JPS5898125A - Desulfurization of stack gas - Google Patents

Desulfurization of stack gas

Info

Publication number
JPS5898125A
JPS5898125A JP56193742A JP19374281A JPS5898125A JP S5898125 A JPS5898125 A JP S5898125A JP 56193742 A JP56193742 A JP 56193742A JP 19374281 A JP19374281 A JP 19374281A JP S5898125 A JPS5898125 A JP S5898125A
Authority
JP
Japan
Prior art keywords
exhaust gas
absorption liquid
liquid
desulfurization
solubility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56193742A
Other languages
Japanese (ja)
Inventor
Haruo Oguri
小栗 晴夫
Tadayoshi Tamaru
田丸 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP56193742A priority Critical patent/JPS5898125A/en
Publication of JPS5898125A publication Critical patent/JPS5898125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain high desulfurization ratio as well as to form gypsum in an absorbing tower, by mixing an exhaust gas after desulfurization treatment in an absorbing liquid containing CaCO3 to enhance the solubility and the dissolving speed of CaCO3. CONSTITUTION:An exhaust gas 1 exhausted from a boiler is introduced into an absorbing tower 2 and an absorbing liquid 3 containing CaCO3 accumulated in a liquid accumulating tank 12 provided to the lower part in the tower 2 is sprayed from spray nozzles 11 to subject the exhaust gas to desulfurization treatment while the purified exhaust gas 4 is discharged out of a system. During this time, a part of the exhaust gas 4a taken from the exhaust gas 4 is mixed in the absorbing liquid 3 in the tank 12 through an aeration fan 14 and a sparger 15 to subject the absorbing liquid 3 to aerating treatment. By this aerating treatment, the solubility and the dissolving speed of CaCO3 are raised and the part of calcium sulfite in the absorbing liquid 3 is further oxidized to form gypsum. In this case, the part of the absorbing liquid 3 among the absorbing liquid 3 containing formed gypsum is branched from a recirculating system 10 to be introduced into an oxidizing tower 5 and contacted with air from a line 16 to form gypsum by oxidizing treatment of calcium suboxide.

Description

【発明の詳細な説明】 λド発明は、捌煙脱(lIiト方法に係り、特に排ガス
を脱硫処理するために炭酸力ルンウムを含む吸収剤を溶
解して吸収液全生成し、この吸収液を循環させつつ排ガ
スと接触させて脱硫処理する排煙脱硫方法において、上
記吸収液に脱硫処理後の排ガスを混入してこれ全曝気し
、これにより炭酸カル/ラムの溶解度及び溶解速度を上
けるようにし、もって高い脱硫率が維持できると共に吸
収塔で石膏全生成し得るようになした排煙脱硫方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a smoke removal method, in particular, in order to desulfurize exhaust gas, an absorbent containing carbonate is dissolved to generate a total absorbent liquid, and this absorbent liquid is In the flue gas desulfurization method, which desulfurizes by contacting with flue gas while circulating, the flue gas after desulfurization treatment is mixed with the above absorption liquid and the whole is aerated, thereby increasing the solubility and dissolution rate of cal/rum carbonate. The present invention relates to a flue gas desulfurization method in which a high desulfurization rate can be maintained and all gypsum can be produced in an absorption tower.

一般に、ボイラー等の燃焼機器より排出される排ガス中
から、この排ガス中に含丑れる硫黄酸化物を除去するた
めの排煙脱硫方法として種々の方法が研究、開発され、
そしてすでに運転されている。
In general, various methods have been researched and developed as flue gas desulfurization methods for removing sulfur oxides contained in flue gas discharged from combustion equipment such as boilers.
And it's already running.

これら、排煙脱硫方法の一例として炭酸力ルンウム等を
溶解した吸収液と排ガスとを接触反応させ、生成した亜
硫酸力ルンウムを酸化して石膏を回jigするようにな
した方法が知られている。
As an example of these flue gas desulfurization methods, a method is known in which an absorption liquid containing dissolved carbonate, etc. is brought into contact with the exhaust gas, and the generated sulfite is oxidized to turn gypsum. .

この従来方法を第1図に基づいて説明すると、丑ず1は
ン+?イラー等の燃焼機器から排気された排ガスである
。このり1.ガス1は吸収塔2内にて、この中を循環さ
れている吸収液3と接触され、排ガス中の備1黄酸化物
と吸収液3中の炭酸カルシウムとが下記式(りに示す如
く反応して亜硫酸カルシウムを生成する。
This conventional method will be explained based on FIG. 1. This is exhaust gas exhausted from combustion equipment such as burners. This Nori 1. The gas 1 is brought into contact with the absorption liquid 3 circulating therein in the absorption tower 2, and the yellow oxide in the flue gas and the calcium carbonate in the absorption liquid 3 react as shown in the following formula. to produce calcium sulfite.

S02+CaCO3+y2H20−+CaSO3・%H
20+CO2−(りこのようにして脱硫処理された排ガ
ス4は清浄ガスとして系外へ放出されることとなる。
S02+CaCO3+y2H20-+CaSO3・%H
20+CO2-(R) The exhaust gas 4 that has been desulfurized in this manner will be released outside the system as clean gas.

一方、生成された亜硫酸カルシウムを含む吸収液は適宜
分岐されて抜き取られ、酸化塔5へ移送される。この分
1枝された@収液3aI′i酸化塔5にて次式(2)に
示す如く空気i後金されて石膏が生成されることとなる
On the other hand, the generated absorption liquid containing calcium sulfite is appropriately branched, extracted, and transferred to the oxidation tower 5. In this branched @receiving liquid 3aI'i oxidation tower 5, air is mixed and gypsum is produced as shown in the following formula (2).

CaSO3・y2f(20−) ’/2024−う/2
H20−+ CaSO4・2H20−(2)更ンこ、上
記反1;i:にL!ll生成した石・11スラリー6は
抜きlJjされ、その後、γi過磯7へと順次移送され
て石膏が回収されると共に炉液8は再び吸収塔2内の吸
収液3中に戻されることとなる。
CaSO3・y2f(20-)'/2024-u/2
H20-+ CaSO4・2H20-(2) Saranko, above contrary 1; i: L! The produced stone/11 slurry 6 is extracted and then sequentially transferred to the γi-filtration rock 7 to recover gypsum, and the furnace liquid 8 is returned to the absorption liquid 3 in the absorption tower 2. Become.

ところで、上記した如き従来方法にあっては、沖過機7
にて石膏を回収する際に排出されるン戸液8を再び吸収
液3中Vこ戻し、循環使用することとI7ているため、
脱硫処理の際硫黄酸化物と共に除去される塩ブと水素が
吸収液3中に次第に溜まってCt農度が高くなジ、その
結果炭酸カルシウムの溶解度及び溶解速IWが低くなっ
て、次第に脱硫率が低下してくるという問題があった。
By the way, in the conventional method as described above,
The solution 8 discharged when collecting gypsum is returned to the absorption solution 3 and used for circulation.
Chloride and hydrogen, which are removed together with sulfur oxides during desulfurization treatment, gradually accumulate in the absorption liquid 3, resulting in a high Ct concentration.As a result, the solubility and dissolution rate IW of calcium carbonate decrease, and the desulfurization rate gradually decreases. There was a problem that the value was decreasing.

これは塩素化合物の溶解度が高く固形分として回収でき
ないためどうしても液中に蓄積するためである。
This is because the chlorine compound has a high solubility and cannot be recovered as a solid content, so it inevitably accumulates in the liquid.

この問題を解決すべく、ろ液8を循環使用することなく
糸外へjjl IJj L、てしまうことも考えられる
が、この場合には二次公害全引起こす惧れがあること及
び水の有効利用の見地から実施されてはいない。
In order to solve this problem, it is conceivable to drain the filtrate 8 out of the yarn without recycling it, but in this case there is a risk of causing secondary pollution and the effectiveness of the water. It has not been implemented from a usage standpoint.

本発明は以上のような問題点VC鑑み、これを有効に解
決すべく11j案されたものであり、その目的とすると
ころは炭酸カルシウムを含む吸収剤を溶解した吸収液を
循環させ、この吸収液と腓ガスと全接触させて脱硫処理
するリド煙脱硫方法において、上記吸収液に脱硫処理後
の排ガス全混入してこれを曝気し、これにより炭酸カル
シウムの溶解度及び溶解速度を上げるようにし、もって
高い脱硫率が維持できると共に吸収塔で石膏を生成し得
るようになした+#l□煙脱硫方法を提供するにある。
The present invention was devised in order to effectively solve the above-mentioned problems with VC, and its purpose is to circulate an absorption liquid in which an absorbent containing calcium carbonate is dissolved, and to absorb this absorption liquid. In a lid smoke desulfurization method in which the desulfurization treatment is carried out by bringing the liquid into full contact with the gas, all the exhaust gas after the desulfurization treatment is mixed into the absorption liquid and aerated, thereby increasing the solubility and dissolution rate of calcium carbonate, To provide a +#l□ smoke desulfurization method that can maintain a high desulfurization rate and generate gypsum in an absorption tower.

本発明は、吸収液中のCt濃度が上昇して炭酸カルシウ
ムの溶解度及び溶解速度が低下する傾向にあっても、こ
の吸収液に気体を混入し、これを曝気処理することによ
ρ溶解度及び溶解速度が高く維持できることをu 7J
jすことによりなされたものである。
Even if the solubility and dissolution rate of calcium carbonate tend to decrease as the Ct concentration in the absorption liquid increases, the present invention can improve the ρ solubility and dissolution rate by mixing gas into the absorption liquid and aerating it. U7J shows that the dissolution rate can be maintained high.
This was done by

以下に、本発明の好適一実施例を添伺図面に基づいて説
明する。
A preferred embodiment of the present invention will be described below with reference to accompanying drawings.

第2図は第1の発明に係る方法を説明するための装置を
示す図である。まず、1はボイラー等の燃焼機器から排
気された排ガスであり、脱硫処理するためにこの排ガス
1は吸収塔2内に導入されることとなる。この吸収塔2
内の下部VCは炭酸力ルンウムを含む吸収剤を溶解して
生成した吸収液3が溜められている。そして、この吸収
液3は循環ポンプ9にょQ循環系1oを介して吸収塔2
の上部に移送されると共にここに設けられたスプレ11
から塔2内へ噴霧されるこ七と々る。この1穴霧された
吸収液はこの塔2内へ導入された上記排ガス1と接触し
吸収液中の炭酸力ルンウムと1′J1−ガス中の硫黄酸
化物とか下記式(3)に示す如く反応して亜硫酸カルシ
ウムが生成される。
FIG. 2 is a diagram showing an apparatus for explaining the method according to the first invention. First, 1 is exhaust gas exhausted from combustion equipment such as a boiler, and this exhaust gas 1 is introduced into an absorption tower 2 for desulfurization treatment. This absorption tower 2
In the lower VC, an absorbing liquid 3 produced by dissolving an absorbent containing carbonate is stored. Then, this absorption liquid 3 is passed through a circulation pump 9 to a Q circulation system 1o to an absorption tower 2.
The spray 11 is transferred to the upper part of the
The air is sprayed into the tower 2. This one-hole atomized absorption liquid comes into contact with the exhaust gas 1 introduced into this tower 2, and the carbonic acid in the absorption liquid and the sulfur oxide in the 1'J1-gas are as shown in the following formula (3). The reaction produces calcium sulfite.

S02+−CaC03−1−3/2f(20→CaSO
3・3//!H2O−1−CO2−(3)このようにし
て排ガスの脱硫処理がなされ、清浄化された排ガス4は
系外へ放出されることとなる。
S02+-CaC03-1-3/2f (20→CaSO
3・3//! H2O-1-CO2- (3) In this way, the exhaust gas is desulfurized and the cleaned exhaust gas 4 is discharged outside the system.

捷だ、北記脱硫処理と共にすしガス中の塩化水素ガスも
除去されることとなυ、この塩化水素と生成Lfc亜硫
酸カルシウムとを含む吸収液が流下して液溜めタンク1
2vc溜丑ることとなる。そして、この吸収液3には適
宜炭酸カルシウム13が添加されて、再び循環さ力、て
脱硫処理に寄与される。
Unfortunately, along with the desulfurization process described above, the hydrogen chloride gas in the sushi gas is also removed, and the absorption liquid containing this hydrogen chloride and the produced Lfc calcium sulfite flows down to the liquid storage tank 1.
2vc will be accumulated. Then, calcium carbonate 13 is appropriately added to this absorption liquid 3, and the absorption liquid 3 is circulated again to contribute to the desulfurization process.

一方、液溜めタンク12内の吸収液3中には脱硫処理後
の清浄化された排ガス4の内、一部の排ガス4aが曝気
ファン14及びス・ぐ−ツヤ15を介して混入され、こ
の吸収液3を曝気処理している。この本発明の特長とす
る曝気処理に、J:9後述する如く炭酸カルシウムの溶
解度及び溶解速度を上げることができると共に、吸収液
3中の一部の亜硫酸力ルンウムを下記式(4)に示す如
く酸化して、石征を生成することができる。
On the other hand, part of the exhaust gas 4a of the cleaned exhaust gas 4 after the desulfurization treatment is mixed into the absorption liquid 3 in the liquid storage tank 12 via the aeration fan 14 and the suction fan 15. The absorption liquid 3 is subjected to aeration treatment. This aeration treatment, which is a feature of the present invention, can increase the solubility and dissolution rate of calcium carbonate as described below, and also reduce the amount of sulfite in the absorption liquid 3 as shown in the following formula (4). It can be oxidized to produce stone.

CaSO3・1//2H20−1−y202 +%H2
O−+CaSO4・2H20−(4)この際、この1′
Jトガス4aは脱硫処理後のものであって充分に湿って
いることから排ガス導入部たるス・ぐ−ツヤ15に石膏
が乾燥析出することがなく、目詰まりを起こすことがな
い。
CaSO3・1//2H20-1-y202 +%H2
O-+CaSO4・2H20-(4) At this time, this 1'
Since the J exhaust gas 4a has been desulfurized and is sufficiently moist, gypsum does not dry and precipitate in the exhaust gas inlet 15, which prevents clogging.

このようにして、炭酸カルシウムの溶解度が高められ、
且つ生成された石膏を含む吸収液3の内、その一部の吸
収液3aは循環系10がら分岐されて酸化塔5へ導入さ
れることとなる。この酸化塔5内へ導入された吸収液は
空気16と接触され、この吸収液中の亜硫酸カルシウム
が前記式(4)に示す如く全て酸化処理されて、石謂が
生成される。
In this way, the solubility of calcium carbonate is increased,
Among the generated absorption liquid 3 containing gypsum, a part of the absorption liquid 3a is branched from the circulation system 10 and introduced into the oxidation tower 5. The absorption liquid introduced into the oxidation tower 5 is brought into contact with the air 16, and all of the calcium sulfite in the absorption liquid is oxidized as shown in the above formula (4) to produce soot.

この際、前記した如く液溜めタンク3内で一部石膏が析
出しているので、酸化塔5内においてはこの石膏を核と
して、より石膏の析出を促進させることができる。
At this time, since some gypsum is precipitated in the liquid storage tank 3 as described above, the gypsum can be used as a core in the oxidation tower 5 to further promote the precipitation of gypsum.

そして、酸化塔5内で生成された石情スラリー6は沖過
機7へ移送され、ここで石膏が回収される。
Then, the gypsum slurry 6 generated in the oxidation tower 5 is transferred to the Oki-filter 7, where gypsum is recovered.

また、沖過機7でのE液8はCt−1オンを含んだ状態
で吸収Jf2の液溜めタンク12に戻されて、再び炭酸
カル7ウト13の溶解に寄与することとなる。    
  ・。
In addition, the E liquid 8 in the offshore filter 7 is returned to the liquid storage tank 12 of the absorption Jf2 in a state containing Ct-1, and contributes to the dissolution of the calcium carbonate 7-out 13 again.
・.

従って、吸収塔2内を循環する吸収液3中のCta度が
次第に」二昇することとなるが、第4図乃至第5図に示
す実験事実から、液溜めタンク12内の吸収液3に脱硫
処理後の排ガスを混入し、この液3を曝気することによ
り炭酸カルシウムの溶解度及び溶解速度を維持、あるい
はそれ以上にすることができる。
Therefore, the Cta degree in the absorbent liquid 3 circulating in the absorption tower 2 will gradually rise by 2, but from the experimental facts shown in FIGS. By mixing the exhaust gas after the desulfurization treatment and aerating this liquid 3, the solubility and dissolution rate of calcium carbonate can be maintained or increased.

すなわち、第4図は何ら気体を混入させない状態でのP
M値6の吸収液における炭酸カルシウムの溶解度と時間
との関係を示すグラフである。
In other words, Fig. 4 shows P in a state where no gas is mixed.
It is a graph showing the relationship between the solubility of calcium carbonate in an absorption liquid with an M value of 6 and time.

Ct濃度Oppmの曲線a、Ctilii度5,000
 ppmの曲、%+b及びCt濃度20,000 pp
mの曲線cをそれぞれ比較すると、吸収液中のCt濃度
が上昇するに従って、吸収剤である炭酸カルシウムの溶
解度及び溶解速度が低下してくるのがわかり、このこと
はCt濃度が上昇するに従って、脱硫率が低下すること
を意味する。
Curve a of Ct concentration Oppm, Ctilii degree 5,000
ppm song, %+b and Ct concentration 20,000 pp
Comparing the curves c of m, it can be seen that as the Ct concentration in the absorption liquid increases, the solubility and dissolution rate of calcium carbonate, which is an absorbent, decreases, and this means that as the Ct concentration increases, This means that the desulfurization rate decreases.

また、第5図は窒素ガスを混入させた状態でのPI(値
6の吸収液における炭酸カルシウムの溶解度と時間との
関係を示すグラフである。
Further, FIG. 5 is a graph showing the relationship between the solubility of calcium carbonate in an absorption liquid with PI (value 6) and time in a state where nitrogen gas is mixed.

これによればCta度Oppmの曲線d及びCt濃度2
0.000 ppmの曲Seも略同じライフf描き、C
ta度に関係なく高い溶解度及び溶7テr速度を示して
おり、むしろctH度が上昇しても何ら曝気処理を行な
わない場合よりも高い溶解度及び溶M速度を示している
(第・1図中曲線a参照)。これは、液中に溶解した炭
酸カルシウムが下記式(5) vc示す如くCO2全分
離して、曝気に15 ’JEじた気泡がこのCO21伴
ってガス中に放散することとなり、そのため炭酸カル/
ラムが溶j管度の高いCaOや下記式(6)で示す如(
Ca(OH)2 VCなるので炭酸力ルンウトの溶解が
促進されるからである。
According to this, the curve d of Cta degree Oppm and the Ct concentration 2
0.000 ppm's song Se also depicts almost the same life f, C
It shows high solubility and dissolution rate regardless of the ctH degree, and even if the ctH degree increases, it shows higher solubility and dissolution M rate than when no aeration treatment is performed (Figure 1). (See middle curve a). This is because the calcium carbonate dissolved in the liquid completely separates CO2 as shown by the following equation (5), and bubbles that have been aerated by 15'JE are released into the gas together with this CO21.
If the ram is CaO with a high melting degree or as shown in the following formula (6) (
This is because Ca(OH)2 VC promotes the dissolution of carbonic acid.

CaCO3−+ CaO−1−CO2↑       
      、、、(5)CaO−1−H2O−+ C
a (OH) 2              −(6
)従って、吸収液へ混入させる気体或いは曝気用のガス
は窒素ガスに限ることなく脱硫処理後の排ガスなど全使
用するようにしても同様な効果を生ずる。
CaCO3-+ CaO-1-CO2↑
, , (5) CaO-1-H2O-+ C
a (OH) 2 -(6
) Therefore, the gas mixed into the absorption liquid or the aeration gas is not limited to nitrogen gas, and the same effect can be obtained even if all exhaust gas such as the exhaust gas after desulfurization treatment is used.

以上の実験事実から、脱硫処理に際して吸収液を循環使
用することによりCt濃度が上昇した場合にあっても、
この吸収液に排ガスを混入させ、これを曝気処理するこ
とにより、吸収剤たる炭酸カルシウムの溶解度及び溶解
速度の低下を防止するばかりでなく、逆に高くできるこ
とが判明する。
From the above experimental facts, even if the Ct concentration increases due to circulating absorption liquid during desulfurization treatment,
It has been found that by mixing exhaust gas into this absorption liquid and subjecting it to aeration treatment, it is possible not only to prevent the solubility and dissolution rate of calcium carbonate, which is an absorbent, from decreasing, but also to increase the solubility and dissolution rate.

従って、本発明によれば吸収液中のCt濃度が上昇1−
でも高い脱硫率を維持することができる。
Therefore, according to the present invention, the Ct concentration in the absorption liquid increases 1-
However, a high desulfurization rate can be maintained.

また、酸化塔5にで石膏全生成するに際しては、液溜め
タンク12内で析出した石膏を核として、より石膏の析
出が促進されることから、酸化塔5を小型化できるし、
又粒径の大きい品質良好な石膏全回収することができる
In addition, when all gypsum is produced in the oxidation tower 5, the gypsum precipitation is further promoted using the gypsum precipitated in the liquid storage tank 12 as a core, so the oxidation tower 5 can be made smaller.
In addition, it is possible to recover all of the gypsum of good quality with large particle size.

更に、吸収液に混入させる気体として脱硫処理後の湿っ
た排ガスを使用することと(〜たので、排ガス導入部た
るスパーツヤ15に石膏が析出して月詰丑りすることが
なく、また排ガスの絶対量も増加することがない。
Furthermore, by using damp exhaust gas after desulfurization treatment as the gas to be mixed into the absorption liquid, there is no possibility that gypsum will be deposited on the supertower 15, which is the exhaust gas introduction part, and the exhaust gas will become clogged. The absolute amount also does not increase.

次に、第3図に基づいて第2の発明について説明する。Next, the second invention will be explained based on FIG.

捷ず、第3図は第2の発明に係る方法を説明するための
装置を示す図であり、本発明の特長とするところは脱硫
処理後の排ガスの一部4aを、液溜めタンク12内の吸
収液3にだけでなく更Vこ循環系10内を流れる吸収液
にも混入させるようにし、前記第1の発明に比較して更
に炭酸カルシウムの溶解度及び溶解速度を高めるように
した点にある。
3 is a diagram showing an apparatus for explaining the method according to the second invention, and the feature of the present invention is that a part 4a of the exhaust gas after the desulfurization treatment is transferred into the liquid storage tank 12. The calcium carbonate is mixed not only in the absorption liquid 3 but also in the absorption liquid flowing in the circulation system 10, thereby further increasing the solubility and dissolution rate of calcium carbonate compared to the first invention. be.

すなわち、脱硫処理後の排ガス4の一部4ak分岐させ
、そしてこの分岐された排ガス4aを更に分岐させて、
一方の排ガス4bを前記第1の発明と同様に液溜めタン
ク12内の吸収液3中に混入させる。そして、分岐され
た他の排ガス4C’(c−循環系10に設けた気液混合
槽17へ導入して、この系10内を流れる吸収液3 b
 VC混入し、この吸収液3bを曝気処理する。
That is, a part 4ak of the exhaust gas 4 after the desulfurization treatment is branched, and the branched exhaust gas 4a is further branched,
One of the exhaust gases 4b is mixed into the absorption liquid 3 in the liquid storage tank 12 in the same manner as in the first invention. Then, the other branched exhaust gas 4C' (c) is introduced into the gas-liquid mixing tank 17 provided in the circulation system 10, and the absorption liquid 3b flowing in this system 10 is
VC is mixed in and this absorption liquid 3b is aerated.

この発明によれば、第1の発明に比較して、更に吸収剤
たる炭酸カルシウムの溶解度及び溶解速度を上1するこ
とができ、従って更に脱硫率の向上を図ることができる
According to this invention, compared to the first invention, the solubility and dissolution rate of calcium carbonate as an absorbent can be further improved by one level, and therefore the desulfurization rate can be further improved.

また、吸収塔側での石膏の析出限が多く々ることから、
更に酸化塔5内での石膏の析出全促進させることができ
る。更に、吸収塔2内へ吸収液を噴霧する際、吸収液と
排ガスとの混合体を噴霧することから、より細かな液滴
とすることができ、従って、脱硫処理に際して、排ガス
との接触面積をより犬きくすることができる。
In addition, since there are many gypsum precipitation limits on the absorption tower side,
Furthermore, the precipitation of gypsum within the oxidation tower 5 can be completely promoted. Furthermore, when spraying the absorption liquid into the absorption tower 2, since a mixture of the absorption liquid and the exhaust gas is sprayed, finer droplets can be formed, and therefore, the contact area with the exhaust gas during desulfurization treatment can be reduced. You can make the dog listen more clearly.

以上、要するに本発明によれば次のような優れた効果を
発揮することができる。
In short, according to the present invention, the following excellent effects can be achieved.

(リ 吸収液中のCt濃度が高くなった場合にあっても
、吸収剤たる炭酸カルシウムの溶解度及び溶解速度を高
く維持することができ、従って、脱硫率の低下を防止で
きるばかりでなく、これを常に高く維持することができ
る。
(Li) Even if the Ct concentration in the absorbent increases, the solubility and dissolution rate of calcium carbonate, which is the absorbent, can be maintained high, and therefore, not only can a decrease in the desulfurization rate be prevented, but also can be kept high at all times.

(2)脱硫処理後の湿った排ガスを吸収液中に混入させ
ることとしているので、排ガス導入部たるス・や−ツヤ
に石膏が析出して目詰壕りを起こすことがなく、しかも
排ガスの絶対量も増加することがない。
(2) Since the damp exhaust gas after desulfurization treatment is mixed into the absorption liquid, there is no possibility that gypsum will precipitate in the exhaust gas introduction area and cause clogging. The absolute amount also does not increase.

(3)酸化塔内での石膏の生成が促進されることから、
この酸化塔を能力の小さな小型々ものとすることができ
、しかも粒径の大きな品質良好な石膏全回収することが
できる。
(3) Since the production of gypsum within the oxidation tower is promoted,
This oxidation tower can be made small and small in capacity, and moreover, it is possible to recover all of the gypsum with large particle size and good quality.

(4)方法が簡単なため、既設の装置に大巾な変更を加
えることなく容易に採用し得る。
(4) Since the method is simple, it can be easily adopted without making major changes to existing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排煙脱硫方法を説明するための装置を示
す7bめの図、第2図は第1の発明に係る排煙脱硫方法
の好適一実施例を説明するための装置を示す図、第3南
は第2の発明に係る排煙脱硫方法の好適一実施例を説明
するための装置を示す図、第4図は何ら気体を混入させ
ない状態でOPHPCO2収液における炭酸カルシウム
の溶解度と時間との関係を示すグラフ、第5図は窒素ガ
スを混入させた状態での1)II値6の吸収液における
炭酸カルシウムの溶解度と時間との関係を示すグラフで
ある。 尚、図中1は胡がス、2は吸収塔・3,3a。 3bは吸収液、4.4a、 4b、 4 Cは脱硫処理
後の排ガス、5は酸化塔、10は循環系、12は液溜め
タンク、13は炭酸カルシウム、14は曝気ファン、1
7は気液混合槽である。 第4図 第5図
Fig. 1 is a 7bth diagram showing an apparatus for explaining a conventional flue gas desulfurization method, and Fig. 2 shows an apparatus for explaining a preferred embodiment of the flue gas desulfurization method according to the first invention. Figure 3, South is a diagram showing an apparatus for explaining a preferred embodiment of the flue gas desulfurization method according to the second invention, and Figure 4 is a diagram showing the solubility of calcium carbonate in the OPHPCO2 harvested liquid in a state where no gas is mixed. FIG. 5 is a graph showing the relationship between the solubility of calcium carbonate in an absorption liquid with 1) II value of 6 and time in a state where nitrogen gas is mixed. In addition, in the figure, 1 is the gas tank, and 2 is the absorption tower 3, 3a. 3b is an absorption liquid, 4.4a, 4b, 4C is an exhaust gas after desulfurization treatment, 5 is an oxidation tower, 10 is a circulation system, 12 is a liquid storage tank, 13 is calcium carbonate, 14 is an aeration fan, 1
7 is a gas-liquid mixing tank. Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)炭酸カルシウムを含む吸収剤が溶解された吸収液
を貯留するための液溜めタンクを有し、該タンク内の吸
収液を循環させつつこの循環吸収液とボイラー等の燃焼
機器からの排ガスとを接触反応させて排ガスを脱硫処理
する排煙脱硫方法において、上記液溜めタンク内の吸収
液中に上記脱硫処理後の排ガスを混入して、上記吸収液
への炭酸力ルンウムの溶解度を上げるようにしたことを
特徴とする排煙脱硫方法。
(1) It has a liquid storage tank for storing an absorption liquid in which an absorbent containing calcium carbonate is dissolved, and while the absorption liquid in the tank is circulated, this circulating absorption liquid and exhaust gas from combustion equipment such as a boiler are collected. In a flue gas desulfurization method in which exhaust gas is desulfurized by a catalytic reaction, the flue gas after the desulfurization treatment is mixed into the absorption liquid in the liquid storage tank to increase the solubility of carbonic acid in the absorption liquid. A flue gas desulfurization method characterized by:
(2)炭酸カルシウムを含む吸収剤が溶解された吸収液
を貯留するための液溜めタンクを有し、該タンク内の吸
収液を、循環系を介して循環させ、該循環吸収液とボイ
ラー等の燃焼機器からの排ガスとを接触反応させて排ガ
スを脱硫処理する排煙脱硫方法において、上記液溜めタ
ンク内の吸収液中と、」−記循環系内ケ流れる吸収液中
とに上記脱硫処理後の排ガスを混入U−で、これら吸収
液への炭酸力ルンウムの溶解度を」二げるようにしたこ
とを特徴とする排煙脱硫方法。
(2) It has a liquid storage tank for storing an absorption liquid in which an absorbent containing calcium carbonate is dissolved, and the absorption liquid in the tank is circulated through a circulation system, and the circulating absorption liquid and a boiler etc. In a flue gas desulfurization method that desulfurizes exhaust gas by causing a contact reaction with exhaust gas from combustion equipment, the desulfurization treatment is applied to the absorption liquid in the liquid storage tank and the absorption liquid flowing in the circulation system. A flue gas desulfurization method characterized in that the solubility of carbonic acid in these absorbing liquids is increased by mixing in the latter flue gas.
JP56193742A 1981-12-03 1981-12-03 Desulfurization of stack gas Pending JPS5898125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193742A JPS5898125A (en) 1981-12-03 1981-12-03 Desulfurization of stack gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193742A JPS5898125A (en) 1981-12-03 1981-12-03 Desulfurization of stack gas

Publications (1)

Publication Number Publication Date
JPS5898125A true JPS5898125A (en) 1983-06-10

Family

ID=16313049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193742A Pending JPS5898125A (en) 1981-12-03 1981-12-03 Desulfurization of stack gas

Country Status (1)

Country Link
JP (1) JPS5898125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050931A (en) * 2010-09-01 2012-03-15 Babcock Hitachi Kk Flue gas treatment apparatus and flue gas treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050931A (en) * 2010-09-01 2012-03-15 Babcock Hitachi Kk Flue gas treatment apparatus and flue gas treatment method

Similar Documents

Publication Publication Date Title
US5665317A (en) Flue gas scrubbing apparatus
EP0295908A2 (en) Flue gas desulfurization
CN106964238A (en) A kind of smoke comprehensive processing method and tandem smoke gas comprehensive treatment system, monoblock type smoke gas comprehensive treatment system
JP3332678B2 (en) Wet flue gas desulfurization equipment
EP0128589A2 (en) Method for the purification of flue gas and plant for realization of the method
CN106166438B (en) A kind of method and device of photodissociation chlorine aqueous solution induced radical removing hydrogen sulfide
CN111495160A (en) Desulfurization and denitrification system and method by using ozone oxidation in cooperation with ammonia process
JP3727086B2 (en) Wet flue gas desulfurization method and apparatus
CN212492355U (en) Ozone oxidation is SOx/NOx control system of ammonia process in coordination
JPS5898125A (en) Desulfurization of stack gas
US7351387B2 (en) Method for removing impurities accumulated in a scrubbing fluid
JP3681184B2 (en) Seawater-based wet flue gas desulfurization method and apparatus
JP3132641B2 (en) Gypsum production method
JPS62225226A (en) Wet stack-gas desulfurization facility
CN106731631A (en) Simultaneous desulfuration and denitration technique by wet flue gas method
CN106582246A (en) Carbide slag wet-method flue gas simultaneous desulfurization and denitrification process
JPS6271516A (en) Method and device for desulfurizing waste gas from boiler or the like
JPH0691938B2 (en) Method for removing sulfur oxides in exhaust gas
JPS5898126A (en) Desulfurization of stack gas
JPS5895543A (en) Desulfurizing method for waste gas
EP0708680B1 (en) Oxidation process
CN219539906U (en) Desulfurization system
JP2000262850A (en) Flue-gas desulfurization method and system therefor
JP3523708B2 (en) Exhaust gas treatment method and exhaust gas treatment device for coal-fired exhaust gas
JPS6115933Y2 (en)