JP3728000B2 - Exhaust gas desulfurization method - Google Patents
Exhaust gas desulfurization method Download PDFInfo
- Publication number
- JP3728000B2 JP3728000B2 JP03827496A JP3827496A JP3728000B2 JP 3728000 B2 JP3728000 B2 JP 3728000B2 JP 03827496 A JP03827496 A JP 03827496A JP 3827496 A JP3827496 A JP 3827496A JP 3728000 B2 JP3728000 B2 JP 3728000B2
- Authority
- JP
- Japan
- Prior art keywords
- desulfurization
- treatment liquid
- magnesium
- exhaust gas
- metathesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treating Waste Gases (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、石油や石炭等の燃焼排ガスのような硫黄酸化物を含有する排ガスの脱硫方法に関する。
【0002】
【従来の技術】
各種の排ガスの湿式脱硫方法の代表的なものとして、石灰石膏法が知られている。この方法は、脱硫塔へ炭酸カルシウムや水酸化カルシウムを吸収剤として直接加えるため、処理液中にカルシウムイオンが溶解している。そのため、これが脱硫塔内で硫黄酸化物等と反応すると、二水石膏、二水亜硫酸カルシウム、炭酸カルシウム等の析出物からなるスケールが脱硫塔や配管内で生じるため、円滑な運転の維持が困難であるとともにその除去に大変手間がかかった。また、水酸化カルシウムは本来二分子の亜硫酸ガスを吸収可能な脱硫剤であるが、一分子の亜硫酸ガスを吸収した脱硫剤である亜硫酸カルシウムは、同様な脱硫剤である亜硫酸マグネシウムと比較すると大幅に溶解度が低いため、処理液の硫黄酸化物の吸収効率が低く、脱硫塔や循環ポンプ等設備の大型化を招き、経済性の面でも問題があった。
【0003】
一方、脱硫塔での硫黄酸化物の吸収を塩基性ナトリウム、アンモニアあるいは塩基性マグネシウム等の塩基性脱硫剤を使用して行い、脱硫塔外で生石灰を用いて複分解を行なって脱硫剤を再生するダブルアルカリ法も知られている。ダブルアルカリ法はスケールの発生が生じにくく、特に塩基性マグネシウムを脱硫剤として用いる方法は、硫黄酸化物の吸収効率もよく、生成した亜硫酸マグネシウムの溶解度が大きく、吸収塔でのスケールの発生の少ない方法の一つである。しかし、塩基性脱硫剤を用いるこの方法では、複分解工程で二水石膏と水酸化マグネシウムという二種類の結晶が析出し、その分離が容易ではないため、装置が複雑になるという問題点があった。
【0004】
また、石灰石膏法とダブルアルカリ法との折衷的な方法として川崎マグネシウム石膏法が知られている(実用公害防止技術集覧(1)、化学工業社出版、p.14)。この方法は脱硫剤に水酸化マグネシウムと水酸化カルシウムの混合スラリーを用いて脱硫工程で硫黄酸化物を吸収させ、次いでこの処理液を硫酸によりpHを2.0−4.0に調整しつつ空気等により酸化することにより硫酸マグネシウムと二水石膏を生成させ、沈降分離工程と遠心分離器により二水石膏と硫酸マグネシウム水溶液とに分離する。分離された硫酸マグネシウム水溶液は水酸化マグネシウムと水酸化カルシウムの混合スラリーが加えられる脱硫剤再生工程に循環供給され、ここで混合スラリー中の水酸化カルシウムの一部と複分解反応することにより水酸化マグネシウムと二水石膏が生成し、これと残部の水酸化カルシウムを含む混合液は脱硫剤として吸収工程へ循環供給される。しかし、この方法は脱硫塔内に水酸化カルシウムまたは炭酸カルシウムと二水石膏とを導く点では石灰石膏法と同じであり、脱硫塔内や循環ポンプ・配管へのスケール付着が起こりやすいという問題点は解消していない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、処理液の硫黄酸化物の吸収効率が高く、簡略かつ小型の設備で実施可能な排ガスの脱硫方法を提供することにある。
【0006】
本発明の他の目的は、脱硫塔内や循環ポンプ・配管へのスケールの付着や閉塞を阻止し、円滑な運転が維持できる排ガスの脱硫方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、マグネシウム系脱硫剤を使用するダブルアルカリ法におけるプロセスの簡略化につき鋭意検討した結果、従来は複分解工程で得られた二水石膏と水酸化マグネシウムを分離して、水酸化マグネシウムスラリーだけを脱硫塔へ戻していたが、脱硫塔へ戻す処理液中に水酸化カルシウムが含まれないようにすれば、二水石膏と水酸化マグネシウムを分離せずに混合スラリーとして脱硫塔へ戻しても脱硫塔内でスケールが発生せず、また脱硫工程での処理液のpHを基準にして複分解工程で塩基性カルシウム化合物を添加すれば、負荷変動があっても複分解工程以降に大容量の緩衝槽を設けずに処理液を直接脱硫工程へ戻しても安定した運転が可能であることを見い出し本発明を完成するに至った。
【0008】
すなわち、本発明は、硫黄酸化物を含む排ガスをマグネシウム系脱硫剤を含む処理液と接触させ排ガス中に含まれる硫黄酸化物を処理液中に吸収させる脱硫工程と、脱硫工程処理液を酸素を含むガスと接触させ処理液中のマグネシウム塩を硫酸マグネシウムに変換する酸化工程と、酸化工程処理液に塩基性カルシウム化合物を添加し、処理液中の硫酸マグネシウムを水酸化マグネシウムと二水石膏とに分解させる複分解工程とを有し、複分解工程で得られた混合スラリーを脱硫工程に戻すとともに、処理液から二水石膏を系外に取り出す脱硫方法において、複分解工程へ供給する酸化工程処理液の流量を硫黄酸化物の吸収量から算出される理論流量より大きくし、かつ脱硫工程での処理液のpHが一定値を保つように複分解工程で塩基性カルシウム化合物を添加することを特徴とする排ガスの脱硫方法である。
【0009】
【発明の実施の形態】
以下、本発明の排ガスの脱硫方法について説明する。
【0010】
本発明の排ガスの脱硫方法においては、硫黄酸化物を含む排ガスは、脱硫工程においてマグネシウム系脱硫剤を主成分として含む水溶液からなる処理液と接触して、硫黄酸化物が処理液に吸収される。
【0011】
複分解工程から脱硫工程へ戻される処理液は、水酸化マグネシウムと二水石膏と微量の亜硫酸カルシウムとを含み、少量の硫酸マグネシウムが溶解した混合スラリーであるが、処理液中の水酸化マグネシウムは脱硫剤として消費されるので、脱硫工程では水酸化マグネシウム微粒子は消失している。
【0012】
脱硫工程に適した装置としては、これら気液を効率良く接触させるような構造を持つ塔からなり、脱硫剤を含む水溶液をノズルで噴霧し、これに対して向流または並流でガスを流す型式のものが挙げられる。処理液は二水石膏粗粒子を含んでいるので、ノズルは詰りが生じないようなものであることが必要とされる。なお、気液接触の効率向上のために充填物や棚段等を内部に設置してもよい。
【0013】
脱硫工程を出る処理液(以下、「脱硫工程処理液」と略)は、マグネシウム系脱硫剤水溶液と硫黄酸化物が反応して生成した亜硫酸マグネシウム、亜硫酸水素マグネシウムおよび硫酸マグネシウムが混在した組成の水溶液であり、二水石膏が懸濁物として含まれている。
【0014】
脱硫工程では、通常、処理液の温度は50〜60℃とされる。また、脱硫工程では、亜硫酸マグネシウムの水への溶解度が低いので、その析出を防止するため、空気等を吹き込み酸化して水への溶解度の高い硫酸マグネシウムとし、亜硫酸マグネシウムの濃度をその溶解度以下に制御するのが一般的である。空気等の吹き込みをせずに、脱硫工程での亜硫酸マグネシウム濃度をその溶解度以下に制御する方法として、後述の酸化工程を出る処理液の一部を脱硫工程に循環し、脱硫工程での亜硫酸マグネシウム濃度を希釈する方法も知られている。なお、脱硫工程における処理液のpHについては、5.0〜6.2とされるが、複分解工程で添加する塩基性カルシウム化合物との関係については後述する。
【0015】
本発明の方法においては、処理液中に含まれる二水石膏の系外への取り出しは、脱硫工程処理液あるいは後述する酸化工程処理液から二水石膏を分離することにより行われる。これら処理液では、二水石膏以外の固型分を殆ど含まないので、容易に分離できる。
【0016】
脱硫工程処理液からの二水石膏の分離除去は、脱硫工程処理液を脱硫塔から別途取り出して実施して残液を脱硫塔へ戻してもよいし、あるいは次の酸化工程へ導く途中の脱硫工程処理液に対して実施してもよい。二水石膏の分離除去には、湿式サイクロン、遠心沈降器、ドルシックナー等の湿式分級器が使用でき、特に湿式サイクロンが好ましい。分離された二水石膏は系外へ取り出され、セメント用や石膏ボード用等に広く用いることができる。
【0017】
脱硫工程処理液は、次いで酸化工程へ導かれる。酸化工程では処理液に対して酸素を含むガスを接触させ、処理液中の亜硫酸マグネシウムや亜硫酸水素マグネシウムが酸化されて硫酸マグネシウムおよび硫酸を生成する。通常、処理液中の硫酸マグネシウムの濃度は3〜10重量%であり、pHは1〜3であるが、装置の耐蝕性のために中和してもよい。酸化工程では、通常槽型反応器が用いられ、処理液は攪拌混合してもよいし、しなくてもよい。
【0018】
酸化工程で供給される酸素を含むガス中の酸素以外のガス成分は、脱硫工程処理液に対して不活性なものであればその種類は問わない。酸素を含むガスとしては、通常空気が用いられる。
【0019】
酸化工程を出た処理液(以下、「酸化工程処理液」と略)は、次いで複分解工程へ導かれる。本発明の方法では、複分解工程へ供給するこの処理液の流量を、吸収工程における処理液の硫黄酸化物の吸収量からこれを全て二水石膏へ変換するのに必要とされる最小量の処理液の流量として算出される理論流量より大きくする。すなわち、再生される硫酸マグネシウムの量より過剰な量の硫酸マグネシウムを含む酸化工程処理液を複分解工程へ供給する。理論流量に対するこの処理液の供給流量の割合として表わされる過剰率は、1.07〜10.0の範囲が好ましく、1.2〜5.0の範囲がより好ましい。過剰率が1.07未満の場合には、負荷量の変動があった場合に複分解工程での未反応水酸化カルシウムが脱硫工程へ流出するおそれがあり、その場合には脱硫塔内塔でスケールが発生するおそれがある。一方、過剰率が10を超えると、複分解槽内での硫酸カルシウムの濃度が薄くなるので、二水石膏の生長が遅くなるとともに、循環する処理液の流量がそれだけ増加するので、複分解槽に大型のものが必要となるため好ましくない。
【0020】
また、亜硫酸ガス等の硫黄酸化物の発生量が変動した場合には、上述した過剰率を一定に保ったまま硫黄酸化物の量に連動させて処理液の流量を調整することが好ましい。なお、ここでは酸化工程処理液の流量の調整について説明したが、脱硫工程処理液が一定の割合で酸化工程処理液として複分解工程へ送液されるのであれば、脱硫工程処理液の流量を対象として過剰率を上述のようにして調整しても同じ結果が得られる。
【0021】
本発明の脱硫方法は、上述したようにして供給される硫酸マグネシウムと硫酸とを主成分とする酸化工程処理液に対して、複分解工程では塩基性カルシウム化合物を添加して攪拌混合する。ここで硫酸が塩基性カルシウム化合物と反応して二水石膏が生成するとともに、硫酸マグネシウムと塩基性カルシウムが反応して二水石膏と水酸化マグネシウムが生成する。
【0022】
複分解工程では、通常槽型反応器が用いられ、反応温度は高い程好ましいが、操作・運転上からは脱硫工程と同程度の温度でよい。滞留時間は4〜5時間以上とするのが好ましく、これによって生成する二水石膏は、一般に平均粒子径(長径)が70μm以上、通常は200μmまでの粗大粒子に成長する。一方、水酸化マグネシウムは1μm以下、通常0.3〜1μm程度の微小粒子であり、これらが粒子間で凝集してみかけ上10〜20μm程度の大きさとなる。
【0023】
複分解工程で使用する塩基性カルシウム化合物としては、水酸化カルシウム、酸化カルシウム、炭酸カルシウムまたはこれらの混合物が好ましく、反応槽に供給する形状としては粉末でもよいが、これらの水スラリーが作業性の点で最も好ましい。
【0024】
本発明の方法では、この複分解工程での塩基性カルシウム化合物の添加を、脱硫工程での処理液のpHが所定の一定値、例えば5.9を保つように制御して実施する。
【0025】
従来のダブルアルカリ法における複分解工程での塩基性カルシウム化合物の添加は、硫酸マグネシウムの複分解反応が完結するように、複分解槽のpHに基づいて実施されていた。しかし、複分解工程において過剰に供給された硫酸マグネシウムを目標とする反応率、換言すれば脱硫工程での処理液の硫黄酸化物の吸収量に見合った量だけ反応させるという調整を複分解槽でのpHに基づいて実施することはできない。これは、水酸化マグネシウムの溶解度が溶存硫酸マグネシウムの濃度、液温等により微妙に変化するためである。
【0026】
排ガス脱硫設備では、ボイラーの稼動状況により負荷が変動する場合があり、夜間には日中の1/3程度に負荷が低下することがある。脱硫工程、酸化工程、複分解工程の処理液の滞留時間は、通常それぞれ2〜3時間、2〜3時間、5〜7時間のようにかなり長い。このため、従来のようにこれら各工程での処理を独立的に取り扱ったのでは、脱硫工程へ混合スラリーを戻す前に大容量の緩衝槽(貯槽)がなければ、負荷変動があった場合に、その時点における脱硫工程での水酸化マグネシウムの消費量とは無関係に、10〜14時間前の水酸化マグネシウムの消費量に対応する量の混合スラリーが複分解槽から送液されてくるので、脱硫工程のpHをコントロールすることは困難である。ところが、複分解槽への塩基性カルシウム化合物の添加量を上述のようにして調整・制御すれば、脱硫工程へ戻される混合スラリーの流量だけでなく水酸化マグネシウムの濃度も変化するので、大きな緩衝槽を配設することなく脱硫工程での処理液のpHを一定に保つことができる。また、複分解工程へ供給される処理液中には複分解反応させる量よりも多量の硫酸マグネシウムが溶解しているので、このような制御によって複分解槽で塩基性カルシウム化合物が一時的に多少余分に加えられてもpHが上昇し過ぎることはない。
【0027】
本発明の方法では、複分解工程で処理液中の硫酸マグネシウムが100%反応しないため、系内のいずれにある処理液を系外へブローしても硫酸マグネシウムが同伴され、その分だけマグネシウム損失となり、系内の処理液の硫酸マグネシウム濃度は徐々に薄くなる。そのため、処理液の塩濃度を検知して水酸化マグネシウムを系内に補給してやる必要がある。本発明の方法において、最も固型分の濃度が低く、かつ溶解成分としての硫酸マグネシウムの純度が最も高いのは、酸化工程処理液である。したがって、酸化工程処理液の密度を測定して、その測定値に基いて水酸化マグネシウムスラリーを補給してやるのが適当である。
【0028】
本発明の脱硫方法においては、種々の変形が可能である。例えば、酸化工程処理液の一部を脱硫工程(脱硫塔)に戻してもよい。脱硫塔に酸化工程処理液を加えると、脱硫塔内の処理液中の硫酸マグネシウムの割合が増加し、亜硫酸塩の割合が減少することになり、亜硫酸マグネシウムの析出を生じにくくすることができる。また、本発明の脱硫方法は、硫黄酸化物の他に塩化水素等をも含有する排ガスについても適用することが可能である。
【0029】
【実施例】
以下、本発明の排ガスの脱硫方法を図面を参照しつつ実施例に従い説明するが、本発明はこれによって限定されるものではない。
実施例1
本実施例は、重油だきボイラーの排ガスの脱硫処理の例であり、図1にこのプロセスの概要を示した。
【0030】
マグネシウム系脱硫剤が溶解し、二水石膏粗粒子を懸濁物として含む処理液を、脱硫塔1の上方から500t/hrでシャワー状に流下させ、下方より導入した硫黄酸化物を含有する排ガスG1と気液接触させ、硫黄酸化物は亜硫酸マグネシウム、亜硫酸水素マグネシウム等として処理液中に吸収・固定し、硫黄酸化物が除去された排ガスG2を上方より塔外へ排出した。
【0031】
脱硫塔に供給された排ガスは、高温のため工水をノズルで噴霧し冷却した。最大負荷時の排ガス流量は105 wetNm3 /hrで、SO2 濃度は2000ppmであった。
【0032】
脱硫塔1の底部に流下した硫黄酸化物を吸収した脱硫液は、水酸化マグネシウムスラリー供給タンク7より新たに供給された処理液とともにポンプP1と配管L1を介して塔上部へ送り流下させ、この繰り返しによって脱硫塔1内を連続的に循環させた。塔底には、亜硫酸マグネシウムの析出を防止するために、空気を吹き込んだ。また、配管L1から一部の処理液を65t/hrで石膏分離機2へ導き、処理液中に懸濁していた二水石膏を分離して1.4t/hrで系外に排出し、残液は脱硫塔へ戻した。なお、処理液中の二水石膏の濃度は約2%であった。脱硫塔内の処理液の塩濃度は、全硫黄分を硫酸マグネシウム換算で表わすと7.5重量%で、そのうち亜硫酸マグネシウムと亜硫酸水素マグネシウムの合計濃度は硫酸マグネシウム換算で1.5重量%であった。排ガスG2のSO2 濃度は100ppmで脱硫率は95%であった。
【0033】
脱硫工程処理液をポンプP2と配管L2により脱硫塔から酸化槽3へ供給し、空気を曝気して酸化して硫酸マグネシウム7.5重量%と少量の硫酸の水溶液とした。この酸化工程処理液を配管L3によって、理論流量からの過剰率を3.0として36t/hrで複分解槽4へ供給した。複分解槽4には、水酸化カルシウム供給タンク5から配管L4により30重量%の水酸化カルシウムの水スラリーを、脱硫塔内の処理液のpHが5.9となるように制御して加え、攪拌機により攪拌混合しながら硫酸マグネシウムおよび硫酸と水酸化カルシウムとの反応を行わせ、二水石膏と水酸化マグネシウムの固体粒子を生成した。反応温度は50℃であった。
【0034】
得られた二水石膏および水酸化マグネシウムの固体粒子を含み、未反応の硫酸マグネシウムを経時平均的には5.0重量%の濃度で溶解した水スラリーは、配管L7を介して脱硫塔1に循環供給した。
【0035】
この脱硫塔に供給される排ガスは、夜間にはSO2 濃度は2000ppmのままであったが、排ガス流量が4×104 wetNm3 /hrに低下した。しかし、複分解槽での二水石膏の生成は順調であり、また脱硫塔内の処理液のpHも5.9を保つことができた。
【0036】
【発明の効果】
本発明の排ガスの脱硫方法により、マグネシウム系脱硫剤を用いるダブルアルカリ法の脱硫プロセスが、二種類の固体粒子を分別することなく、簡略かつ小型の設備で実施可能となった。二水石膏が処理液とともに系内を循環するが、これは不活性なSSとして扱えばよく、脱硫塔や配管等にスケールが付着することはなく、安定運転が維持され、効率の良い排ガス脱硫が実施できた。また、複分解槽へ供給される処理液の流量はやや増加するものの、大容量の緩衝槽を設けることなく亜硫酸ガスの負荷変動に対して安定した運転が継続できた。
【図面の簡単な説明】
【図1】本発明の脱硫方法に用いた装置の一つの構成例を示す模式図である。
【符号の説明】
1 脱硫塔
2 石膏分離機
3 酸化槽
4 複分解槽
5 水酸化カルシウム供給タンク
6 水酸化マグネシウムスラリー補給タンク
7 脱水機
G1 脱硫前排ガス
G2 脱硫後排ガス
P ポンプ
L 配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for desulfurization of exhaust gas containing sulfur oxides such as combustion exhaust gas of petroleum and coal.
[0002]
[Prior art]
The lime gypsum method is known as a typical wet desulfurization method for various exhaust gases. In this method, since calcium carbonate or calcium hydroxide is directly added to the desulfurization tower as an absorbent, calcium ions are dissolved in the treatment liquid. Therefore, if this reacts with sulfur oxides etc. in the desulfurization tower, scale consisting of deposits such as dihydrate gypsum, calcium disulfite, calcium carbonate, etc. is generated in the desulfurization tower and piping, so it is difficult to maintain smooth operation However, it took a lot of work to remove it. Calcium hydroxide is originally a desulfurization agent that can absorb bimolecular sulfite gas, but calcium sulfite, a desulfurization agent that absorbs one molecule of sulfite gas, is much larger than magnesium sulfite, which is a similar desulfurization agent. Therefore, the sulfur oxide absorption efficiency of the treatment liquid is low, leading to an increase in the size of equipment such as a desulfurization tower and a circulation pump, and there is a problem in terms of economy.
[0003]
On the other hand, absorption of sulfur oxides in the desulfurization tower is performed using a basic desulfurization agent such as basic sodium, ammonia or basic magnesium, and the desulfurization agent is regenerated by metathesis using quick lime outside the desulfurization tower. The double alkali method is also known. In the double alkali method, scale is unlikely to occur, and in particular, the method using basic magnesium as a desulfurization agent has good sulfur oxide absorption efficiency, high solubility of the produced magnesium sulfite, and less scale generation in the absorption tower. One of the methods. However, this method using a basic desulfurization agent has a problem in that the apparatus becomes complicated because two types of crystals, dihydrate gypsum and magnesium hydroxide, are precipitated in the metathesis step and are not easily separated. .
[0004]
Moreover, the Kawasaki magnesium gypsum method is known as an eclectic method of the lime gypsum method and the double alkali method (Practical Pollution Prevention Technology List (1), published by Kagaku Kogyosha, p. 14). This method uses a mixed slurry of magnesium hydroxide and calcium hydroxide as a desulfurizing agent to absorb sulfur oxide in the desulfurization step, and then adjusts the treatment liquid to pH 2.0-4.0 with sulfuric acid while adjusting the pH to 2.0-4.0. Oxidation is performed to produce magnesium sulfate and dihydrate gypsum, which are separated into dihydrate gypsum and magnesium sulfate aqueous solution by a sedimentation separation step and a centrifuge. The separated magnesium sulfate aqueous solution is circulated and supplied to a desulfurization agent regeneration step in which a mixed slurry of magnesium hydroxide and calcium hydroxide is added, where the magnesium hydroxide undergoes a metathesis reaction with a part of the calcium hydroxide in the mixed slurry. And dihydrate gypsum are produced, and the mixed solution containing the remaining calcium hydroxide is circulated and supplied to the absorption process as a desulfurization agent. However, this method is the same as the lime gypsum method in that calcium hydroxide or calcium carbonate and dihydrate gypsum are introduced into the desulfurization tower, and the problem is that scale adheres easily to the desulfurization tower, circulation pump, and piping. Has not been resolved.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for desulfurization of exhaust gas, which has a high absorption efficiency of sulfur oxides in the treatment liquid and can be carried out with a simple and small facility.
[0006]
Another object of the present invention is to provide an exhaust gas desulfurization method that prevents the scale from adhering to and clogging in a desulfurization tower, a circulation pump or piping, and can maintain smooth operation.
[0007]
[Means for Solving the Problems]
As a result of diligent study on simplification of the process in the double alkali method using a magnesium-based desulfurizing agent, the present inventor separated dihydrate gypsum and magnesium hydroxide obtained in the conventional metathesis step, and obtained a magnesium hydroxide slurry. However, if calcium hydroxide is not included in the treatment liquid returned to the desulfurization tower, dihydrate gypsum and magnesium hydroxide are not separated and returned to the desulfurization tower as a mixed slurry. However, no scale is generated in the desulfurization tower, and if a basic calcium compound is added in the metathesis process based on the pH of the treatment liquid in the desulfurization process, a large-capacity buffer is provided after the metathesis process even if there is a load fluctuation. It has been found that stable operation is possible even if the treatment liquid is directly returned to the desulfurization step without providing a tank, and the present invention has been completed.
[0008]
That is, the present invention comprises a desulfurization step in which an exhaust gas containing sulfur oxide is brought into contact with a treatment liquid containing a magnesium-based desulfurizing agent to absorb sulfur oxide contained in the exhaust gas into the treatment liquid, and the desulfurization process treatment liquid is oxygenated. An oxidation process for converting the magnesium salt in the treatment liquid into magnesium sulfate by contacting with the containing gas, adding a basic calcium compound to the oxidation process treatment liquid, and converting the magnesium sulfate in the treatment liquid into magnesium hydroxide and dihydrate gypsum In the desulfurization method, the mixed slurry obtained in the metathesis step is returned to the desulfurization step, and dihydrate gypsum is taken out of the system from the system. In the metathesis process so that the pH of the treatment liquid in the desulfurization process is kept constant. A method for desulfurizing exhaust gas, characterized by adding um compound.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the exhaust gas desulfurization method of the present invention will be described.
[0010]
In the exhaust gas desulfurization method of the present invention, the exhaust gas containing sulfur oxide comes into contact with a treatment liquid comprising an aqueous solution containing a magnesium-based desulfurization agent as a main component in the desulfurization step, and the sulfur oxide is absorbed by the treatment liquid. .
[0011]
The treatment liquid returned from the metathesis step to the desulfurization step is a mixed slurry containing magnesium hydroxide, dihydrate gypsum and a small amount of calcium sulfite, and a small amount of magnesium sulfate dissolved therein, but the magnesium hydroxide in the treatment solution is desulfurized. Since it is consumed as an agent, the magnesium hydroxide fine particles disappear in the desulfurization process.
[0012]
An apparatus suitable for the desulfurization process consists of a tower having a structure capable of bringing these gas and liquid into contact efficiently, and an aqueous solution containing a desulfurization agent is sprayed with a nozzle, and gas is passed countercurrently or cocurrently therewith. The type is listed. Since the treatment liquid contains dihydrate gypsum coarse particles, the nozzle is required to be free from clogging. In addition, in order to improve the efficiency of gas-liquid contact, a filler, a shelf or the like may be installed inside.
[0013]
The treatment liquid exiting the desulfurization process (hereinafter abbreviated as “desulfurization process treatment liquid”) is an aqueous solution having a mixture of magnesium sulfite, magnesium bisulfite and magnesium sulfate produced by the reaction of a magnesium-based desulfurization agent aqueous solution and sulfur oxides. And dihydrate gypsum is included as a suspension.
[0014]
In the desulfurization process, the temperature of the treatment liquid is usually 50 to 60 ° C. Also, in the desulfurization process, the solubility of magnesium sulfite in water is low, so in order to prevent its precipitation, air is blown and oxidized to make magnesium sulfate with high solubility in water, and the concentration of magnesium sulfite is below that solubility. It is common to control. As a method of controlling the concentration of magnesium sulfite in the desulfurization process below its solubility without blowing air or the like, a part of the treatment liquid exiting the oxidation process described later is circulated in the desulfurization process, and the magnesium sulfite in the desulfurization process A method for diluting the concentration is also known. In addition, about pH of the process liquid in a desulfurization process, it is set to 5.0-6.2, However, The relationship with the basic calcium compound added at a metathesis process is mentioned later.
[0015]
In the method of the present invention, the dihydrate gypsum contained in the treatment liquid is removed from the system by separating the dihydrate gypsum from the desulfurization process treatment liquid or the oxidation process treatment liquid described later. These treatment liquids can be easily separated because they contain almost no solid component other than dihydrate gypsum.
[0016]
Separation and removal of dihydrate gypsum from the desulfurization process treatment liquid may be performed by separately removing the desulfurization process treatment liquid from the desulfurization tower and returning the residual liquid to the desulfurization tower, or desulfurization in the middle of leading to the next oxidation process You may implement with respect to a process process liquid. For separation and removal of dihydrate gypsum, a wet classifier such as a wet cyclone, a centrifugal sedimentator, or a dollar thickener can be used, and a wet cyclone is particularly preferable. The separated dihydrate gypsum is taken out of the system and can be widely used for cement and gypsum board.
[0017]
The desulfurization process treatment liquid is then led to an oxidation process. In the oxidation step, a gas containing oxygen is brought into contact with the treatment liquid, and magnesium sulfite and magnesium hydrogen sulfite in the treatment liquid are oxidized to produce magnesium sulfate and sulfuric acid. Usually, the concentration of magnesium sulfate in the treatment liquid is 3 to 10% by weight and the pH is 1 to 3, but it may be neutralized for the corrosion resistance of the apparatus. In the oxidation step, a tank reactor is usually used, and the treatment liquid may or may not be stirred and mixed.
[0018]
The gas component other than oxygen in the gas containing oxygen supplied in the oxidation step is not limited as long as it is inert to the desulfurization step treatment liquid. Usually, air is used as the gas containing oxygen.
[0019]
The treatment liquid that has left the oxidation step (hereinafter abbreviated as “oxidation step treatment liquid”) is then led to the metathesis step. In the method of the present invention, the flow rate of the treatment liquid supplied to the metathesis step is the minimum amount of treatment required to convert all of the sulfur oxide absorption amount of the treatment liquid in the absorption step into dihydrate gypsum. The flow rate is larger than the theoretical flow rate calculated as the liquid flow rate. That is, an oxidation process treatment liquid containing an excessive amount of magnesium sulfate than the amount of magnesium sulfate to be regenerated is supplied to the metathesis process. The excess ratio expressed as a ratio of the supply flow rate of the treatment liquid to the theoretical flow rate is preferably in the range of 1.07 to 10.0, and more preferably in the range of 1.2 to 5.0. When the excess rate is less than 1.07, there is a possibility that unreacted calcium hydroxide in the metathesis step flows out to the desulfurization step when there is a change in the load, in which case the scale is scaled in the desulfurization tower. May occur. On the other hand, if the excess rate exceeds 10, the concentration of calcium sulfate in the metathesis tank becomes thin, so that the growth of dihydrate gypsum is slowed down and the flow rate of the circulated treatment liquid is increased accordingly. This is not preferable because it is necessary.
[0020]
Moreover, when the generation amount of sulfur oxides such as sulfurous acid gas fluctuates, it is preferable to adjust the flow rate of the treatment liquid in conjunction with the amount of sulfur oxide while keeping the above-described excess rate constant. Here, the adjustment of the flow rate of the oxidation process treatment liquid has been described. However, if the desulfurization process treatment liquid is sent to the metathesis process as the oxidation process treatment liquid at a constant rate, the flow rate of the desulfurization process treatment liquid is the target. If the excess rate is adjusted as described above, the same result can be obtained.
[0021]
In the desulfurization method of the present invention, a basic calcium compound is added and stirred and mixed in the metathesis step with respect to the oxidation step treatment liquid mainly composed of magnesium sulfate and sulfuric acid supplied as described above. Here, sulfuric acid reacts with the basic calcium compound to produce dihydrate gypsum, and magnesium sulfate and basic calcium react to produce dihydrate gypsum and magnesium hydroxide.
[0022]
In the metathesis step, a tank reactor is usually used, and the higher the reaction temperature, the better. However, from the viewpoint of operation and operation, the temperature may be the same as the desulfurization step. The residence time is preferably 4 to 5 hours or more, and the dihydrate gypsum produced thereby grows into coarse particles generally having an average particle diameter (major axis) of 70 μm or more, usually up to 200 μm. On the other hand, magnesium hydroxide is fine particles having a size of 1 μm or less, usually about 0.3 to 1 μm, and these particles are aggregated between the particles and apparently have a size of about 10 to 20 μm.
[0023]
As the basic calcium compound used in the metathesis step, calcium hydroxide, calcium oxide, calcium carbonate or a mixture thereof is preferable, and the form supplied to the reaction vessel may be powder, but these water slurries are easy to work with. And most preferred.
[0024]
In the method of the present invention, the addition of the basic calcium compound in the metathesis step is performed while controlling the pH of the treatment liquid in the desulfurization step so as to maintain a predetermined constant value, for example, 5.9.
[0025]
The addition of the basic calcium compound in the metathesis step in the conventional double alkali method has been performed based on the pH of the metathesis tank so that the metathesis reaction of magnesium sulfate is completed. However, the pH of the metathesis tank is adjusted to react with the target reaction rate of magnesium sulfate supplied excessively in the metathesis process, in other words, the amount corresponding to the amount of sulfur oxide absorbed in the treatment liquid in the desulfurization process. Cannot be implemented based on This is because the solubility of magnesium hydroxide slightly changes depending on the concentration of magnesium sulfate, the liquid temperature, and the like.
[0026]
In the exhaust gas desulfurization facility, the load may vary depending on the operating condition of the boiler, and the load may be reduced to about 1/3 of the daytime at night. The residence time of the treatment liquid in the desulfurization process, oxidation process, and metathesis process is usually quite long, such as 2-3 hours, 2-3 hours, and 5-7 hours, respectively. For this reason, if the processing in each of these processes was handled independently as in the past, if there was no large-capacity buffer tank (storage tank) before returning the mixed slurry to the desulfurization process, if there was a load fluctuation Regardless of the consumption of magnesium hydroxide in the desulfurization process at that time, an amount of the mixed slurry corresponding to the consumption of magnesium hydroxide 10 to 14 hours before is sent from the metathesis tank. It is difficult to control the pH of the process. However, if the amount of basic calcium compound added to the metathesis tank is adjusted and controlled as described above, not only the flow rate of the mixed slurry returned to the desulfurization process but also the concentration of magnesium hydroxide changes, so a large buffer tank The pH of the treatment liquid in the desulfurization process can be kept constant without disposing of. In addition, since a large amount of magnesium sulfate is dissolved in the treatment solution supplied to the metathesis step, the amount of the basic calcium compound temporarily added in the metathesis tank is somewhat more excessive than the amount to be metathesized. The pH will not increase too much.
[0027]
In the method of the present invention, magnesium sulfate in the treatment liquid does not react 100% in the metathesis step. Therefore, even if the treatment liquid in the system is blown out of the system, magnesium sulfate is entrained, resulting in a magnesium loss correspondingly. The magnesium sulfate concentration in the processing solution in the system gradually decreases. Therefore, it is necessary to detect the salt concentration of the treatment liquid and replenish magnesium hydroxide into the system. In the method of the present invention, it is the oxidation process treatment liquid that has the lowest solid content and the highest purity of magnesium sulfate as a dissolved component. Therefore, it is appropriate to measure the density of the oxidation process treatment liquid and replenish the magnesium hydroxide slurry based on the measured value.
[0028]
Various modifications are possible in the desulfurization method of the present invention. For example, you may return a part of oxidation process process liquid to a desulfurization process (desulfurization tower). When the oxidation process treatment liquid is added to the desulfurization tower, the proportion of magnesium sulfate in the treatment liquid in the desulfurization tower increases, the proportion of sulfite decreases, and precipitation of magnesium sulfite can be made difficult to occur. The desulfurization method of the present invention can also be applied to exhaust gas containing hydrogen chloride and the like in addition to sulfur oxides.
[0029]
【Example】
Hereinafter, although the exhaust gas desulfurization method of the present invention will be described according to examples with reference to the drawings, the present invention is not limited thereto.
Example 1
This example is an example of desulfurization treatment of exhaust gas from a heavy oil fired boiler, and FIG. 1 shows an outline of this process.
[0030]
An exhaust gas containing a sulfur oxide introduced from below, in which a magnesium-based desulfurizing agent is dissolved and a treatment liquid containing dihydrate gypsum coarse particles as a suspension is flowed down from above the desulfurization tower 1 at a rate of 500 t / hr. G1 was brought into gas-liquid contact, and sulfur oxides were absorbed and fixed in the treatment liquid as magnesium sulfite, magnesium bisulfite, and the like, and the exhaust gas G2 from which sulfur oxides were removed was discharged from the top to the outside.
[0031]
The exhaust gas supplied to the desulfurization tower was cooled by spraying industrial water with a nozzle because of high temperature. The exhaust gas flow rate at the maximum load was 10 5 wetNm 3 / hr, and the SO 2 concentration was 2000 ppm.
[0032]
The desulfurization liquid that has absorbed the sulfur oxide flowing down to the bottom of the desulfurization tower 1 is sent down to the top of the tower through the pump P1 and the pipe L1 together with the processing liquid newly supplied from the magnesium hydroxide slurry supply tank 7, The desulfurization tower 1 was continuously circulated by repetition. Air was blown into the bottom of the column in order to prevent precipitation of magnesium sulfite. Also, a part of the processing liquid is led to the
[0033]
The desulfurization process treatment liquid was supplied from the desulfurization tower to the oxidation tank 3 by the pump P2 and the pipe L2, and was aerated and oxidized to form an aqueous solution of 7.5 wt% magnesium sulfate and a small amount of sulfuric acid. This oxidation process treatment liquid was supplied to the metathesis tank 4 at 36 t / hr by setting the excess rate from the theoretical flow rate to 3.0 through the pipe L3. To the metathesis tank 4, a 30% by weight calcium hydroxide water slurry is added from the calcium hydroxide supply tank 5 through the pipe L4 so that the pH of the treatment liquid in the desulfurization tower is 5.9, and a stirrer While stirring and mixing, magnesium sulfate and the reaction of sulfuric acid and calcium hydroxide were carried out to produce solid particles of dihydrate gypsum and magnesium hydroxide. The reaction temperature was 50 ° C.
[0034]
The obtained water slurry containing dihydrate gypsum and solid particles of magnesium hydroxide, in which unreacted magnesium sulfate was dissolved at a concentration of 5.0% by weight on average over time, was passed through the pipe L7 to the desulfurization tower 1. Circulating supply.
[0035]
The exhaust gas supplied to the desulfurization tower had an SO 2 concentration of 2000 ppm at night, but the exhaust gas flow rate decreased to 4 × 10 4 wetNm 3 / hr. However, the production of dihydrate gypsum in the metathesis tank was smooth, and the pH of the treatment liquid in the desulfurization tower could be maintained at 5.9.
[0036]
【The invention's effect】
With the exhaust gas desulfurization method of the present invention, a double alkali method desulfurization process using a magnesium-based desulfurization agent can be performed with simple and small equipment without separating two kinds of solid particles. Dihydrate gypsum circulates in the system together with the treatment liquid, but this can be handled as an inert SS, scale does not adhere to desulfurization towers and piping, etc., stable operation is maintained, and efficient exhaust gas desulfurization Could be implemented. In addition, although the flow rate of the treatment liquid supplied to the metathesis tank slightly increased, stable operation was able to be continued with respect to fluctuations in the sulfurous acid gas load without providing a large-capacity buffer tank.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one configuration example of an apparatus used in a desulfurization method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03827496A JP3728000B2 (en) | 1996-02-26 | 1996-02-26 | Exhaust gas desulfurization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03827496A JP3728000B2 (en) | 1996-02-26 | 1996-02-26 | Exhaust gas desulfurization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09225258A JPH09225258A (en) | 1997-09-02 |
JP3728000B2 true JP3728000B2 (en) | 2005-12-21 |
Family
ID=12520738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03827496A Expired - Fee Related JP3728000B2 (en) | 1996-02-26 | 1996-02-26 | Exhaust gas desulfurization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3728000B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001347133A (en) * | 2000-06-09 | 2001-12-18 | Ishikawajima Harima Heavy Ind Co Ltd | Wet process flue gas desulfurizing equipment |
JP6973443B2 (en) * | 2017-06-30 | 2021-11-24 | 宇部興産株式会社 | Gypsum manufacturing method and cement composition manufacturing method |
-
1996
- 1996-02-26 JP JP03827496A patent/JP3728000B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09225258A (en) | 1997-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3751340B2 (en) | Exhaust gas desulfurization method | |
US2090142A (en) | Wet purification of gases | |
US5676915A (en) | Method for desulfurizing exhaust gas | |
US2142406A (en) | Apparatus for the wet purification of gases | |
JP3573950B2 (en) | Exhaust gas desulfurization method | |
US5486342A (en) | Clear liquor scrubbing of sulfur dioxide with forced oxidation in flue gas desulfurization system | |
KR950010795B1 (en) | Process and apparatus for desulfurization | |
JP3728000B2 (en) | Exhaust gas desulfurization method | |
US3972980A (en) | Process removing sulfur dioxide from gases | |
JP3504427B2 (en) | Exhaust gas desulfurization method | |
GB2163141A (en) | Method for removing and recovering sulphur in elemental form from gases containing sulphur dioxide or sulphur dioxide and hydrogen sulphide | |
JP2719322B2 (en) | Exhaust gas desulfurization method | |
JPH07116457A (en) | Method and apparatus for controlling flue gas wet desulfurization treatment | |
JP3532028B2 (en) | Exhaust gas desulfurization method | |
CN211133540U (en) | Novel ammonia process desulfurization device | |
JP2004243169A (en) | Desulfurization method for waste gas by double decomposition method | |
JP3704181B2 (en) | Exhaust gas desulfurization method | |
CA2336436C (en) | Process for producing gypsum from a calcium sulfite gas desulfurization slurry | |
JP3505287B2 (en) | Double decomposition equipment | |
JPS59230620A (en) | Slurry concentration control method of wet waste gas desulfurization apparatus | |
JPH11253743A (en) | Method for desulfurization of exhaust gas | |
JPS5820888B2 (en) | Higasutyuuno Iousankabutuno Shiyorihohou | |
JPS6261620A (en) | Wet waste gas desulfurization method | |
JPH08206451A (en) | Production of magnesium hydroxide and desulfurization method | |
JPS5923848B2 (en) | Flue gas desulfurization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040802 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20041022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050930 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131007 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |