JPS60226778A - Controller of regenerative converter - Google Patents

Controller of regenerative converter

Info

Publication number
JPS60226778A
JPS60226778A JP59081909A JP8190984A JPS60226778A JP S60226778 A JPS60226778 A JP S60226778A JP 59081909 A JP59081909 A JP 59081909A JP 8190984 A JP8190984 A JP 8190984A JP S60226778 A JPS60226778 A JP S60226778A
Authority
JP
Japan
Prior art keywords
voltage
value
regenerative
current
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59081909A
Other languages
Japanese (ja)
Other versions
JP2567830B2 (en
Inventor
Sadayuki Igarashi
貞之 五十嵐
Juichi Ninomiya
寿一 二宮
Sumio Kobayashi
澄男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP59081909A priority Critical patent/JP2567830B2/en
Publication of JPS60226778A publication Critical patent/JPS60226778A/en
Application granted granted Critical
Publication of JP2567830B2 publication Critical patent/JP2567830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To control the change rate of a regenerative current substantially constantly by using the difference between a regeneration starting voltage produced by adding the prescribed value to the peak value of an interphase voltage and a DC voltage as a regenerative current command. CONSTITUTION:A voltage setter 26 detects the peak value of an interphase voltage of received AC voltage, and outputs a regeneration starting voltage E0 added with the prescribed value to the peak value. When a DC voltage E becomes higher than the voltage E0, a voltage error amplifier 14 generates a regenerative current command value I0. A deviation between the value I0 and a regenerative current detected value I is compared through a current error amplifier 18 with a triangular wave from a triangular wave generator 20. The output of the compared result is input together with the output of a phase detector 25 to AND gates 37-39 to control ON or OFF the switching transistors 61-66 of a regenerative converter.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電源回生可能なコンバータ(以下単に回生コン
バータという)の制御装置に係シ、特に電源側交流電圧
の変動に対しても安定な回生制御が行えるようにした回
生コンバータの制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for a converter capable of power regeneration (hereinafter simply referred to as a regenerative converter), and particularly to a control device for a converter capable of power regeneration (hereinafter simply referred to as a regenerative converter), and in particular, regeneration control that is stable even against fluctuations in AC voltage on the power supply side. The present invention relates to a control device for a regenerative converter that can perform the following steps.

〔発明の背景〕[Background of the invention]

回生コンバータは交流電源を整流して、交流電動機を駆
動するためのインバータや直流電動機に直流電力を供給
するのに用いられ、これら電動機の減速時には電動機側
から電力が逆にコンバータの方へ帰還されるから、これ
を入力交流電源側へ戻すようにコンバータを制御する機
能を回生コンバータの制御装置は有している。
Regenerative converters are used to rectify AC power and supply DC power to inverters and DC motors that drive AC motors. When these motors decelerate, power is returned from the motor side to the converter. Therefore, the regenerative converter control device has a function of controlling the converter so as to return this to the input AC power supply side.

第1図は回生コンバータの主回路構成図を示すもので、
三相交流電源1け交流リアクトル2を介してスイッチン
グ素子61〜66(例えばトランジスタ)の一端へ図の
ように印加され、スイッチング素子61〜66の他の端
子の間には平滑用コンデンサ3が挿入され直流端子6.
7へ接続されている。
Figure 1 shows the main circuit configuration diagram of the regenerative converter.
A three-phase AC power supply is applied to one end of the switching elements 61 to 66 (for example, a transistor) via an AC reactor 2 as shown in the figure, and a smoothing capacitor 3 is inserted between the other terminals of the switching elements 61 to 66. DC terminal 6.
Connected to 7.

ダイオード71〜76は通常トランジスタ61〜66に
内蔵されたダイオードであるが、電流容量が不足する場
合は整流用ダイオード81〜86を図のように別個に設
けられる。これらダイオード71〜76及び81〜86
は交流電源1から負荷へ直流電流を供給している時の整
流素子として作動し、一方トランジスタロ1〜66は負
荷から電力が交流電源1へ回生される時にオンして回生
電流を電源側へ流す。端子6゜7間の直流電圧Eは電圧
検出器5で検出され、直流電流工は電流検出器4で検出
され、これらはともに回生動作時のコンバータ制御に用
いられ、制御装置からトランジスタ61〜66のペース
に制御信号が与えられる。
The diodes 71-76 are normally built-in diodes in the transistors 61-66, but if the current capacity is insufficient, rectifying diodes 81-86 are provided separately as shown in the figure. These diodes 71-76 and 81-86
act as a rectifying element when DC current is being supplied from the AC power supply 1 to the load, while transistors 1 to 66 are turned on when power is regenerated from the load to the AC power supply 1 and transfer the regenerated current to the power supply side. Flow. The DC voltage E between the terminals 6 and 7 is detected by the voltage detector 5, and the DC current is detected by the current detector 4, both of which are used for converter control during regenerative operation. A control signal is given to the pace of.

回生コンバータの制御方法には力率が1となるようにす
るものや、120°過電方式と呼ばれるもの等があるが
、小容量で小型、低価格のものでは120°通電方式が
有利であシ、本発明はこの方式の改善に関するものであ
る。第2図は1206過電方式を用いた従来の制御装置
の構成2示すブロック図で、電圧検出器5で検出された
直流電圧Eは、負荷側から電力が帰還されるような状態
になった時には必ず上昇する。そこでまず直流電圧Eと
回生開始電圧設定値E、との差を減算器13でとって電
圧誤差増幅器14へ入カレ、電流指令値1o’l得る。
There are control methods for regenerative converters, such as one that sets the power factor to 1, and another called the 120° overcurrent method, but the 120° current-carrying method is advantageous for small-capacity, compact, and low-priced ones. The present invention relates to improvements to this method. Figure 2 is a block diagram showing the configuration 2 of a conventional control device using the 1206 overcurrent method, where the DC voltage E detected by the voltage detector 5 is such that power is fed back from the load side. Sometimes it always rises. Therefore, first, the difference between the DC voltage E and the regeneration start voltage setting value E is taken by the subtracter 13 and inputted to the voltage error amplifier 14 to obtain the current command value 1o'l.

ここで減算器13及び電圧誤差増幅器14の入出力特性
は、第3図に示すように直流電圧Eが回生開始電圧設定
値Elを越えると電流指令値Inが上昇を開始し、ある
一定値11で飽和する特性を有している。続いて電流検
出器4の検出電流Iと電流指令値roとの差が減算器1
7でとられ、その差が電流誤差増幅器18で増幅される
。更にこの増幅器18の出力は三角波発生回路加から出
力される三角波と減算器η及び正負判定器おから成る比
較器列で比較され、増幅器18の出力が三角波よシ大の
時1.逆の蒔Oが比較器ムから出力される。従って比較
益友出力は上記三角波と同じ周期のパルス列となシ、そ
のパルス幅は増幅器18出力が大きい程大きくなる。一
方位相検出回路5は三相交流電源線1の各相間電圧の位
相から第4図に示すようなオン信号31〜36ヲ生成し
、その一部はアンドゲート37〜39を介し、他はその
・まま電力増幅回路51〜56へ入力サレ、それらの出
力によってトランジスタ61〜66に制御信号が与えら
れる。但し第4図の相聞電圧け、電源1の各相の電圧を
第1図のようにVA 、 Va 。
Here, the input/output characteristics of the subtracter 13 and the voltage error amplifier 14 are as shown in FIG. It has the characteristic of being saturated at . Next, the difference between the current I detected by the current detector 4 and the current command value ro is calculated by the subtractor 1.
7 and the difference thereof is amplified by a current error amplifier 18. Further, the output of the amplifier 18 is compared with the triangular wave output from the triangular wave generating circuit by a comparator array consisting of a subtracter η and a sign/minus judger O, and when the output of the amplifier 18 is larger than the triangular wave, 1. The opposite signal O is output from the comparator. Therefore, the comparison output is a pulse train having the same period as the triangular wave, and the pulse width becomes larger as the output of the amplifier 18 becomes larger. On the other hand, the phase detection circuit 5 generates ON signals 31 to 36 as shown in FIG. - Inputs are input to the power amplifier circuits 51 to 56, and control signals are given to the transistors 61 to 66 by their outputs. However, the phase-to-phase voltages in FIG. 4 are set, and the voltages of each phase of the power supply 1 are VA and Va as shown in FIG.

Vcとした時1例えばVA]3= −VBA = VA
 −Vs等を意味しており、またオン信号31〜36r
riいずれも電源の周期に対して120°のパルス幅を
もつ。
When Vc is 1, e.g. VA] 3 = -VBA = VA
-Vs, etc., and also on signals 31 to 36r.
Both ri have a pulse width of 120° with respect to the period of the power supply.

このような制御装置によれば、次のようにして電源回生
が行われる。第2図において直流電圧Eが回生開始電圧
Elよシ高くなると電圧誤差増幅器14け第3図に示す
特性によって回生電流指令値IOケ生ずる。この回生電
流指令値1.と回生電流検出値Iの偏差を電流誤差増幅
器18の入力とし、この出力(等価的に第1図の交流リ
アクトル2に印加される電圧指令値となる)と三角波発
生益田からの三角波の大小比較を比較器スで行い、前述
したように増幅器18出カレペルが大きい程幅の大きい
ノ4ルス信号を比較器Uの出方とじて得る。
According to such a control device, power regeneration is performed in the following manner. In FIG. 2, when the DC voltage E becomes higher than the regeneration start voltage El, the voltage error amplifier 14 generates a regenerative current command value IO according to the characteristics shown in FIG. This regenerative current command value 1. The deviation of the detected regenerative current value I is input to the current error amplifier 18, and this output (which equivalently becomes the voltage command value applied to the AC reactor 2 in FIG. 1) is compared in magnitude with the triangular wave from the triangular wave generator Masuda. is performed by the comparator U, and as described above, the larger the output voltage of the amplifier 18, the larger the width of the signal is obtained from the output of the comparator U.

ここで下側アームのトランジスタ62 、64 、66
は120°位相検出回路5の出方32 、34 、36
および電力増幅回路52,54.56によって120’
ごとにオンしているが、上側アームのトランジスタ61
 、63 、65は、1200位相検出回路るの出方3
] 、 33 、35と前記比較器U出力の論理積を夫
々アンドゲート37 、38 、39によってとり、こ
の出力を電力増幅回路51 、53 。
Here, lower arm transistors 62, 64, 66
are the outputs of the 120° phase detection circuit 5 32 , 34 , 36
and 120' by the power amplifier circuits 52, 54, and 56.
The transistor 61 in the upper arm
, 63 and 65 are 1200 phase detection circuits.
], 33, 35 and the output of the comparator U are taken by AND gates 37, 38, 39, respectively, and the outputs are sent to power amplification circuits 51, 53.

5に入力することによりそれらのオン時間が制御されて
いる。従って設定電圧E1と直流彌圧検出値Eとの偏差
が大きい程トランジスタ61 、63 、65の通電時
間が大となって多くの電力が電源側へ帰還されて直流電
圧Eをよシ大きく引下げるので、直流電圧Eをほぼ一定
に保ちながら電源回生を行うことができる。
5, their on-times are controlled. Therefore, the larger the deviation between the set voltage E1 and the detected DC voltage value E, the longer the energization time of the transistors 61, 63, and 65 becomes, and more power is fed back to the power source, thereby lowering the DC voltage E to a greater extent. Therefore, power regeneration can be performed while keeping the DC voltage E substantially constant.

ところで、このような回生制御をよシ詳しく考察すると
次のようである。第4図の40で示す区間においては信
号31 、34がオンなので第1図のトランジスタ6は
オンのまま、トランジスタ61#iアンドゲート37出
力と信号3】ともにオンの間だけオン状態になシ、他の
トランジスタはすべてオフである。しかもこの区間40
では相関電圧VAB = VA −VBは第4図に見る
ようにその正のピーク値を中心とした±30’の間にあ
るので、この電圧VABに抗した方向に負荷側からの回
生電流がトランジスタ61−交流リアクドル2→交流電
源1−交流リアクトル2−トランジスタ礪の経路で流れ
る。この回生電流Iはトランジスタ61 、64のイン
ピーダンスが十分率さいとすると、交流リアクトル2の
一相分のインダクタンスなL/2とした時、トランジス
タ61オンからt秒後には I E−VAB:L− t 即ち で定まる。ここでtが非常に小さく、この間で電圧E、
 VABがともに一定と考えられる場合にはとなシ、は
t丁直線状に電流■は上昇する。この上昇によって回生
電流工がその指令値工0に到達すると比較器Uの出力は
0.従ってアンドゲート37の出力もOとなってトラン
ジスタ61がオフする。
By the way, if we consider this type of regeneration control in more detail, it will be as follows. In the section indicated by 40 in FIG. 4, the signals 31 and 34 are on, so the transistor 6 in FIG. , all other transistors are off. Moreover, this section is 40
As shown in Figure 4, the correlated voltage VAB = VA - VB is between ±30' around its positive peak value, so the regenerative current from the load side flows through the transistor in the direction against this voltage VAB. 61 - AC reactor 2 -> AC power supply 1 - AC reactor 2 - transistor tank. Assuming that the impedance of the transistors 61 and 64 is sufficiently high, this regenerative current I is set to L/2, which is the inductance of one phase of the AC reactor 2, and t seconds after the transistor 61 is turned on, I E-VAB:L- It is determined by t. Here, t is very small, and during this time the voltage E,
When both VAB and VAB are considered constant, the current (2) increases linearly. When the regenerative current reaches its command value 0 due to this increase, the output of the comparator U becomes 0. Therefore, the output of the AND gate 37 also becomes O, and the transistor 61 is turned off.

そして検出器4を流れる電流Iは0となるが、今迄流れ
ていた回生電流はトランジスタ6→ダイオード72−交
流リアクドル2−交流電源1−交流リアクトル2→トラ
ンジスターの経路を還流しながら減衰する。この結果再
び増幅器18出力が現れ、比較器Uが出力1になって上
記の動作をくり返すから、電流検出器4を流れる電流I
け第5図に示したようなピーク値Io ’l有する鋸歯
状波電流となり、この実効電流(平均値)はくり返しの
周期に関係なくピーク値1.の1/2になる。ところが
交流受電、電圧は多くの場合、±10%程度の変動があ
るため、第3図に示す回生開始電圧E+ ij受電。
Then, the current I flowing through the detector 4 becomes 0, but the regenerative current that has been flowing until now is attenuated while circulating through the path of transistor 6 -> diode 72 - AC reactor 2 - AC power supply 1 - AC reactor 2 -> transistor. As a result, the output of the amplifier 18 appears again, the comparator U becomes output 1, and the above operation is repeated, so the current I flowing through the current detector 4
This results in a sawtooth wave current having a peak value Io'l as shown in FIG. 5, and this effective current (average value) has a peak value of 1. It becomes 1/2 of that. However, in AC power reception, the voltage often fluctuates by about ±10%, so the regeneration start voltage E + ij shown in Figure 3.

電圧が上昇している場合を想定して高めに設定する必要
がある。それは受電電圧が高い時は負荷へ電力を供給し
ている時の直流電圧Eも高くなるから回生開始電圧El
はこれよシも高めに設定しておかないと回生状態でもな
いのに回生動作を開始してしまうからである。しかしこ
のようにEI′Ii!:設定した時は、受電電圧が低下
した場合にはVABが低下するから式(1)のE −V
ABが増加し、第5図に示しfc直流回生電流Iの立上
りが急な傾斜となって回生電流指令値工0へも短時間で
到達するから、第5図の鋸歯状波の周期Tも小さくなシ
、従って第4図期間40内の鋸歯状波の数も多くなる。
It is necessary to set it to a high value in case the voltage is rising. This is because when the receiving voltage is high, the DC voltage E when supplying power to the load also becomes high, so the regeneration start voltage El
This is because unless it is set to a higher value, regeneration operation will start even though it is not in a regeneration state. But like this, EI'Ii! : When set, if the receiving voltage decreases, VAB decreases, so E −V in equation (1)
AB increases, the rise of the fc DC regenerative current I shown in Fig. 5 becomes steep, and the regenerative current command value 0 is reached in a short time, so the period T of the sawtooth wave in Fig. 5 also increases. The smaller the number of waves, the more the number of sawtooth waves within period 40 in FIG. 4 increases.

これは他のトランジスタについても全く同様であるので
、受電電圧低下時にはトランジスタ61〜66のオンオ
フ周波数の増加をまねき、これに伴うスイッチング損失
の増加や、制御回路の制御遅れによシ回生電流指令値工
0よシ回生電流■がオーバーシュートラ生ずる等の問題
を生じていた。
This is exactly the same for other transistors, so when the receiving voltage drops, the on/off frequency of transistors 61 to 66 increases, resulting in an increase in switching loss and control delay in the control circuit. When the regenerative current is 0, the regenerative current causes problems such as overshooting.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述の従来技術の欠点をなくし、交流受
電電圧が変動しても回生電流の変化率をほぼ一定に保つ
ことができ、従って制御効率がよくかつ安定な回生制御
を行える回生コンバータの制御装置7提供するにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a regenerative converter that can maintain a substantially constant rate of change in regenerative current even if the AC power receiving voltage fluctuates, and that can therefore perform highly efficient and stable regenerative control. A control device 7 is provided.

〔発明の概要〕[Summary of the invention]

本発明は、交流電源の相関電圧のピーク値を検出する手
段を設けると共に、該ピーク値に一定値を加えた電圧を
回生開始設定電圧として可変設定するようにし、直流電
圧と上記回生開始設定電圧との差を回生電流指令するこ
とによって交流受電電圧が変動した場合も回生電流の変
化率をほぼ一定とするようにしたことを特徴とするもの
である。
The present invention provides a means for detecting the peak value of the correlation voltage of an AC power source, and variably sets a voltage obtained by adding a fixed value to the peak value as a regeneration start setting voltage, so that the DC voltage and the regeneration start setting voltage are variably set. The present invention is characterized in that the rate of change of the regenerative current is kept almost constant even when the AC power receiving voltage fluctuates by using the difference between the two as the regenerative current command.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第6図によシ説明する。 An embodiment of the present invention will be described below with reference to FIG.

同図で交流受電電圧の相間電圧VAB(他の相間電圧で
も同じ)のピーク値を検出し、これに一定値を加えた回
生開始電圧Eoを出力する電圧設定回路26を設け、そ
の出力Eoを減算器13へ入力するようにした点を除い
て、第2図の従来例と全く構成は同じである。ただ上記
のように設定電圧ElをEOとしたので減算器13、増
幅器14の入出力特性も第3図のElをE、に変えた第
7図となシ、かつこのEoはElのように固定値ではな
く受電電圧によって変化する。但しここで相間電圧のピ
ーク値に一定値を加えるのはピーク値の検出等の誤差を
考慮してのことで、一定値の大きさけ十分率さいものと
考えてよい。そこで負荷としての電動機が無負荷あるい
は力行状態では、直流電圧Eは交流受電電圧(相間電圧
)のピーク値以上になることはないため、第7図の電圧
誤差増幅器14の入山力特性により回生電流指令値Io
はOとなり回生電流は流れない。電動機が減速状態とな
シ、電動機の回転エネルギーが電気エネルギーとして直
流電源に帰還されると直流電圧・Eは交流受電電圧のピ
ーク値をこえて電圧EO以上となシ、第7図の特性で定
まる回生電流指令値IOが発生し、回生電流が流れるの
は従来と同様である。更に直流電圧Eの上昇と共に回生
電流指令Ifが増加するため、電動機からの帰還パワー
と交流電源への回生電力がバランスする回生電流指令値
IoY発生するまで直流電圧Et/′i上昇して定常状
態となる。この場合の直流電圧Eの値をE2とすると、
それは設定値EOに対しE2−Eoがほぼ一定となシか
つ第7図の特性の傾斜した部分にくるように制御系が設
計されているため、この直流電圧E2は設定値Eel従
って交流受電電圧ピーク値よシ若干高い値となる。しか
もこの定常状態で受電電圧が変動しても設定値Eoがそ
の変動分と同じだけ変化し、従って電圧E2も同じだけ
変化する。一方式(1)の相聞電圧VABの変化は受電
電圧の変化分そのものであるから、式(1)で定められ
る回生電流の変化率は殆ど変化しない。このためトラン
ジスタスイッチング周波数が受電電圧の上昇によって増
加することはほとんどなく、また回生時の直流電圧E2
が、予期される交流受電電圧変動範囲の最大値より大き
い値に固定されずKその時の交流受電電圧の大きさに応
じて設定されるので、トランジスタのスイッチング損失
を従来の制御方法よシ小さくすることができる。さらに
受電電圧の低下時にも回生電流の電流変化率が変化しな
いため制御回路の制御遅れによる回生電流のオーバシュ
ート量を低減させることができ、電流制限動作が安定し
、制御性能が向上することになる。また上述のように直
流電圧E2が従来の様に不必要に高い値に固定されるこ
とがないため、本回生コンバータにインバータを負荷と
して用いた時には、インバータのスイッチング損失を低
減させることができ、さらに直流電動機を負荷とした時
には回生時の電動機端子電圧の上昇が不必要に高くなら
ないから、端子電圧上昇による整流制限およびフラッシ
ュオーバ等の生じる機会を大幅に低減させることができ
る。
In the figure, a voltage setting circuit 26 is provided that detects the peak value of the phase-to-phase voltage VAB of the AC power receiving voltage (the same applies to other phase-to-phase voltages), and outputs a regeneration start voltage Eo by adding a certain value to the peak value, and outputs the output Eo. The configuration is completely the same as the conventional example shown in FIG. 2, except that the input signal is input to the subtracter 13. However, since the set voltage El is set to EO as mentioned above, the input/output characteristics of the subtracter 13 and the amplifier 14 are also as shown in Figure 7, where El in Figure 3 is changed to E, and this Eo is changed like El. It is not a fixed value but changes depending on the receiving voltage. However, the reason for adding a constant value to the peak value of the phase-to-phase voltage here is to take into account errors in peak value detection, etc., and it can be considered that the magnitude of the constant value is sufficiently small. Therefore, when the electric motor as a load is under no load or in a power running state, the DC voltage E never exceeds the peak value of the AC receiving voltage (phase-to-phase voltage), so the regenerative current is Command value Io
becomes O, and no regenerative current flows. When the motor is in a deceleration state and the rotational energy of the motor is fed back to the DC power supply as electrical energy, the DC voltage E exceeds the peak value of the AC receiving voltage and becomes higher than the voltage EO, with the characteristics shown in Figure 7. The determined regenerative current command value IO is generated and the regenerative current flows as in the conventional case. Furthermore, since the regenerative current command If increases with the rise of the DC voltage E, the DC voltage Et/'i increases until the regenerative current command value IoY, which balances the feedback power from the motor and the regenerative power to the AC power source, is generated, and the steady state is reached. becomes. If the value of DC voltage E in this case is E2, then
This is because the control system is designed so that E2 - Eo is almost constant with respect to the set value EO and falls on the sloped part of the characteristics shown in Figure 7, so this DC voltage E2 is equal to the set value Eel, and therefore the AC receiving voltage The value is slightly higher than the peak value. Furthermore, even if the received power voltage fluctuates in this steady state, the set value Eo changes by the same amount as the fluctuation, and therefore the voltage E2 also changes by the same amount. On the other hand, since the change in the phase-to-phase voltage VAB in equation (1) is the change in the received voltage itself, the rate of change in the regenerative current determined by equation (1) hardly changes. Therefore, the transistor switching frequency hardly increases due to an increase in the receiving voltage, and the DC voltage E2 during regeneration is
is not fixed to a value larger than the expected maximum value of the AC power receiving voltage fluctuation range, but is set according to the magnitude of the AC power receiving voltage at that time, making the switching loss of the transistor smaller than in the conventional control method. be able to. Furthermore, since the current rate of change of the regenerative current does not change even when the receiving voltage drops, the amount of overshoot of the regenerative current due to control delay in the control circuit can be reduced, stabilizing the current limiting operation and improving control performance. Become. In addition, as mentioned above, the DC voltage E2 is not fixed at an unnecessarily high value as in the conventional case, so when an inverter is used as a load in this regenerative converter, the switching loss of the inverter can be reduced. Furthermore, when the DC motor is used as a load, the rise in motor terminal voltage during regeneration does not become unnecessarily high, so it is possible to significantly reduce the chances of rectification restriction and flashover occurring due to a rise in terminal voltage.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、本発明によれば、受
電電圧が変化した場合も回生電流の変化率をほぼ一定に
でき、かつ直流電圧も必要最小限に保持できるから、回
生コンバータを高効率で良好な制御状態として運転する
ことができるという効果がある。
As is clear from the above embodiments, according to the present invention, even when the receiving voltage changes, the rate of change of the regenerative current can be kept almost constant, and the DC voltage can also be maintained at the minimum necessary level, so the regenerative converter can be This has the effect of being able to operate efficiently and under good control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は回生コンバータの主回路を示す図、第2図は回
生コンバータの従来の制御装置を示す図、第3図は従来
の回生電流指令値の特性図、第4図は120°位相検出
回路の動作を示すタイムチャート、第5図は直流回生電
流の波形を示す図、第6図は本発明の一実施例を示す図
、第7図は第6図の実施例に於る回生電流指令値の特性
図である。 1・・・交流電源、3・・・交流リアクトル、4・・・
電流検出器、5・・・直流電圧検出器、61〜66・・
・トランジスタ、13.17.22・・・減算器、14
・・・電圧誤差増幅器、加・・・三角波発生器、冴・・
・比較器、5・・・位相検出回路、31〜36川オン信
号、37〜39・・・アンドダート、E・・・直流電圧
、■・・・回生電流、工0・・・電流指令値、B、・・
・回生開始電圧。 代理人弁理士 秋 本 正 実 第1図 第2図 4 第4図 第5図 第6図 く4
Figure 1 shows the main circuit of the regenerative converter, Figure 2 shows the conventional control device for the regenerative converter, Figure 3 shows the characteristics of the conventional regenerative current command value, and Figure 4 shows 120° phase detection. A time chart showing the operation of the circuit, Fig. 5 is a diagram showing the waveform of the DC regenerative current, Fig. 6 is a diagram showing one embodiment of the present invention, and Fig. 7 is a diagram showing the regenerative current in the embodiment of Fig. 6. It is a characteristic diagram of a command value. 1... AC power supply, 3... AC reactor, 4...
Current detector, 5... DC voltage detector, 61 to 66...
・Transistor, 13.17.22...Subtractor, 14
...voltage error amplifier, addition...triangle wave generator, Sae...
・Comparator, 5... Phase detection circuit, 31 to 36 river ON signal, 37 to 39... And dirt, E... DC voltage, ■... Regenerative current, 0... Current command value , B...
・Regeneration start voltage. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 4 Figure 4 Figure 5 Figure 6 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 回生コンバータの入力交流電源の相間電圧ピーク値を検
出するピーク値検出手段と、該ピーク値に一定値を加え
た回生開始電圧ン設定する回生電圧設定手段と、回生コ
ンバータの出力端直流電圧が上記回生開始電圧をこえた
時にその差に応じた電流指令値を出力する電流指令値設
定手段と、上記出力端から回生コンバータへ流入する回
生電流が上記電流指令値を下まわっている時にその差に
比例したノソルス幅のオン信号を生成し、上記回生電流
をリアクトルを介して交流電源側へ流すためのスイッチ
ング素子に上記オン信号を与えて上記回生電流の実効値
を制御する制御手段とを備えたことを特徴とする回生コ
ンバータの制御装置。
A peak value detection means for detecting a phase-to-phase voltage peak value of the input AC power supply of the regenerative converter, a regeneration voltage setting means for setting a regeneration start voltage which is a predetermined value added to the peak value, and a regeneration voltage setting means for setting the regeneration start voltage by adding a certain value to the peak value; A current command value setting means that outputs a current command value corresponding to the difference when the regeneration start voltage is exceeded, and a current command value setting means that outputs a current command value according to the difference when the regeneration start voltage is exceeded, and a current command value setting means that outputs a current command value according to the difference when the regeneration start voltage control means for generating an on signal with a proportional nosolus width and applying the on signal to a switching element for causing the regenerative current to flow to the AC power source side via the reactor to control the effective value of the regenerative current. A regenerative converter control device characterized by:
JP59081909A 1984-04-25 1984-04-25 Regenerative converter control device Expired - Lifetime JP2567830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081909A JP2567830B2 (en) 1984-04-25 1984-04-25 Regenerative converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081909A JP2567830B2 (en) 1984-04-25 1984-04-25 Regenerative converter control device

Publications (2)

Publication Number Publication Date
JPS60226778A true JPS60226778A (en) 1985-11-12
JP2567830B2 JP2567830B2 (en) 1996-12-25

Family

ID=13759570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081909A Expired - Lifetime JP2567830B2 (en) 1984-04-25 1984-04-25 Regenerative converter control device

Country Status (1)

Country Link
JP (1) JP2567830B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956662B1 (en) 2015-07-31 2016-07-27 ファナック株式会社 Motor control device for adjusting power regeneration, control device for forward converter, machine learning device and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108972A (en) * 1981-12-23 1983-06-29 Toshiba Corp Bidirectional power converter
JPS58179180A (en) * 1982-04-13 1983-10-20 Toshiba Corp Power regenerative controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108972A (en) * 1981-12-23 1983-06-29 Toshiba Corp Bidirectional power converter
JPS58179180A (en) * 1982-04-13 1983-10-20 Toshiba Corp Power regenerative controller

Also Published As

Publication number Publication date
JP2567830B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
US4879639A (en) Power converter for driving an AC motor at a variable speed
Sul et al. Design and performance of a high-frequency link induction motor drive operating at unity power factor
US4742535A (en) Inverter type X-ray apparatus
KR100201704B1 (en) Zero current switching circuit and converting apparatus using the same
Li et al. An input power factor control strategy for high-power current-source induction motor drive with active front-end
JPH0851790A (en) Control circuit for inductive load
JPH10164899A (en) Step-up and step-down chopper method stop type excitation system for synchronous generator
JP6185860B2 (en) Bidirectional converter
KR20070097093A (en) Converter
JPH08168250A (en) Power converter
JP3330232B2 (en) AC / DC uninterruptible power supply
JPS60226778A (en) Controller of regenerative converter
JP2005130562A (en) Power converter
JP2911558B2 (en) Inverter device
JPS5967877A (en) Current limiting system for inverter
JP2018092382A (en) Photovoltaic power generation system
JPH07337019A (en) Control method for self-excited rectifier
JPH06197549A (en) Compensating circuit for output voltage of inverter
JP3250301B2 (en) Converter circuit
JPH06197546A (en) Pwm control circuit for power conversion device
JPH0652998B2 (en) Method and device for controlling control voltage of three-phase inverter for AC motor power supply
Ashcraft et al. DC-AC inverters for static condenser and dynamic voltage restorer applications
JP3529399B2 (en) Power converter
JP2022132132A (en) DCDC converter and DC power supply
JPS6077681A (en) Power converter device