JPS62225226A - Wet stack-gas desulfurization facility - Google Patents

Wet stack-gas desulfurization facility

Info

Publication number
JPS62225226A
JPS62225226A JP61067480A JP6748086A JPS62225226A JP S62225226 A JPS62225226 A JP S62225226A JP 61067480 A JP61067480 A JP 61067480A JP 6748086 A JP6748086 A JP 6748086A JP S62225226 A JPS62225226 A JP S62225226A
Authority
JP
Japan
Prior art keywords
absorption
dust removal
oxidation
slurry
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61067480A
Other languages
Japanese (ja)
Other versions
JPH0722675B2 (en
Inventor
Tadaaki Mizoguchi
忠昭 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61067480A priority Critical patent/JPH0722675B2/en
Publication of JPS62225226A publication Critical patent/JPS62225226A/en
Publication of JPH0722675B2 publication Critical patent/JPH0722675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance purity of recovered gypsum by providing both a dust removal part due to gas-liquid contact and an absorption oxidation part performing adsorption and oxidation of SOx due to gas-liquid contact and providing a communicating line wherein circulating slurry for dust removal is fed to the absorption oxidation part from the dust removal part. CONSTITUTION:Exhaust gas 1 is introduced into a dust removal tower 3 through an inlet duct 2 and slurry fed from a circulation tank 4 for dust removal is sprayed and it is removed from dust, cooled and sent to an absorption tower 6 of an absorption oxidation part via a demister 5. Circulating slurry for absorption of a Ca absorbent is sprayed through nozzles 10 in the absorption tower 6 and SOx is absorbed and removed. The circulating slurry for absorption falls into a circulation tank 7 and a fine bubbles 29 are fed and CaSO3 is oxidized to produce gypsum. One part of the circulating slurry for dust removal is fed to the circulation tank 7 through a duct 31 and a metallic ion becoming a catalyst for oxidizing CaSO3 is fed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス中から硫黄酸化物を吸収除去すると共
に、その吸収により生じた亜硫酸カルシウムを石膏に酸
化して回収する湿式排煙脱硫装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a wet flue gas desulfurization device that absorbs and removes sulfur oxides from flue gas, and recovers calcium sulfite produced by the absorption by oxidizing it into gypsum. Regarding.

〔従来技術とその問題点〕[Prior art and its problems]

湿式排煙脱硫においては、アルカリ金属、アルカリ土類
金属、アンモニウム等の水酸化物、炭酸塩、亜硫酸塩ま
たは酸化物の溶液または懸濁液を用いて排ガス中の硫黄
酸化物を吸収・除去し、副生品として安定な硫酸塩を回
収する方法が一般的である。
In wet flue gas desulfurization, sulfur oxides in flue gas are absorbed and removed using solutions or suspensions of hydroxides, carbonates, sulfites, or oxides of alkali metals, alkaline earth metals, ammonium, etc. A common method is to recover stable sulfate as a by-product.

第2図により、カルシウム系吸収剤を用いて硫酸カルシ
ウム(石膏)を回収する従来技術について説明する。ボ
イラ等(図示せず)からの排ガス1は除塵塔入口ダクト
2から除塵塔3に導かれ、ここで除塵塔循環タンク4か
らのカルシウム化合物(CaCO,等)を含む除塵用循
環スラリがスプレされることによって除塵・冷却される
。ついで飛散ミストがデミスタ5により除去された後に
吸収塔6に送られる。吸収塔6内では吸収塔循環タンク
7から抜出され、吸収塔循環ポンプ8を介して管路9か
ら供給されるカルシウム系の吸収用循環スラリがノズル
10からスプレされ、排ガス中の硫黄酸化物が吸収除去
される。排ガス中の同伴ミストはデミスタ11によって
除去され、清浄ガス12がダクト13を介して煙道へ導
かれる。
A conventional technique for recovering calcium sulfate (gypsum) using a calcium-based absorbent will be explained with reference to FIG. Exhaust gas 1 from a boiler or the like (not shown) is led from a dust removal tower inlet duct 2 to a dust removal tower 3, where a circulating slurry for dust removal containing calcium compounds (CaCO, etc.) from a dust removal tower circulation tank 4 is sprayed. Dust is removed and cooled by this process. The scattered mist is then removed by a demister 5 and then sent to an absorption tower 6. Inside the absorption tower 6, a calcium-based absorption circulating slurry drawn from the absorption tower circulation tank 7 and supplied from the pipe line 9 via the absorption tower circulation pump 8 is sprayed from the nozzle 10 to remove sulfur oxides in the exhaust gas. is absorbed and removed. Entrained mist in the exhaust gas is removed by a demister 11 and clean gas 12 is led to the flue via a duct 13.

一方、硫黄酸化物を吸収したカルラム系吸収剤を含む吸
収用循環スラリは吸収塔6及び吸収塔循環タンク7内で
亜硫酸カルシウムになるが、この一部は吸収塔6内にお
いて排ガス中の酸素によって一部酸化されて石膏になる
。この吸収用循環スラリは吸収塔循環ポンプ8を介して
管路9から吸収塔内上部のノズル10へ、またはブリー
ドポンプ14を介して除塵塔循環タンク4会供給される
On the other hand, the circulation slurry for absorption containing the carrum absorbent that has absorbed sulfur oxides becomes calcium sulfite in the absorption tower 6 and the absorption tower circulation tank 7, but some of this is converted into calcium sulfite in the absorption tower 6 by oxygen in the exhaust gas. It is partially oxidized and becomes gypsum. This circulation slurry for absorption is supplied from a pipe 9 via an absorption column circulation pump 8 to a nozzle 10 in the upper part of the absorption column, or via a bleed pump 14 to four dust removal column circulation tanks.

除塵塔循環タンク4内の除塵用スラリは除塵塔3内で排
ガスと気液接触し、排ガス中の硫黄酸化物を除去するこ
とによりスラリ中の未反応の石灰石の量を減じて副生石
膏回収系へ抜き出される。即ち、まず反応槽15に抜き
出され、ここで硫酸16を添加することによって含有さ
れる未反応CaC01が石膏に転換され、また亜硫酸カ
ルシウムの酸化に好適なpHに調整される。このスラリ
は酸化塔供給ポンプ17により酸化塔18に供給され、
ここで亜硫酸カルシウムは空気19によって石膏に酸化
される。得られる石膏スラリはシラフナ20へ導かれ、
固液分離された後に遠心用分離機21等で脱水され1石
膏22が回収される。
The slurry for dust removal in the dust removal tower circulation tank 4 comes into gas-liquid contact with the exhaust gas in the dust removal tower 3, and by removing sulfur oxides from the exhaust gas, the amount of unreacted limestone in the slurry is reduced and a by-product gypsum recovery system is created. is extracted. That is, first, it is extracted into the reaction tank 15, where the unreacted CaC01 contained therein is converted into gypsum by adding sulfuric acid 16, and the pH is adjusted to a value suitable for oxidizing calcium sulfite. This slurry is supplied to the oxidation tower 18 by the oxidation tower supply pump 17,
Here the calcium sulfite is oxidized by air 19 to gypsum. The resulting gypsum slurry is guided to Shirafuna 20,
After solid-liquid separation, it is dehydrated using a centrifugal separator 21 or the like, and one gypsum 22 is recovered.

固液分離及び脱水時の濾過水23は石灰石スラリの調製
時に再使用される。硫黄酸化物の吸収剤である石灰石ス
ラリは石灰石スラリタンク24において、石灰石25、
濾過水23及び補給水26より調製され、ブリードポン
プ27により吸収塔循環タンク7内に供給される。
The filtered water 23 during solid-liquid separation and dewatering is reused during the preparation of limestone slurry. The limestone slurry, which is an absorbent for sulfur oxides, is stored in a limestone slurry tank 24 in which limestone 25, limestone 25,
It is prepared from filtered water 23 and make-up water 26, and is supplied into the absorption tower circulation tank 7 by a bleed pump 27.

このように、従来法では吸収塔6内での硫黄酸化物の吸
収過程で亜硫酸カルシウムを完全に石膏とすることは困
難であるため、吸収系で生ずる亜硫酸カルシウムを前記
の如く別途設けた酸化塔18において石膏にする方法が
採用されてきた。
In this way, in the conventional method, it is difficult to completely convert calcium sulfite into gypsum during the absorption process of sulfur oxides in the absorption tower 6. In 18, the method of making it into plaster has been adopted.

しかし、近年酸化塔18を省略し、硫黄酸化物の吸収部
において硫黄化合物の硫酸カルシウムへの酸化を進めよ
うとする多くの方法が提案されている。その例として、
酸化触媒を利用する方法(特公昭58−36619号公
報)、吸収塔循環タンクや別途設けた反応槽に空気を吹
込む方法(特開昭55−116423号公報。
However, in recent years, many methods have been proposed in which the oxidation tower 18 is omitted and the oxidation of sulfur compounds to calcium sulfate proceeds in the sulfur oxide absorption section. As an example,
A method using an oxidation catalyst (Japanese Patent Publication No. 58-36619), a method of blowing air into an absorption tower circulation tank or a separately provided reaction tank (Japanese Patent Application Laid-Open No. 55-116423).

同116424号公報、 特開昭58−98126号公報。Publication No. 116424, JP-A-58-98126.

同92452号公報、 同95543号公報、 同104619号公報、 実開昭58−95218号公報)あるいは2段脱硫法(
特開昭58−74126号公報)を挙げることができる
。しかし、触媒を使用する方法では、これを高率で回収
しない限り経済的には成立せず、また空気吹込み法にあ
っては多量の空気を微細気泡として供給しない限り、従
来の酸イヒ塔18に代わる程の速度で亜硫酸カルラムを
酸化することはできない。
Publication No. 92452, Publication No. 95543, Publication No. 104619, Japanese Utility Model Application No. 58-95218) or two-stage desulfurization method (
JP-A-58-74126). However, the method using a catalyst is not economically viable unless it is recovered at a high rate, and the air blowing method is not economically viable unless a large amount of air is supplied as fine bubbles. It is not possible to oxidize carlum sulfite at a rate fast enough to replace 18.

これに対し、本発明者らは、先に、吸収塔6底部の吸収
塔の循環タンク7に取付けられた撹拌機28の翼近傍に
空気を供給して微細気泡を発生させるという酸化方式を
採用すれば別途に酸化塔を用いなくても排ガス中の硫黄
酸化物を石膏として回収できることを確認している。本
方式においては吸収剤であるCaCO2を含む吸収用循
環スラリを吸収塔6内にスプレーすることによって硫黄
酸化物の吸収のみならずダストの除去をも同時に行うこ
とができる(ダスト混合方式)。ところで、亜硫酸カル
シウムの酸素酸化反応には微量の金属イオンが触媒とし
て作用することが知られているが、このダスト混合方式
においては鉄などの元素がダストに付随して吸収系に混
入することになり。
In response, the present inventors first adopted an oxidation method in which air is supplied near the blades of the agitator 28 attached to the circulation tank 7 of the absorption tower at the bottom of the absorption tower 6 to generate fine bubbles. It has been confirmed that the sulfur oxides in the exhaust gas can be recovered as gypsum without using a separate oxidation tower. In this method, by spraying an absorption circulation slurry containing CaCO2 as an absorbent into the absorption tower 6, not only the absorption of sulfur oxides but also the removal of dust can be performed at the same time (dust mixing method). By the way, it is known that trace amounts of metal ions act as catalysts in the oxygen oxidation reaction of calcium sulfite, but in this dust mixing method, elements such as iron accompany the dust and get mixed into the absorption system. Become.

亜硫酸カルシウムの酸化を行う上では好ましい結果を与
える。
It gives favorable results in oxidizing calcium sulfite.

これに対し、排ガス中にCQ、Fなどを多量に含有する
場合には石膏の純度を低下させるため、別途に除塵部を
設け、この除塵部と吸収部のスラリの混合を抑えるダス
ト分離方式を採用することが望ましい。しかし、このよ
うにダスト分離方式を採用するとダストに付随して吸収
系に混入して来る触媒物質の量は著しく少なくなり、従
って亜硫酸カルシウムの酸化速度も低下する結果となる
On the other hand, if the exhaust gas contains a large amount of CQ, F, etc., the purity of the gypsum will decrease, so a separate dust removal section is installed and a dust separation method is used to prevent mixing of the slurry in the dust removal section and the absorption section. It is desirable to adopt it. However, when such a dust separation method is adopted, the amount of catalyst material that accompanies the dust and enters the absorption system is significantly reduced, resulting in a decrease in the oxidation rate of calcium sulfite.

本発明の目的は、別途に酸化塔を設置することなしに排
ガス中の硫黄酸化物を高効率で石膏として回収でき、し
かも排ガス中のダストは石膏中に混入しないようにして
高純度の石膏を得ることのできる湿式排煙脱硫装置を提
供するにある。
The purpose of the present invention is to be able to recover sulfur oxides in exhaust gas as gypsum with high efficiency without installing a separate oxidation tower, and to produce high-purity gypsum by preventing dust in the exhaust gas from being mixed into the gypsum. The objective is to provide a wet flue gas desulfurization system that can be obtained.

〔問題点を解決するための手段及び作用〕本発明は、カ
ルシウム系化合物を含有する除塵用循環スラリと排ガス
とを気液接触させて排ガス中のダストを除去する除頭部
と、塔底部に設けた吸収塔循環タンク内に貯溜したカル
シウム系化合物を含有する吸収用循環スラリを塔上部か
らスプレして前記除頭部を通過した排ガスと気液接触さ
せて硫黄酸化物を吸収除去すると共に該吸収塔循環タン
ク内のスラリ中に微細気泡を供給して前記硫黄酸化物の
吸収によって生じる亜硫酸カルシウムを石膏に酸化する
吸収・酸化部を備えた湿式排煙脱硫装置において、除塵
用循環スラリを除塵部から吸収・酸化部に供給する連通
ラインを設けることにより、亜硫酸カルシウムの酸化触
媒になる金属イオンを除塵用循環スラリの吸収・酸化部
への一部供給により有効に利用し、生成する石膏の純度
を低下させる成分の吸収・酸化部への流入は防止するよ
うにしたものである。
[Means and effects for solving the problems] The present invention provides a head removal device for removing dust from the flue gas by bringing the circulating slurry for dust removal containing a calcium-based compound into gas-liquid contact with the flue gas, and a tower bottom part. The circulating slurry for absorption containing calcium-based compounds stored in the circulation tank of the absorption tower provided is sprayed from the upper part of the tower and brought into gas-liquid contact with the exhaust gas that has passed through the head removal to absorb and remove sulfur oxides. In a wet flue gas desulfurization equipment equipped with an absorption/oxidation section that oxidizes calcium sulfite produced by the absorption of sulfur oxides into gypsum by supplying fine air bubbles into the slurry in the absorption tower circulation tank, dust is removed from the circulating slurry for dust removal. By providing a communication line to supply from the absorption and oxidation section to the absorption and oxidation section, metal ions that act as oxidation catalysts for calcium sulfite can be effectively used by partially supplying the circulating slurry for dust removal to the absorption and oxidation section. This is to prevent components that reduce purity from flowing into the absorption/oxidation section.

〔実施例〕〔Example〕

第1図に示した如く、ボイラ等からの排ガス1は除塵部
の除塵塔入口ダクト2から除塵塔3に導かれ、ここで除
塵塔循環タンク4からの除塵用循環スラリがスプレされ
ることによって除塵・冷却され、ついで飛散ミストがデ
ミスタ5により除去された後に吸収・酸化部の吸収塔6
に送られる。
As shown in FIG. 1, exhaust gas 1 from a boiler or the like is led from a dust removal tower inlet duct 2 of a dust removal section to a dust removal tower 3, where it is sprayed with circulating slurry for dust removal from a dust removal tower circulation tank 4. After the dust is removed and cooled, and the scattered mist is removed by the demister 5, the absorption tower 6 of the absorption/oxidation section
sent to.

この吸収塔6内では吸収塔循環タンク7から抜き出され
、吸収塔循環ポンプ8を介して管路9から供給されるカ
ルシウム系吸収剤の吸収用循環スラリがノズル1oから
スプレされ、排ガス中の硫黄酸化物が吸収除去される。
In this absorption tower 6, absorption circulation slurry of calcium-based absorbent extracted from the absorption tower circulation tank 7 and supplied from the pipe 9 via the absorption tower circulation pump 8 is sprayed from the nozzle 1o, and the absorption circulation slurry is sprayed from the nozzle 1o. Sulfur oxides are absorbed and removed.

排ガス中の同伴ミストはデミスタ11によって除去され
、清浄ガス12がダクト13を介して煙道へ導かれる。
Entrained mist in the exhaust gas is removed by a demister 11 and clean gas 12 is led to the flue via a duct 13.

脱硫に供された吸収用循環スラリは吸収塔循環タンク7
中に落下するが1本発明の方法においては吸収塔循環タ
ンク7中に空気よりなる微細気泡29が供給され、排ガ
ス中の硫黄酸化物の吸収によって生じた亜硫酸カルシウ
ムが酸化されるようになっている。吸収塔循環タンク7
内における亜硫酸カルシウムの空気酸化方式としては該
タンク7中に微細気泡が発生し、スラリ中の亜硫酸カル
シウムの量が所期の値(石膏を回収する場合には、亜硫
酸カルシウム含有量は通常0.5%以下)に抑えられる
限りいかなる方法であってもよい。具体的には第1図に
示した様に吸収塔循環タンク7内に設置された撹拌機2
8の翼近傍に微細気泡29を供給する方法が1本目的に
合致する酸化速度を与える。本酸化方式によって吸収塔
循環タンク7内における亜硫酸カルシウムの完全酸化を
達成するためには撹拌翼28の形状、撹拌速度、空気供
給量、スラリpH等を適正化する必要がある。
The absorption circulation slurry subjected to desulfurization is transferred to the absorption tower circulation tank 7.
In the method of the present invention, fine air bubbles 29 made of air are supplied into the absorption tower circulation tank 7, and calcium sulfite produced by absorption of sulfur oxides in the exhaust gas is oxidized. There is. Absorption tower circulation tank 7
In the air oxidation method of calcium sulfite in the tank 7, fine bubbles are generated in the tank 7, and the amount of calcium sulfite in the slurry reaches the desired value (when recovering gypsum, the calcium sulfite content is usually 0. Any method may be used as long as it can be suppressed to (5% or less). Specifically, as shown in FIG. 1, the stirrer 2 installed in the absorption tower circulation tank 7
One method of supplying microbubbles 29 near the blades 8 provides an oxidation rate that meets the objective. In order to achieve complete oxidation of calcium sulfite in the absorption tower circulation tank 7 by this oxidation method, it is necessary to optimize the shape of the stirring blade 28, stirring speed, air supply amount, slurry pH, etc.

このうち、スラリp Hについては硫黄酸化物の吸収と
生成する亜硫酸カルシウムの酸化が所期の速度で進行す
る条件でなければならない。硫黄酸化物の吸収及び亜硫
酸カルシウムの酸化に対する適正pHはそれぞれ5.5
以上及び4.0〜5.5とされており1両反応に共通な
適正pHは5.5付近に限定されることになる。これに
対し、本発明者らは、吸収塔循環タンク7中に落下して
来るスラリ中の亜硫酸カルシウムは溶液状態にあり、こ
のタンク7内における酸化手段が適切ならばpH6付近
においても亜硫酸カルシウムの酸化は充分に進行するこ
と、また、この酸化手段としては上記の撹拌翼28に空
気を吹き付ける方法が好結果を与えることを確認してい
る。本発明は、これを更に改良したものである。
Among these, the conditions for the slurry pH must be such that the absorption of sulfur oxides and the oxidation of the produced calcium sulfite proceed at a desired rate. The appropriate pH for absorption of sulfur oxides and oxidation of calcium sulfite is 5.5, respectively.
Above, the appropriate pH common to both reactions is limited to around 5.5. On the other hand, the present inventors have discovered that calcium sulfite in the slurry falling into the absorption tower circulation tank 7 is in a solution state, and if the oxidation means in this tank 7 is appropriate, calcium sulfite can be dissolved even at a pH of around 6. It has been confirmed that the oxidation proceeds sufficiently and that the method of blowing air onto the stirring blades 28 described above gives good results as the oxidation means. The present invention further improves this.

亜硫酸カルシウムの酸素酸化反応に対してはF e”、
 Mn”、 Co”、 Cu”+等の金属イオンが触媒
作用をすることがよく知られている。ここで、まずこの
金属イオンの働きについて説明する。
For the oxygen oxidation reaction of calcium sulfite, F e”,
It is well known that metal ions such as Mn", Co", and Cu"+ act as catalysts. First, the function of these metal ions will be explained.

通常の湿式脱硫においては、使用する水、石灰石のほか
排ガス中のダストに伴なわれて、これら金属元素が吸収
系に混入してくるために、特に触媒イオンを意図的に添
加しなくても亜硫酸カルシウムの酸化は純水系における
よりも速やかに進行する、特にダスト混合方式において
は、従来、除塵部から抜き出された除塵用循環スラリか
酸化塔18に導かれるために、Fe”+を主体とするイ
オンの触媒効果が現われる。一方、ダスト分離方式の場
合にも、一部のダストは除塵部を通過して吸収部に混入
するほか、石灰石に起因する金属イオンも触媒として作
用する。また、いずれの方式においても亜硫酸カルシウ
ムを酸化塔18において酸化すると次式に従って硫酸が
遊離してpHが低Ca(HSO,)、+01+CaSO
4+H2So。
In normal wet desulfurization, these metal elements are mixed into the absorption system along with the water and limestone used, as well as dust in the exhaust gas, so it is not necessary to intentionally add catalyst ions. The oxidation of calcium sulfite proceeds more quickly than in a pure water system.Especially in the dust mixing method, conventionally, the circulating slurry for dust removal extracted from the dust removal section is led to the oxidation tower 18, so that the oxidation of calcium sulfite is mainly Fe"+. On the other hand, in the case of the dust separation method, some dust passes through the dust removal section and enters the absorption section, and metal ions originating from limestone also act as a catalyst. In either method, when calcium sulfite is oxidized in the oxidation tower 18, sulfuric acid is liberated according to the following formula, and the pH becomes low Ca (HSO, ), +01+CaSO,
4+H2So.

下するために、スラリ中に固体として存在していた触媒
イオンは酸化塔内で溶解することになる。
In order to remove the oxidation, the catalyst ions that were present as solids in the slurry are dissolved in the oxidation tower.

従って1石膏の分離母液は吸収剤の調製用に循環使用さ
れるので専用酸化塔を持つ限り、ダスト分離、ダスト混
合、いずれの方式においても酸化塔18においては金属
イオンの触媒効果は発現することになる。
Therefore, since the separated mother liquor of 1 gypsum is recycled for use in preparing the absorbent, as long as a dedicated oxidation tower is provided, the catalytic effect of metal ions will be exerted in the oxidation tower 18 regardless of whether it is dust separation or dust mixing. become.

これに対し、同一塔内で硫黄酸化物の吸収と亜硫酸カル
シウムの酸化を行う方式のうちダスト混合方式の場合に
はダストに起因する金属元素が吸収−酸化系に混入する
ことになるが、ダスト分離方式の場合にはダストに起因
しての金属元素の混入量は極めて少量となる。また、吸
収と酸化が同一のPH(5,5〜6.0)で行われ、専
用酸化塔を設置する場合のように酸が遊離する過程が含
まれないために、吸収塔循環タンク7内の吸収用循環ス
ラリ中の触媒イオンの濃度は他の方式よりも著しく低い
ものとなり、場合によっては亜硫酸カルシウムの酸化速
度が所期の値以下になる場合が現われる。
On the other hand, in the case of the dust mixing method, which absorbs sulfur oxides and oxidizes calcium sulfite in the same tower, metal elements originating from dust will mix into the absorption-oxidation system. In the case of the separation method, the amount of metal elements mixed in due to dust is extremely small. In addition, since absorption and oxidation are performed at the same pH (5.5 to 6.0), and the process of acid liberation is not included, unlike when installing a dedicated oxidation tower, the absorption tower circulation tank 7 The concentration of catalyst ions in the circulating slurry for absorption is significantly lower than in other methods, and in some cases, the oxidation rate of calcium sulfite may be lower than the desired value.

本発明は、このダスト分離方式の一塔式脱硫システムに
おける亜硫酸カルシウムの酸化速度を高める装置に関す
るものであり、吸収塔循環タンク7中の吸収用循環スラ
リを管路30から除塵塔循環タンク4に供給する一方、
除塵用循環スラリの一部を連通ラインとなる管路31を
通して除塵部から吸収・酸化部の吸収塔循環タンク7中
に供給することをその特徴とする。32はブリードポン
プを示す。これにより、亜硫酸カルシウムの酸化触媒と
なる金属イオンが吸収・酸化部に供給されることになる
。この除塵用循環スラリの供給量は亜硫酸カルシウムに
対する酸化触媒能によって決定されるが、必要以上に多
量に供給すると吸収系のCQ等の濃度が増大することに
なるので好ましくない、吸収塔循環タンク7から抜出さ
れたスラリの一部は管路33よりシラフナ20へ導かれ
The present invention relates to a device for increasing the oxidation rate of calcium sulfite in this dust separation type one-column desulfurization system, in which the circulation slurry for absorption in the absorption column circulation tank 7 is transferred from the pipe 30 to the dust removal column circulation tank 4. While supplying
Its feature is that a part of the circulation slurry for dust removal is supplied from the dust removal section to the absorption tower circulation tank 7 of the absorption/oxidation section through a pipe 31 serving as a communication line. 32 indicates a bleed pump. As a result, metal ions that act as an oxidation catalyst for calcium sulfite are supplied to the absorption/oxidation section. The supply amount of this circulation slurry for dust removal is determined by the oxidation catalytic ability for calcium sulfite, but if it is supplied in an amount larger than necessary, the concentration of CQ, etc. in the absorption system will increase, which is undesirable. A part of the slurry extracted from the pipe is guided to the Shirafuna 20 through the pipe line 33.

固液分離された後、遠心分離機21等で脱水され。After solid-liquid separation, it is dehydrated using a centrifuge 21 or the like.

石膏22が回収される。固液分離及び脱水時の濾液23
は石灰石スラリの調製等に使用される。なお、硫黄酸化
物の吸収剤である石灰石25は石灰石スラリ調製タンク
24中に添加され、濾過水23及び補給水26と混合さ
れて石灰石スラリとなってブリードポンプ27を介して
吸収塔循環タンク7へ導かれる。
Gypsum 22 is collected. Filtrate 23 during solid-liquid separation and dehydration
is used for preparing limestone slurry, etc. Note that limestone 25, which is an absorbent for sulfur oxides, is added to a limestone slurry preparation tank 24, mixed with filtered water 23 and make-up water 26, and turned into limestone slurry, which is then sent to the absorption tower circulation tank 7 via a bleed pump 27. be led to.

失産透エエ 直径80aaのポリ塩化ビニル製タンクに10%の石膏
スラリを250Qを入れ、これにCa(HSO,)、を
0.35mo Q/Q、Fa : 1.7ppm、v:
 100ppb、Cu : 20ppbtNi:20p
pb、Mn:40ppbを含む溶液を16.7Q/hの
流量で供給した。このスラリのPHをCaC0,粉末あ
るいは(1+3)H2SO4を添加することによって5
.5に維持し、またタンク側面に取付けられた4台の撹
拌機(羽根径12(1m)に空気を1.2Nrrl’/
h一台(合計4.8Nni’/h)で供給するとともに
速度1.OOOrpmで撹拌し、この人ラリを16.7
 Q/hの流量で抜き出した<8F留時間15hに相当
する)。
Put 250Q of 10% gypsum slurry into a polyvinyl chloride tank with a diameter of 80 aa, and add Ca (HSO,), 0.35 mo Q/Q, Fa: 1.7 ppm, v:
100ppb, Cu: 20ppbtNi: 20p
A solution containing 40 ppb of pb and Mn was supplied at a flow rate of 16.7 Q/h. The pH of this slurry can be increased to 5 by adding CaC0, powder or (1+3)H2SO4.
.. 5, and four agitators (blade diameter 12 (1 m)) installed on the side of the tank pumped air at 1.2Nrrl'/
h (total 4.8Nni'/h) and at a speed of 1. Stir at OOOrpm, this person's rari is 16.7
<8F extracted at a flow rate of Q/h, corresponding to a residence time of 15 h).

反応開始5,10及び20h後の亜硫酸カルシウムの酸
化率はいずれも99%以上であった。
The oxidation rates of calcium sulfite 5, 10, and 20 hours after the start of the reaction were all 99% or higher.

尖嵐亘又工 実施例1の実験終了後にタンク内のスラリのPHを6.
0に調整したところ、5及び10h後の亜硫酸カルシウ
ムの酸化率はそれぞれ99.1及び98.8%であった
After completing the experiment of Tsugaran Watamata Example 1, the pH of the slurry in the tank was set to 6.
When adjusted to 0, the oxidation rates of calcium sulfite after 5 and 10 hours were 99.1% and 98.8%, respectively.

崖豊且1工 実施例1.においてFe、V、Cu、Ni。Cliff Toyotaka and 1 construction Example 1. In Fe, V, Cu, Ni.

Mnの供給を省略したところ、5及び10h後の亜硫酸
カルシウムの酸化率はそれぞれ97.0及び95.1%
であった。
When the supply of Mn was omitted, the oxidation rates of calcium sulfite after 5 and 10 h were 97.0 and 95.1%, respectively.
Met.

共JLl= 実施例1.において亜硫酸カルシウムを溶液でなく C
a S O3・1/2H,O粉末を用いて供給したとこ
ろ、5h後の亜硫酸カルシウムの酸化率は60%であっ
た。
Co-JLl = Example 1. Calcium sulfite is not in solution at C
When aS O3.1/2H,O powder was used, the oxidation rate of calcium sulfite after 5 hours was 60%.

且笠且ユニ 実施例1.においてスラリのpHを6.0、また亜硫酸
カルシウムの添加をCaC0,・1/2H,0によって
行ったところ、5h後の亜硫酸カルシウムの酸化率は1
0%であった。
Kasa and Uni Example 1. When the pH of the slurry was set to 6.0 and calcium sulfite was added using CaC0,·1/2H,0, the oxidation rate of calcium sulfite after 5 hours was 1.
It was 0%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、除塵用循環スラリを除塵部から吸収・
酸化部に供給する連通ラインを設けることにより、排ガ
ス中に含まれていた亜硫酸カルシウムの酸化触媒となる
金属イオンを除塵用循環スラリの吸収・酸化部への一部
供給により有効に利用でき、それでいて生成する石膏の
純度を低下させる成分の吸収・酸化部への流入は防止す
ることができる。従って、別途に酸化塔を設置すること
なしに排ガス中の硫黄酸化物を高効率で石膏として回収
でき、しかも排ガス中のダストは石膏中に混入しないよ
うにして高純度の石膏を得ることができる。
According to the present invention, the circulating slurry for dust removal is absorbed from the dust removal section.
By providing a communication line to supply the oxidation section, the metal ions that act as oxidation catalysts for calcium sulfite contained in the exhaust gas can be effectively used by absorbing the circulating slurry for dust removal and partially supplying it to the oxidation section. Components that reduce the purity of the produced gypsum can be prevented from flowing into the absorption/oxidation section. Therefore, sulfur oxides in the exhaust gas can be recovered as gypsum with high efficiency without installing a separate oxidation tower, and high-purity gypsum can be obtained by preventing the dust in the exhaust gas from being mixed into the gypsum. .

すなわち、従来別々に行われてきた硫黄酸化物の吸収・
酸化の反応を同一塔内で実施でき、しかも高純度の石膏
を得ることができる。
In other words, sulfur oxide absorption and
The oxidation reaction can be carried out in the same column, and high purity gypsum can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の構成図を示し、第2図は従
来例の構成図を示す。 1・・・排ガス、    4・・・除塵塔循環タンク、
6・・・吸収塔、     7・・・吸収塔循環タンク
、22・・・石膏、    29・・・微細気泡、31
・・・連通ライン。
FIG. 1 shows a configuration diagram of an apparatus according to the present invention, and FIG. 2 shows a configuration diagram of a conventional example. 1... Exhaust gas, 4... Dust removal tower circulation tank,
6...Absorption tower, 7...Absorption tower circulation tank, 22...Gypsum, 29...Fine bubbles, 31
...Communication line.

Claims (1)

【特許請求の範囲】[Claims] カルシウム系化合物を含有する除塵用循環スラリと排ガ
スとを気液接触させて排ガス中のダストを除去する除塵
部と、塔底部に設けた吸収塔循環タンク内に貯溜したカ
ルシウム系化合物を含有する吸収用循環スラリを塔上部
からスプレして前記除塵部を通過した排ガスと気液接触
させて硫黄酸化物を吸収除去する共に該吸収塔循環タン
ク内のスラリ中に微細気泡を供給して前記硫黄酸化物の
吸収によって生じる亜硫酸カルシウムを石膏に酸化する
吸収・酸化部を備えた湿式排煙脱硫装置において、除塵
用循環スラリを除塵部から吸収・酸化部に供給する連通
ラインを設けたことを特徴とする湿式排煙脱硫装置。
A dust removal section that removes dust from the exhaust gas by bringing the circulating slurry for dust removal containing calcium-based compounds into gas-liquid contact with the exhaust gas, and an absorption unit that contains calcium-based compounds stored in the absorption tower circulation tank installed at the bottom of the tower. The circulating slurry is sprayed from the upper part of the tower and brought into gas-liquid contact with the exhaust gas that has passed through the dust removal section to absorb and remove sulfur oxides, and at the same time, fine bubbles are supplied into the slurry in the absorption tower circulation tank to remove the sulfur oxidation. A wet flue gas desulfurization device equipped with an absorption and oxidation section that oxidizes calcium sulfite produced by absorption of substances into gypsum, characterized in that a communication line is provided to supply circulation slurry for dust removal from the dust removal section to the absorption and oxidation section. Wet flue gas desulfurization equipment.
JP61067480A 1986-03-26 1986-03-26 Wet flue gas desulfurization equipment Expired - Lifetime JPH0722675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067480A JPH0722675B2 (en) 1986-03-26 1986-03-26 Wet flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067480A JPH0722675B2 (en) 1986-03-26 1986-03-26 Wet flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JPS62225226A true JPS62225226A (en) 1987-10-03
JPH0722675B2 JPH0722675B2 (en) 1995-03-15

Family

ID=13346176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067480A Expired - Lifetime JPH0722675B2 (en) 1986-03-26 1986-03-26 Wet flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH0722675B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693301A (en) * 1994-03-31 1997-12-02 Abb Flakt Ab Method for removing sulphur dioxide from a gas
US6254843B1 (en) * 1999-11-19 2001-07-03 Marsulex Environmental Technologies, Llc Process for the reclamation of calcium sulfite produced by a calcium-based FGD system
US7819959B2 (en) * 2006-05-03 2010-10-26 S.A. Snc-Lavalin Europe N.V. Gas quench and scrubber draw-off system
JP2010269277A (en) * 2009-05-25 2010-12-02 Babcock Hitachi Kk Method and apparatus of suppressing mercury re-release in desulfurization apparatus
CN106390707A (en) * 2016-11-30 2017-02-15 合肥亿福自动化科技有限公司 Flue gas wet-desulfurization system
CN107469609A (en) * 2017-09-06 2017-12-15 杭州小橙工业设计有限公司 A kind of full-automatic desulphurization system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208553709U (en) * 2017-11-07 2019-03-01 中国石油化工股份有限公司 Flue gas washing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531171A (en) * 1976-06-10 1978-01-07 Chiyoda Chem Eng & Constr Co Ltd Removal of sulfur oxides in exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531171A (en) * 1976-06-10 1978-01-07 Chiyoda Chem Eng & Constr Co Ltd Removal of sulfur oxides in exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693301A (en) * 1994-03-31 1997-12-02 Abb Flakt Ab Method for removing sulphur dioxide from a gas
US6254843B1 (en) * 1999-11-19 2001-07-03 Marsulex Environmental Technologies, Llc Process for the reclamation of calcium sulfite produced by a calcium-based FGD system
US7819959B2 (en) * 2006-05-03 2010-10-26 S.A. Snc-Lavalin Europe N.V. Gas quench and scrubber draw-off system
JP2010269277A (en) * 2009-05-25 2010-12-02 Babcock Hitachi Kk Method and apparatus of suppressing mercury re-release in desulfurization apparatus
CN106390707A (en) * 2016-11-30 2017-02-15 合肥亿福自动化科技有限公司 Flue gas wet-desulfurization system
CN107469609A (en) * 2017-09-06 2017-12-15 杭州小橙工业设计有限公司 A kind of full-automatic desulphurization system

Also Published As

Publication number Publication date
JPH0722675B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
EP0620187B1 (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
EP0212523A2 (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
GB2171090A (en) Method for treating sulphur dioxide and sulphur trioxide and dust simultaneously
US5645807A (en) Magnesium-enhanced sulfur dioxide scrubbing with gypsum formation
CN102284238A (en) Bialkali-method flue-gas desulphurization process
US6254771B1 (en) Method of processing desulfurization absorption liquid and apparatus therefor
JPS62225226A (en) Wet stack-gas desulfurization facility
JP3727086B2 (en) Wet flue gas desulfurization method and apparatus
US4167578A (en) Method for removing sulfur and nitrogen compounds from a gas mixture
JPH0691938B2 (en) Method for removing sulfur oxides in exhaust gas
JPH0526525B2 (en)
JPH055528B2 (en)
JPS5820888B2 (en) Higasutyuuno Iousankabutuno Shiyorihohou
JPS5939328A (en) Desulfurization of exhaust gas
JPS6261620A (en) Wet waste gas desulfurization method
JPS62121619A (en) Wet exhaust gas desulfurization device
JP3488171B2 (en) Flue gas desulfurization method and device
SE502238C2 (en) Methods for oxidation of a sulfite and / or hydrogen sulfite ion-containing aqueous solution in the presence of lime
JP4192319B2 (en) Wet flue gas desulfurization method and wet flue gas desulfurization apparatus
JPH09308815A (en) Wet flue gas desulfurization method
JPS6279834A (en) Wet type stack gas desulfurization process
JP2515753B2 (en) Wet exhaust gas desulfurization method
JPH0239543Y2 (en)
JPS6322165B2 (en)
JPS5939327A (en) Wet type desulfurization of exhaust gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250