ネシウムと二水石膏とに分解させる複分解工程とを有
し、複分解工程で得られた混合スラリーを脱硫工程に戻
すとともに、処理液から二水石膏を系外に取り出す脱硫
方法において、複分解工程へ供給する酸化工程処理液の
流量を硫黄酸化物の吸収量から算出される理論流量より
大きくし、かつ脱硫工程での処理液のpHが一定値を保
つように複分解工程で塩基性カルシウム化合物を添加す
ることを特徴とする排ガスの脱硫方法である。
That is, the present invention provides a desulfurization process in which an exhaust gas containing sulfur oxide is brought into contact with a treatment liquid containing a magnesium-based desulfurizing agent to absorb the sulfur oxide contained in the exhaust gas into the treatment liquid, and a desulfurization treatment liquid. And a step of oxidizing the magnesium salt in the treatment liquid into magnesium sulfate by contacting with a gas containing oxygen, and a basic calcium compound is added to the treatment liquid, and magnesium sulfate in the treatment liquid is mixed with magnesium hydroxide and dihydrate. In a desulfurization method that has a metathesis step of decomposing into gypsum and returns the mixed slurry obtained in the metathesis step to the desulfurization step, and in the desulfurization method of extracting dihydrate gypsum from the treatment liquid to the outside of the system, an oxidation step treatment The metathesis process is performed so that the flow rate of the liquid is larger than the theoretical flow rate calculated from the absorption amount of sulfur oxides, and the pH of the treatment liquid in the desulfurization process maintains a constant value. The basic calcium compound is a method for desulfurizing exhaust gas, characterized in that the addition.

【0009】[0009]

【発明の実施の形態】以下、本発明の排ガスの脱硫方法
について説明する。
The exhaust gas desulfurization method of the present invention will be described below.

【0010】本発明の排ガスの脱硫方法においては、硫
黄酸化物を含む排ガスは、脱硫工程においてマグネシウ
ム系脱硫剤を主成分として含む水溶液からなる処理液と
接触して、硫黄酸化物が処理液に吸収される。
In the method for desulfurizing exhaust gas of the present invention, the exhaust gas containing sulfur oxide is brought into contact with a treatment liquid consisting of an aqueous solution containing a magnesium-based desulfurizing agent as a main component in the desulfurization step, so that the sulfur oxide becomes the treatment liquid. Be absorbed.

【0011】複分解工程から脱硫工程へ戻される処理液
は、水酸化マグネシウムと二水石膏と微量の亜硫酸カル
シウムとを含み、少量の硫酸マグネシウムが溶解した混
合スラリーであるが、処理液中の水酸化マグネシウムは
脱硫剤として消費されるので、脱硫工程では水酸化マグ
ネシウム微粒子は消失している。
The treatment liquid returned from the metathesis process to the desulfurization process is a mixed slurry containing magnesium hydroxide, gypsum dihydrate and a trace amount of calcium sulfite, and a small amount of magnesium sulfate dissolved therein. Since magnesium is consumed as a desulfurizing agent, the magnesium hydroxide fine particles have disappeared in the desulfurization process.

【0012】脱硫工程に適した装置としては、これら気
液を効率良く接触させるような構造を持つ塔からなり、
脱硫剤を含む水溶液をノズルで噴霧し、これに対して向
流または並流でガスを流す型式のものが挙げられる。処
理液は二水石膏粗粒子を含んでいるので、ノズルは詰り
が生じないようなものであることが必要とされる。な
お、気液接触の効率向上のために充填物や棚段等を内部
に設置してもよい。
An apparatus suitable for the desulfurization process is a tower having a structure for efficiently contacting these gas and liquid,
An example is a type in which an aqueous solution containing a desulfurizing agent is sprayed with a nozzle and a gas is caused to flow therethrough in a countercurrent or a cocurrent. Since the treatment liquid contains gypsum dihydrate coarse particles, the nozzle is required to be such that clogging does not occur. In addition, in order to improve the efficiency of gas-liquid contact, a packing, a shelf, etc. may be installed inside.

【0013】脱硫工程を出る処理液(以下、「脱硫工程
処理液」と略)は、マグネシウム系脱硫剤水溶液と硫黄
酸化物が反応して生成した亜硫酸マグネシウム、亜硫酸
水素マグネシウムおよび硫酸マグネシウムが混在した組
成の水溶液であり、二水石膏が懸濁物として含まれてい
る。
The treatment liquid exiting the desulfurization process (hereinafter abbreviated as "desulfurization process treatment liquid") was a mixture of magnesium sulfite, magnesium hydrogen sulfite, and magnesium sulfate produced by the reaction of a magnesium-based desulfurizing agent aqueous solution with sulfur oxides. An aqueous solution of the composition, containing gypsum dihydrate as a suspension.

【0014】脱硫工程では、通常、処理液の温度は50
〜60℃とされる。また、脱硫工程では、亜硫酸マグネ
シウムの水への溶解度が低いので、その析出を防止する
ため、空気等を吹き込み酸化して水への溶解度の高い硫
酸マグネシウムとし、亜硫酸マグネシウムの濃度をその
溶解度以下に制御するのが一般的である。空気等の吹き
込みをせずに、脱硫工程での亜硫酸マグネシウム濃度を
その溶解度以下に制御する方法として、後述の酸化工程
を出る処理液の一部を脱硫工程に循環し、脱硫工程での
亜硫酸マグネシウム濃度を希釈する方法も知られてい
る。なお、脱硫工程における処理液のpHについては、
5.0〜6.2とされるが、複分解工程で添加する塩基
性カルシウム化合物との関係については後述する。
In the desulfurization step, the temperature of the treatment liquid is usually 50.
It is set to -60 ° C. Further, in the desulfurization step, since the solubility of magnesium sulfite in water is low, in order to prevent its precipitation, blowing in air or the like to oxidize it to give magnesium sulfate having high solubility in water, and reduce the concentration of magnesium sulfite to the solubility or less. It is generally controlled. As a method of controlling the magnesium sulfite concentration in the desulfurization step to be less than or equal to its solubility without blowing air or the like, a portion of the treatment liquid that exits the oxidation step described below is circulated to the desulfurization step, and magnesium sulfite in the desulfurization step is used. A method of diluting the concentration is also known. Regarding the pH of the treatment liquid in the desulfurization step,
Although it is set to 5.0 to 6.2, the relationship with the basic calcium compound added in the metathesis step will be described later.

【0015】本発明の方法においては、処理液中に含ま
れる二水石膏の系外への取り出しは、脱硫工程処理液あ
るいは後述する酸化工程処理液から二水石膏を分離する
ことにより行われる。これら処理液では、二水石膏以外
の固型分を殆ど含まないので、容易に分離できる。
In the method of the present invention, the gypsum dihydrate contained in the treatment liquid is taken out of the system by separating gypsum dihydrate from the treatment liquid for the desulfurization step or the treatment liquid for the oxidation step described later. Since these treatment liquids contain almost no solid components other than gypsum dihydrate, they can be easily separated.

【0016】脱硫工程処理液からの二水石膏の分離除去
は、脱硫工程処理液を脱硫塔から別途取り出して実施し
て残液を脱硫塔へ戻してもよいし、あるいは次の酸化工
程へ導く途中の脱硫工程処理液に対して実施してもよ
い。二水石膏の分離除去には、湿式サイクロン、遠心沈
降器、ドルシックナー等の湿式分級器が使用でき、特に
湿式サイクロンが好ましい。分離された二水石膏は系外
へ取り出され、セメント用や石膏ボード用等に広く用い
ることができる。
Separation and removal of gypsum dihydrate from the desulfurization process liquid may be carried out by separately taking the desulfurization process liquid from the desulfurization tower and returning the residual liquid to the desulfurization tower or leading to the next oxidation process. You may implement it with respect to the desulfurization process liquid in the middle. A wet classifier such as a wet cyclone, a centrifugal settler or a Dorsickner can be used for separating and removing gypsum dihydrate, and a wet cyclone is particularly preferable. The separated gypsum dihydrate is taken out of the system and can be widely used for cement, gypsum board and the like.

【0017】脱硫工程処理液は、次いで酸化工程へ導か
れる。酸化工程では処理液に対して酸素を含むガスを接
触させ、処理液中の亜硫酸マグネシウムや亜硫酸水素マ
グネシウムが酸化されて硫酸マグネシウムおよび硫酸を
生成する。通常、処理液中の硫酸マグネシウムの濃度は
3〜10重量%であり、pHは1〜3であるが、装置の
耐蝕性のために中和してもよい。酸化工程では、通常槽
型反応器が用いられ、処理液は攪拌混合してもよいし、
しなくてもよい。
The desulfurization process liquid is then introduced into the oxidation process. In the oxidizing step, a gas containing oxygen is brought into contact with the treatment liquid, and magnesium sulfite or magnesium hydrogen sulfite in the treatment liquid is oxidized to generate magnesium sulfate and sulfuric acid. Usually, the concentration of magnesium sulfate in the treatment liquid is 3 to 10% by weight and the pH is 1 to 3, but it may be neutralized for the corrosion resistance of the device. In the oxidation step, a tank reactor is usually used, and the treatment liquid may be mixed by stirring,
You don't have to.

【0018】酸化工程で供給される酸素を含むガス中の
酸素以外のガス成分は、脱硫工程処理液に対して不活性
なものであればその種類は問わない。酸素を含むガスと
しては、通常空気が用いられる。
The gas component other than oxygen in the oxygen-containing gas supplied in the oxidation step may be of any type as long as it is inert to the treatment liquid for the desulfurization step. Air is usually used as the gas containing oxygen.

【0019】酸化工程を出た処理液(以下、「酸化工程
処理液」と略)は、次いで複分解工程へ導かれる。本発
明の方法では、複分解工程へ供給するこの処理液の流量
を、吸収工程における処理液の硫黄酸化物の吸収量から
これを全て二水石膏へ変換するのに必要とされる最小量
の処理液の流量として算出される理論流量より大きくす
る。すなわち、再生される硫酸マグネシウムの量より過
剰な量の硫酸マグネシウムを含む酸化工程処理液を複分
解工程へ供給する。理論流量に対するこの処理液の供給
流量の割合として表わされる過剰率は、1.07〜1
0.0の範囲が好ましく、1.2〜5.0の範囲がより
好ましい。過剰率が1.07未満の場合には、負荷量の
変動があった場合に複分解工程での未反応水酸化カルシ
ウムが脱硫工程へ流出するおそれがあり、その場合には
脱硫塔内塔でスケールが発生するおそれがある。一方、
過剰率が10を超えると、複分解槽内での硫酸カルシウ
ムの濃度が薄くなるので、二水石膏の生長が遅くなると
ともに、循環する処理液の流量がそれだけ増加するの
で、複分解槽に大型のものが必要となるため好ましくな
い。
The treatment liquid that has exited the oxidation process (hereinafter abbreviated as "oxidation process treatment liquid") is then introduced to the metathesis process. In the method of the present invention, the flow rate of this treatment liquid supplied to the metathesis process is set to the minimum amount of treatment required for converting all of the absorption amount of sulfur oxide of the treatment liquid in the absorption process into dihydrate gypsum. It should be larger than the theoretical flow rate calculated as the liquid flow rate. That is, the oxidation step treatment liquid containing magnesium sulfate in an excess amount over the amount of regenerated magnesium sulfate is supplied to the metathesis step. The excess ratio expressed as the ratio of the supply flow rate of this processing liquid to the theoretical flow rate is 1.07 to 1
The range of 0.0 is preferable, and the range of 1.2 to 5.0 is more preferable. If the excess ratio is less than 1.07, unreacted calcium hydroxide in the metathesis process may flow out to the desulfurization process when the load changes, and in that case, the scale in the desulfurization tower internal column May occur. on the other hand,
When the excess ratio exceeds 10, the concentration of calcium sulfate in the metathesis tank becomes thin, so that the growth of dihydrate gypsum slows down and the flow rate of the circulating treatment liquid increases by that much. Is required, which is not preferable.

【0020】また、亜硫酸ガス等の硫黄酸化物の発生量
が変動した場合には、上述した過剰率を一定に保ったま
ま硫黄酸化物の量に連動させて処理液の流量を調整する
ことが好ましい。なお、ここでは酸化工程処理液の流量
の調整について説明したが、脱硫工程処理液が一定の割
合で酸化工程処理液として複分解工程へ送液されるので
あれば、脱硫工程処理液の流量を対象として過剰率を上
述のようにして調整しても同じ結果が得られる。
When the amount of sulfur oxides such as sulfurous acid gas fluctuates, the flow rate of the treatment liquid can be adjusted by interlocking with the amount of sulfur oxides while keeping the above-mentioned excess rate constant. preferable. Note that here, the adjustment of the flow rate of the oxidation treatment liquid is described, but if the desulfurization treatment liquid is sent to the metathesis process as the oxidation treatment liquid at a constant ratio, the flow rate of the desulfurization treatment liquid is targeted. Even if the excess rate is adjusted as described above, the same result can be obtained.

【0021】本発明の脱硫方法は、上述したようにして
供給される硫酸マグネシウムと硫酸とを主成分とする酸
化工程処理液に対して、複分解工程では塩基性カルシウ
ム化合物を添加して攪拌混合する。ここで硫酸が塩基性
カルシウム化合物と反応して二水石膏が生成するととも
に、硫酸マグネシウムと塩基性カルシウムが反応して二
水石膏と水酸化マグネシウムが生成する。
In the desulfurization method of the present invention, a basic calcium compound is added and stirred and mixed in the metathesis process to the oxidizing process solution containing magnesium sulfate and sulfuric acid as the main components supplied as described above. . Here, sulfuric acid reacts with a basic calcium compound to form gypsum dihydrate, and magnesium sulfate and basic calcium react to form gypsum dihydrate and magnesium hydroxide.

【0022】複分解工程では、通常槽型反応器が用いら
れ、反応温度は高い程好ましいが、操作・運転上からは
脱硫工程と同程度の温度でよい。滞留時間は4〜5時間
以上とするのが好ましく、これによって生成する二水石
膏は、一般に平均粒子径(長径)が70μm以上、通常
は200μmまでの粗大粒子に成長する。一方、水酸化
マグネシウムは1μm以下、通常0.3〜1μm程度の
微小粒子であり、これらが粒子間で凝集してみかけ上1
0〜20μm程度の大きさとなる。
In the metathesis process, a tank reactor is usually used, and the higher the reaction temperature, the more preferable. However, from the viewpoint of operation and operation, the temperature may be the same as that of the desulfurization process. The residence time is preferably 4 to 5 hours or longer, and the gypsum dihydrate produced thereby grows into coarse particles having an average particle diameter (major axis) of 70 μm or more, usually up to 200 μm. On the other hand, magnesium hydroxide is fine particles having a size of 1 μm or less, usually about 0.3 to 1 μm, and these particles agglomerate between the particles to make apparently 1
The size is about 0 to 20 μm.

【0023】複分解工程で使用する塩基性カルシウム化
合物としては、水酸化カルシウム、酸化カルシウム、炭
酸カルシウムまたはこれらの混合物が好ましく、反応槽
に供給する形状としては粉末でもよいが、これらの水ス
ラリーが作業性の点で最も好ましい。
The basic calcium compound used in the metathesis step is preferably calcium hydroxide, calcium oxide, calcium carbonate or a mixture thereof, and the form of supplying to the reaction tank may be powder, but an aqueous slurry of these is used. Most preferred in terms of sex.

【0024】本発明の方法では、この複分解工程での塩
基性カルシウム化合物の添加を、脱硫工程での処理液の
pHが所定の一定値、例えば5.9を保つように制御し
て実施する。
In the method of the present invention, the addition of the basic calcium compound in the metathesis step is carried out while controlling the pH of the treatment liquid in the desulfurization step to a predetermined constant value, for example, 5.9.

【0025】従来のダブルアルカリ法における複分解工
程での塩基性カルシウム化合物の添加は、硫酸マグネシ
ウムの複分解反応が完結するように、複分解槽のpHに
基づいて実施されていた。しかし、複分解工程において
過剰に供給された硫酸マグネシウムを目標とする反応
率、換言すれば脱硫工程での処理液の硫黄酸化物の吸収
量に見合った量だけ反応させるという調整を複分解槽で
のpHに基づいて実施することはできない。これは、水
酸化マグネシウムの溶解度が溶存硫酸マグネシウムの濃
度、液温等により微妙に変化するためである。
The addition of the basic calcium compound in the metathesis step in the conventional double alkali method has been carried out based on the pH of the metathesis tank so that the metathesis reaction of magnesium sulfate is completed. However, the target reaction rate of magnesium sulfate excessively supplied in the metathesis process, in other words, the amount of sulfur oxide absorbed by the treatment liquid in the desulfurization process is adjusted to react in an amount that is adjusted to adjust the pH in the metathesis tank. Cannot be implemented based on This is because the solubility of magnesium hydroxide slightly changes depending on the concentration of dissolved magnesium sulfate, the liquid temperature, and the like.

【0026】排ガス脱硫設備では、ボイラーの稼動状況
により負荷が変動する場合があり、夜間には日中の1/
3程度に負荷が低下することがある。脱硫工程、酸化工
程、複分解工程の処理液の滞留時間は、通常それぞれ2
〜3時間、2〜3時間、5〜7時間のようにかなり長
い。このため、従来のようにこれら各工程での処理を独
立的に取り扱ったのでは、脱硫工程へ混合スラリーを戻
す前に大容量の緩衝槽(貯槽)がなければ、負荷変動が
あった場合に、その時点における脱硫工程での水酸化マ
グネシウムの消費量とは無関係に、10〜14時間前の
水酸化マグネシウムの消費量に対応する量の混合スラリ
ーが複分解槽から送液されてくるので、脱硫工程のpH
をコントロールすることは困難である。ところが、複分
解槽への塩基性カルシウム化合物の添加量を上述のよう
にして調整・制御すれば、脱硫工程へ戻される混合スラ
リーの流量だけでなく水酸化マグネシウムの濃度も変化
するので、大きな緩衝槽を配設することなく脱硫工程で
の処理液のpHを一定に保つことができる。また、複分
解工程へ供給される処理液中には複分解反応させる量よ
りも多量の硫酸マグネシウムが溶解しているので、この
ような制御によって複分解槽で塩基性カルシウム化合物
が一時的に多少余分に加えられてもpHが上昇し過ぎる
ことはない。
In the exhaust gas desulfurization facility, the load may change depending on the operating condition of the boiler, and at night, 1 / day
The load may decrease to about 3. The residence time of the treatment liquid in the desulfurization process, the oxidation process, and the metathesis process is usually 2 each.
It's quite long, like ~ 3 hours, 2-3 hours, 5-7 hours. Therefore, as in the conventional case, the treatment in each of these steps is handled independently, and if there is no large capacity buffer tank (storage tank) before returning the mixed slurry to the desulfurization step, there will be a case of load fluctuation. , Regardless of the amount of magnesium hydroxide consumed in the desulfurization process at that time, the amount of mixed slurry corresponding to the amount of magnesium hydroxide consumed 10 to 14 hours ago is sent from the metathesis tank, so desulfurization is performed. PH of process
Is difficult to control. However, if the amount of basic calcium compound added to the metathesis tank is adjusted and controlled as described above, not only the flow rate of the mixed slurry returned to the desulfurization process but also the concentration of magnesium hydroxide changes, so a large buffer tank is used. It is possible to keep the pH of the treatment liquid in the desulfurization step constant without disposing. In addition, since a larger amount of magnesium sulfate than the amount to be subjected to the metathesis reaction is dissolved in the treatment liquid supplied to the metathesis step, such a control temporarily adds a little excess amount of the basic calcium compound in the metathesis tank. However, the pH does not rise too much.

【0027】本発明の方法では、複分解工程で処理液中
の硫酸マグネシウムが100%反応しないため、系内の
いずれにある処理液を系外へブローしても硫酸マグネシ
ウムが同伴され、その分だけマグネシウム損失となり、
系内の処理液の硫酸マグネシウム濃度は徐々に薄くな
る。そのため、処理液の塩濃度を検知して水酸化マグネ
シウムを系内に補給してやる必要がある。本発明の方法
において、最も固型分の濃度が低く、かつ溶解成分とし
ての硫酸マグネシウムの純度が最も高いのは、酸化工程
処理液である。したがって、酸化工程処理液の密度を測
定して、その測定値に基いて水酸化マグネシウムスラリ
ーを補給してやるのが適当である。
In the method of the present invention, 100% of the magnesium sulfate in the treatment liquid does not react in the metathesis process. Therefore, even if the treatment liquid in any of the systems is blown out of the system, magnesium sulfate is entrained. Magnesium loss,
The concentration of magnesium sulfate in the treatment liquid in the system gradually decreases. Therefore, it is necessary to detect the salt concentration of the treatment liquid and supply magnesium hydroxide into the system. In the method of the present invention, it is the oxidation step treatment liquid that has the lowest solid content and the highest purity of magnesium sulfate as a dissolved component. Therefore, it is appropriate to measure the density of the oxidizing process liquid and replenish the magnesium hydroxide slurry based on the measured value.

【0028】本発明の脱硫方法においては、種々の変形
が可能である。例えば、酸化工程処理液の一部を脱硫工
程(脱硫塔)に戻してもよい。脱硫塔に酸化工程処理液
を加えると、脱硫塔内の処理液中の硫酸マグネシウムの
割合が増加し、亜硫酸塩の割合が減少することになり、
亜硫酸マグネシウムの析出を生じにくくすることができ
る。また、本発明の脱硫方法は、硫黄酸化物の他に塩化
水素等をも含有する排ガスについても適用することが可
能である。
Various modifications can be made to the desulfurization method of the present invention. For example, a part of the oxidation step treatment liquid may be returned to the desulfurization step (desulfurization tower). When the oxidation step treatment liquid is added to the desulfurization tower, the proportion of magnesium sulfate in the treatment liquid in the desulfurization tower increases, and the proportion of sulfite decreases.
Precipitation of magnesium sulfite can be suppressed. Further, the desulfurization method of the present invention can be applied to exhaust gas containing hydrogen chloride and the like in addition to sulfur oxide.

【0029】[0029]

【実施例】以下、本発明の排ガスの脱硫方法を図面を参
照しつつ実施例に従い説明するが、本発明はこれによっ
て限定されるものではない。 実施例1 本実施例は、重油だきボイラーの排ガスの脱硫処理の例
であり、図1にこのプロセスの概要を示した。
EXAMPLES Hereinafter, the exhaust gas desulfurization method of the present invention will be described according to examples with reference to the drawings, but the present invention is not limited thereto. Example 1 This example is an example of desulfurization treatment of exhaust gas from a heavy oil-fired boiler, and FIG. 1 shows an outline of this process.

【0030】マグネシウム系脱硫剤が溶解し、二水石膏
粗粒子を懸濁物として含む処理液を、脱硫塔1の上方か
ら500t/hrでシャワー状に流下させ、下方より導
入した硫黄酸化物を含有する排ガスG1と気液接触さ
せ、硫黄酸化物は亜硫酸マグネシウム、亜硫酸水素マグ
ネシウム等として処理液中に吸収・固定し、硫黄酸化物
が除去された排ガスG2を上方より塔外へ排出した。
A treatment liquid in which the magnesium-based desulfurizing agent is dissolved and containing gypsum dihydrate coarse particles as a suspension is flowed from above the desulfurization tower 1 at a rate of 500 t / hr in a shower shape, and the sulfur oxide introduced from below is removed. The exhaust gas G1 contained therein was brought into gas-liquid contact, the sulfur oxides were absorbed and fixed in the treatment liquid as magnesium sulfite, magnesium hydrogen sulfite, etc., and the exhaust gas G2 from which the sulfur oxides were removed was discharged from the upper part to the outside of the column.

【0031】脱硫塔に供給された排ガスは、高温のため
工水をノズルで噴霧し冷却した。最大負荷時の排ガス流
量は105 wetNm3 /hrで、SO2 濃度は200
0ppmであった。
Since the exhaust gas supplied to the desulfurization tower was at a high temperature, industrial water was sprayed through a nozzle to cool it. The exhaust gas flow rate at maximum load is 10 5 wetNm 3 / hr and the SO 2 concentration is 200.
It was 0 ppm.

【0032】脱硫塔1の底部に流下した硫黄酸化物を吸
収した脱硫液は、水酸化マグネシウムスラリー供給タン
ク7より新たに供給された処理液とともにポンプP1と
配管L1を介して塔上部へ送り流下させ、この繰り返し
によって脱硫塔1内を連続的に循環させた。塔底には、
亜硫酸マグネシウムの析出を防止するために、空気を吹
き込んだ。また、配管L1から一部の処理液を65t/
hrで石膏分離機2へ導き、処理液中に懸濁していた二
水石膏を分離して1.4t/hrで系外に排出し、残液
は脱硫塔へ戻した。なお、処理液中の二水石膏の濃度は
約2%であった。脱硫塔内の処理液の塩濃度は、全硫黄
分を硫酸マグネシウム換算で表わすと7.5重量%で、
そのうち亜硫酸マグネシウムと亜硫酸水素マグネシウム
の合計濃度は硫酸マグネシウム換算で1.5重量%であ
った。排ガスG2のSO2 濃度は100ppmで脱硫率
は95%であった。
The desulfurization liquid which has absorbed the sulfur oxide and has flowed down to the bottom of the desulfurization tower 1 is sent down to the upper part of the tower through the pump P1 and the pipe L1 together with the treatment liquid newly supplied from the magnesium hydroxide slurry supply tank 7. By repeating this, the desulfurization tower 1 was continuously circulated. At the bottom of the tower,
Air was blown in to prevent the precipitation of magnesium sulfite. In addition, 65 t /
It was led to the gypsum separator 2 by hr, the gypsum dihydrate suspended in the treatment liquid was separated and discharged out of the system at 1.4 t / hr, and the residual liquid was returned to the desulfurization tower. The concentration of gypsum dihydrate in the treatment liquid was about 2%. The salt concentration of the treatment liquid in the desulfurization tower is 7.5% by weight when the total sulfur content is expressed in terms of magnesium sulfate,
Among them, the total concentration of magnesium sulfite and magnesium hydrogen sulfite was 1.5% by weight in terms of magnesium sulfate. The exhaust gas G2 had a SO 2 concentration of 100 ppm and a desulfurization rate of 95%.

【0033】脱硫工程処理液をポンプP2と配管L2に
より脱硫塔から酸化槽3へ供給し、空気を曝気して酸化
して硫酸マグネシウム7.5重量%と少量の硫酸の水溶
液とした。この酸化工程処理液を配管L3によって、理
論流量からの過剰率を3.0として36t/hrで複分
解槽4へ供給した。複分解槽4には、水酸化カルシウム
供給タンク5から配管L4により30重量%の水酸化カ
ルシウムの水スラリーを、脱硫塔内の処理液のpHが
5.9となるように制御して加え、攪拌機により攪拌混
合しながら硫酸マグネシウムおよび硫酸と水酸化カルシ
ウムとの反応を行わせ、二水石膏と水酸化マグネシウム
の固体粒子を生成した。反応温度は50℃であった。
The treatment liquid for the desulfurization step was supplied from the desulfurization tower to the oxidation tank 3 through the pump P2 and the pipe L2, and aerating the air to oxidize it to obtain an aqueous solution containing 7.5% by weight of magnesium sulfate and a small amount of sulfuric acid. This oxidation step treatment liquid was supplied to the metathesis tank 4 at 36 t / hr with the excess rate from the theoretical flow rate set to 3.0 through the pipe L3. A water slurry of 30% by weight of calcium hydroxide was added to the metathesis tank 4 from the calcium hydroxide supply tank 5 through a pipe L4 while controlling the pH of the treatment liquid in the desulfurization tower to be 5.9, and added with a stirrer. The reaction of magnesium sulfate and sulfuric acid with calcium hydroxide was carried out with stirring and mixing, to produce solid particles of gypsum dihydrate and magnesium hydroxide. The reaction temperature was 50 ° C.

【0034】得られた二水石膏および水酸化マグネシウ
ムの固体粒子を含み、未反応の硫酸マグネシウムを経時
平均的には5.0重量%の濃度で溶解した水スラリー
は、配管L7を介して脱硫塔1に循環供給した。
The water slurry containing the obtained dihydrate gypsum and solid particles of magnesium hydroxide, in which unreacted magnesium sulfate was dissolved at a concentration of 5.0 wt% on average over time, was desulfurized through a pipe L7. It was circulated and supplied to the tower 1.

【0035】この脱硫塔に供給される排ガスは、夜間に
はSO2 濃度は2000ppmのままであったが、排ガ
ス流量が4×104 wetNm3 /hrに低下した。し
かし、複分解槽での二水石膏の生成は順調であり、また
脱硫塔内の処理液のpHも5.9を保つことができた。
The exhaust gas supplied to this desulfurization tower had an SO 2 concentration of 2000 ppm at night, but the exhaust gas flow rate decreased to 4 × 10 4 wetNm 3 / hr. However, the production of gypsum dihydrate in the metathesis tank was successful, and the pH of the treatment liquid in the desulfurization tower could be maintained at 5.9.

【0036】[0036]

【発明の効果】本発明の排ガスの脱硫方法により、マグ
ネシウム系脱硫剤を用いるダブルアルカリ法の脱硫プロ
セスが、二種類の固体粒子を分別することなく、簡略か
つ小型の設備で実施可能となった。二水石膏が処理液と
ともに系内を循環するが、これは不活性なSSとして扱
えばよく、脱硫塔や配管等にスケールが付着することは
なく、安定運転が維持され、効率の良い排ガス脱硫が実
施できた。また、複分解槽へ供給される処理液の流量は
やや増加するものの、大容量の緩衝槽を設けることなく
亜硫酸ガスの負荷変動に対して安定した運転が継続でき
た。
By the exhaust gas desulfurization method of the present invention, the desulfurization process of the double alkali method using a magnesium-based desulfurizing agent can be carried out with simple and small equipment without separating two kinds of solid particles. . Gypsum dihydrate circulates in the system along with the treatment liquid, but this can be handled as an inert SS, and scale is not attached to the desulfurization tower or pipes, stable operation is maintained, and efficient exhaust gas desulfurization is performed. Was able to be carried out. In addition, although the flow rate of the treatment liquid supplied to the metathesis tank increased slightly, stable operation could be continued against the load change of sulfurous acid gas without providing a large capacity buffer tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱硫方法に用いた装置の一つの構成例
を示す模式図である。
FIG. 1 is a schematic diagram showing one structural example of an apparatus used in the desulfurization method of the present invention.

【符号の説明】[Explanation of symbols]

1 脱硫塔 2 石膏分離機 3 酸化槽 4 複分解槽 5 水酸化カルシウム供給タンク 6 水酸化マグネシウムスラリー補給タンク 7 脱水機 G1 脱硫前排ガス G2 脱硫後排ガス P ポンプ L 配管 1 desulfurization tower 2 gypsum separator 3 oxidation tank 4 metathesis tank 5 calcium hydroxide supply tank 6 magnesium hydroxide slurry replenishment tank 7 dehydrator G1 exhaust gas before desulfurization G2 exhaust gas after desulfurization P pump L pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫黄酸化物を含む排ガスをマグネシウム
系脱硫剤を含む処理液と接触させ排ガス中に含まれる硫
黄酸化物を処理液中に吸収させる脱硫工程と、脱硫工程
処理液を酸素を含むガスと接触させ処理液中のマグネシ
ウム塩を硫酸マグネシウムに変換する酸化工程と、酸化
工程処理液に塩基性カルシウム化合物を添加し、処理液
中の硫酸マグネシウムを水酸化マグネシウムと二水石膏
とに分解させる複分解工程とを有し、複分解工程で得ら
れた混合スラリーを脱硫工程に戻すとともに、処理液か
ら二水石膏を系外に取り出す脱硫方法において、複分解
工程へ供給する酸化工程処理液の流量を硫黄酸化物の吸
収量から算出される理論流量より大きくし、かつ脱硫工
程での処理液のpHが一定値を保つように複分解工程で
塩基性カルシウム化合物を添加することを特徴とする排
ガスの脱硫方法。
1. A desulfurization step of bringing an exhaust gas containing sulfur oxide into contact with a treatment liquid containing a magnesium-based desulfurizing agent to absorb the sulfur oxide contained in the exhaust gas into the treatment liquid, and the desulfurization treatment liquid containing oxygen. Oxidation step of contacting with gas to convert magnesium salt in treatment solution to magnesium sulfate, and oxidation step Add basic calcium compound to treatment solution to decompose magnesium sulfate in treatment solution into magnesium hydroxide and gypsum dihydrate In the desulfurization method, which has a metathesis step to allow the mixed slurry obtained in the metathesis step to be returned to the desulfurization step and to take out gypsum dihydrate from the treatment solution, the flow rate of the oxidation step treatment solution supplied to the metathesis step Increase the theoretical flow rate calculated from the absorption of sulfur oxides, and make basic calcium in the metathesis process so that the pH of the treatment liquid in the desulfurization process remains constant. A method for desulfurizing exhaust gas, which comprises adding a compound.
JP03827496A 1996-02-26 1996-02-26 Exhaust gas desulfurization method Expired - Fee Related JP3728000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03827496A JP3728000B2 (en) 1996-02-26 1996-02-26 Exhaust gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03827496A JP3728000B2 (en) 1996-02-26 1996-02-26 Exhaust gas desulfurization method

Publications (2)

Publication Number Publication Date
JPH09225258A true JPH09225258A (en) 1997-09-02
JP3728000B2 JP3728000B2 (en) 2005-12-21

Family

ID=12520738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03827496A Expired - Fee Related JP3728000B2 (en) 1996-02-26 1996-02-26 Exhaust gas desulfurization method

Country Status (1)

Country Link
JP (1) JP3728000B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347133A (en) * 2000-06-09 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd Wet process flue gas desulfurizing equipment
JP2019116420A (en) * 2017-06-30 2019-07-18 宇部興産株式会社 Method for producing gypsum, and method for producing cement composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347133A (en) * 2000-06-09 2001-12-18 Ishikawajima Harima Heavy Ind Co Ltd Wet process flue gas desulfurizing equipment
JP2019116420A (en) * 2017-06-30 2019-07-18 宇部興産株式会社 Method for producing gypsum, and method for producing cement composition

Also Published As

Publication number Publication date
JP3728000B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
KR0159827B1 (en) Method for desulfurizing exhaust gas
JP3751340B2 (en) Exhaust gas desulfurization method
JP3573950B2 (en) Exhaust gas desulfurization method
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
US5486342A (en) Clear liquor scrubbing of sulfur dioxide with forced oxidation in flue gas desulfurization system
US4331640A (en) Process for removing sulfur dioxide from an exhaust gas containing the same
JP3728000B2 (en) Exhaust gas desulfurization method
JP3504427B2 (en) Exhaust gas desulfurization method
GB2163141A (en) Method for removing and recovering sulphur in elemental form from gases containing sulphur dioxide or sulphur dioxide and hydrogen sulphide
JP2719322B2 (en) Exhaust gas desulfurization method
JP3532028B2 (en) Exhaust gas desulfurization method
JP3704181B2 (en) Exhaust gas desulfurization method
US4313924A (en) Process for removal of sulfur dioxide from gas streams
JP3902861B2 (en) Exhaust gas desulfurization method
JP2004243169A (en) Desulfurization method for waste gas by double decomposition method
JPH07116457A (en) Method and apparatus for controlling flue gas wet desulfurization treatment
EP1472186A1 (en) Improvement of flue gas desulfurization gypsum-dewatering through crystal habit modification by carboxylic acids
CN211133540U (en) Novel ammonia process desulfurization device
JP3505287B2 (en) Double decomposition equipment
JPH09276645A (en) Desulfurization of exhaust gas
JPS5820888B2 (en) Higasutyuuno Iousankabutuno Shiyorihohou
JPH08206451A (en) Production of magnesium hydroxide and desulfurization method
JPH07108133A (en) Wet type flue gas desulfurization and device therefor
JPS62278119A (en) Production of magnesium hydroxide for exhaust gas desulfurization

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees