JP2567830B2 - Regenerative converter control device - Google Patents

Regenerative converter control device

Info

Publication number
JP2567830B2
JP2567830B2 JP59081909A JP8190984A JP2567830B2 JP 2567830 B2 JP2567830 B2 JP 2567830B2 JP 59081909 A JP59081909 A JP 59081909A JP 8190984 A JP8190984 A JP 8190984A JP 2567830 B2 JP2567830 B2 JP 2567830B2
Authority
JP
Japan
Prior art keywords
voltage
regenerative
value
current
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59081909A
Other languages
Japanese (ja)
Other versions
JPS60226778A (en
Inventor
貞之 五十嵐
寿一 二宮
澄男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP59081909A priority Critical patent/JP2567830B2/en
Publication of JPS60226778A publication Critical patent/JPS60226778A/en
Application granted granted Critical
Publication of JP2567830B2 publication Critical patent/JP2567830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電源回生可能なコンバータ(以下単に回生コ
ンバータという)の制御装置に係り、特に電源側交流電
圧の変動に対しても安定な回生制御が行えるようにした
回生コンバータの制御装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a converter capable of regenerating a power source (hereinafter, simply referred to as a regenerative converter). The present invention relates to a control device for a regenerative converter that can be performed.

〔発明の背景〕[Background of the Invention]

回生コンバータは交流電源を整流して、交流電動機を
駆動するためのインバータや直流電動機に直流電力を供
給するのに用いられ、これら電動機の減速時には電動機
側から電力が逆にコンバータの方へ帰還されるから、こ
れを入力交流電源側へ戻すようにコンバータを制御する
機能を回生コンバータの制御装置は有している。
A regenerative converter is used to rectify an AC power source and supply DC power to an inverter or a DC motor for driving an AC motor, and when decelerating these motors, the power is fed back from the motor side to the converter. Therefore, the control device of the regenerative converter has a function of controlling the converter so as to return it to the input AC power supply side.

第1図は回生コンバータの主回路構成図を示すもの
で、三相交流電源1は交流リアクトル2を介してスイツ
チング素子61〜66(例えばトランジスタ)の一端へ図の
ように印加され、スイツチング素子61〜66の他の端子の
間には平滑用コンデンサ3が挿入され直流端子6,7へ接
続されている。ダイオード71〜76は通常トランジスタ61
〜66に内蔵されたダイオードであるが、電流容量が不足
する場合は整流用ダイオード81〜86を図のように別個に
設けられる。これらダイオード71〜76及び81〜86は交流
電源1から負荷へ直流電流を供給している時の整流素子
として作動し、一方トランジスタ61〜66は負荷から電力
が交流電源1へ回生される時にオンして回生電流を電源
側へ流す。端子6,7間の直流電圧Eは電圧検出器5で検
出され、直流電流Iは電流検出器4で検出され、これら
はともに回生動作時のコンバータ制御に用いられ、制御
装置からトランジスタ61〜66のベースに制御信号が与え
られる。
FIG. 1 shows a main circuit configuration diagram of a regenerative converter. A three-phase AC power supply 1 is applied to one ends of switching elements 61 to 66 (for example, transistors) via an AC reactor 2 as shown in FIG. A smoothing capacitor 3 is inserted between the other terminals of ~ 66 and connected to the DC terminals 6 and 7. Diodes 71-76 are normally transistors 61
Although they are diodes built in to 66, if the current capacity is insufficient, rectifying diodes 81 to 86 are separately provided as shown in the figure. These diodes 71 to 76 and 81 to 86 operate as rectifying elements when supplying a direct current from the AC power source 1 to the load, while the transistors 61 to 66 are turned on when power is regenerated from the load to the AC power source 1. The regenerative current to the power supply side. The DC voltage E between the terminals 6 and 7 is detected by the voltage detector 5 and the DC current I is detected by the current detector 4, both of which are used for converter control during regenerative operation. A control signal is applied to the base of.

回生コンバータの制御方法には力率が1となるように
するものや、120゜過電方式と呼ばれるもの等がある
が、小容量で小型,低価格のものでは120゜通電方式が
有利であり、本発明はこの方式の改善に関するものであ
る。第2図は120゜過電方式を用いた従来の制御装置の
構成を示すブロツク図で、電圧検出器5で検出された直
流電圧Eは、負荷側から電力が帰還されるような状態に
なつた時には必ず上昇する。そこでまず直流電圧Eと回
生開始電圧設定値E1との差を減算器13でとつて電圧誤差
増幅器14へ入力し、電流指令値I0を得る。ここで減算器
13及び電圧誤差増幅器14の入出力特性は、第3図に示す
ように直流電圧Eが回生開始電圧設定値E1を越えると電
流指令値I0が上昇を開始し、ある一定値I1で飽和する特
性を有している。続いて電流検出器4の検出電流Iと電
流指令値I0との差が減算器17でとられ、その差が電流誤
差増幅器18で増幅される。更にこの増幅器18の出力は三
角波発生回路20から出力される三角波と減算器22及び正
負判定器23から成る比較器24で比較され、増幅器18の出
力が三角波より大の時1,逆の時0が比較器24から出力さ
れる。従つて比較器24出力は上記三角波と同じ周期のパ
ルス列となり、そのパルス幅は増幅器18出力が大きい程
大きくなる。一方位相検出回路25は三相交流電源線1の
各相間電圧の位相から第4図に示すようなオン信号31〜
36を生成し、その一部はアンドゲート37〜39を介し、他
はそのまま電力増幅回路51〜56へ入力され、それらの出
力によつてトランジスタ61〜66に制御信号が与えられ
る。但し第4図の相間電圧は、電源1の各相の電圧を第
1図のようにVA,VB,VCとした時、例えばVAB=−VBA=VA
−VB等を意味しており、またオン信号31〜36はいずれも
電源の周期に対して120゜のパルス幅をもつ。
There are methods to control the power factor to 1 and a method called a 120 ° overcurrent system as the control method of the regenerative converter, but the 120 ° energization method is advantageous for small capacity, small size and low price. The present invention relates to an improvement of this method. FIG. 2 is a block diagram showing the configuration of a conventional control device using the 120 ° overcurrent system. The DC voltage E detected by the voltage detector 5 is in a state in which power is fed back from the load side. Always rises when you hit. Therefore, first, the difference between the DC voltage E and the regeneration start voltage set value E 1 is input to the voltage error amplifier 14 by the subtracter 13 to obtain the current command value I 0 . Where the subtractor
As shown in FIG. 3, the input / output characteristics of the voltage error amplifier 14 and the voltage error amplifier 14 are such that when the DC voltage E exceeds the regenerative start voltage set value E 1 , the current command value I 0 starts to rise and reaches a certain constant value I 1 . It has the property of being saturated. Subsequently, the difference between the detected current I of the current detector 4 and the current command value I 0 is taken by the subtractor 17, and the difference is amplified by the current error amplifier 18. Further, the output of the amplifier 18 is compared with the triangular wave output from the triangular wave generating circuit 20 by a comparator 24 composed of a subtractor 22 and a positive / negative judging device 23, and when the output of the amplifier 18 is larger than the triangular wave, 0 when the output is opposite. Is output from the comparator 24. Therefore, the output of the comparator 24 becomes a pulse train having the same period as the triangular wave, and the pulse width thereof becomes larger as the output of the amplifier 18 becomes larger. On the other hand, the phase detection circuit 25 detects the ON signal 31 to ON as shown in FIG. 4 from the phase of the interphase voltage of the three-phase AC power supply line 1.
36, some of which are input to the power amplifier circuits 51 to 56 through the AND gates 37 to 39, and the other of which are directly input to the power amplifying circuits 51 to 56, and their outputs provide control signals to the transistors 61 to 66. However, the interphase voltage of FIG. 4 is, for example, V AB = −V BA = V A when the voltage of each phase of the power source 1 is V A , V B , V C as shown in FIG.
-V B, etc., and all the ON signals 31 to 36 have a pulse width of 120 ° with respect to the cycle of the power supply.

このような制御装置によれば、次のようにして電源回
生が行われる。第2図において直流電圧Eが回生開始電
圧E1より高くなると電圧誤差増幅器14は第3図に示す特
性によつて回生電流指令値I0を生ずる。この回生電流指
令値I0と回生電流検出値Iの偏差を電流誤差増幅器18の
入力とし、この出力(等価的に第1図の交流リアクトル
2に印加される電圧指令値となる)と三角波発生器20か
らの三角波の大小比較を比較器24で行い、前述したよう
に増幅器18出力レベルが大きい程幅の大きいパルス信号
を比較器24の出力として得る。
According to such a control device, power regeneration is performed as follows. In FIG. 2, when the DC voltage E becomes higher than the regenerative starting voltage E 1 , the voltage error amplifier 14 produces the regenerative current command value I 0 according to the characteristic shown in FIG. The deviation between the regenerative current command value I 0 and the regenerative current detection value I is used as the input of the current error amplifier 18, and this output (equivalently the voltage command value applied to the AC reactor 2 in FIG. 1) and a triangular wave are generated. The magnitude comparison of the triangular waves from the device 20 is performed by the comparator 24, and as described above, the larger the output level of the amplifier 18, the wider the pulse signal is obtained as the output of the comparator 24.

ここで下側アームのトランジスタ62,64,66は120゜位
相検出回路25の出力32,34,36および電力増幅回路52,54,
56によつて120゜ごとにオンしているが、上側アームの
トランジスタ61,63,65は、120゜位相検出回路25の出力3
1,33,35と前記比較器24出力の論理積を夫々アンドゲー
ト37,38,39によつてとり、この出力を電力増幅回路51,5
3,55に入力することによりそれらのオン時間が制御され
ている。従つて設定電圧E1と直流電圧検出値Eとの偏差
が大きい程トランジスタ61,63,65の通電時間が大となつ
て多くの電力が電源側へ帰還されて直流電圧Eをより大
きく引下げるので、直流電圧Eをほぼ一定に保ちながら
電源回生を行うことができる。
Here, the transistors 62, 64, 66 of the lower arm are the outputs 32, 34, 36 of the 120 ° phase detection circuit 25 and the power amplification circuits 52, 54,
Although it is turned on every 120 ° by the 56, the upper arm transistors 61, 63 and 65 are connected to the output 3 of the 120 ° phase detection circuit 25.
The AND of 1,33,35 and the output of the comparator 24 is obtained by AND gates 37,38,39, respectively, and this output is obtained by the power amplifier circuits 51,5.
Their on-time is controlled by entering 3,55. Therefore, the larger the deviation between the set voltage E 1 and the detected DC voltage value E, the longer the energization time of the transistors 61, 63 and 65, and the more power is fed back to the power supply side to further reduce the DC voltage E. Therefore, the power supply can be regenerated while keeping the DC voltage E substantially constant.

ところで、このような回生制御をより詳しく考察する
と次のようである。第4図の40で示す区間においては信
号31,34がオンなので第1図のトランジスタ64はオンの
まま、トランジスタ61は比較器24出力と信号31ともにオ
ンの間だけオン状態になり、他のトランジスタはすべて
オフである。しかもこの区間40では相間電圧VAB=VA−V
Bは第4図に見るようにその正のピーク値を中心とした
±30゜の間にあるので、この電圧VABに抗した方向に負
荷側からの回生電流がトランジスタ61→交流リアクトル
2→交流電源1→交流リアクトル2→トランジスタ64の
経路で流れる。この回生電流Iはトランジスタ61,64の
インピーダンスが十分小さいとすると、交流リアクトル
2の一相分のインダクタンスをL/2とした時、トランジ
スタ61オンからt秒後には 即ち で定まる。ここでtが非常に小さく、この間で電圧E,V
ABがともに一定と考えられる場合には となり、ほぼ直線状に電流Iは上昇する。この上昇によ
つて回生電流Iがその指令値I0に到達すると比較器24の
出力は0,従つてアンドゲート37の出力も0となつてトラ
ンジスタ61がオフする。そして検出器4を流れる電流I
は0となるが、今迄流れていた回生電流はトランジスタ
64→ダイオード72→交流リアクトル2→交流電源1→交
流リアクトル2→トランジスタ64の経路を還流しながら
減衰する。この結果再び増幅器18出力が現れ、比較器24
が出力1になつて上記の動作をくり返すから、電流検出
器4を流れる電流Iは第5図に示したようなピーク値I0
を有する鋸歯状波電流となり、この実効電流(平均値)
はくり返しの周期に関係なくピーク値I0の1/2になる。
ところが交流受電電圧は多くの場合、±10%程度の変動
があるため、第3図に示す回生開始電圧E1は受電電圧が
上昇している場合を想定して高めに設定する必要があ
る。それは受電電圧が高い時は負荷へ電力を供給してい
る時の直流電圧Eも高くなるから回生開始電圧E1はこれ
よりも高めに設定しておかないと回生状態でもないのに
回生動作を開始してしまうからである。しかしこのよう
にE1を設定した時は、受電電圧が低下した場合にはVAB
が低下するから式(1)のE−VABが増加し、第5図に
示した直流回生電流Iの立上りが急な傾斜となつて回生
電流指令値I0へも短時間で到達するから、第5図の鋸歯
状波の周期Tも小さくなり、従つて第4図期間40内の鋸
歯状波の数も多くなる。これは他のトランジスタについ
ても全く同様であるので、受電電圧低下時にはトランジ
スタ61〜66のオンオフ周波数の増加をまねき、これに伴
うスイツチング損失の増加や、制御回路の制御遅れによ
り回生電流指令値I0より回生電流Iがオーバーシユート
を生ずる等の問題を生じていた。
By the way, a more detailed consideration of such regenerative control is as follows. In the section indicated by 40 in FIG. 4, since the signals 31 and 34 are on, the transistor 64 in FIG. 1 remains on, and the transistor 61 is on only while the output of the comparator 24 and the signal 31 are on. All transistors are off. Moreover, in this section 40, the interphase voltage V AB = V A −V
As shown in Fig. 4, B is between ± 30 ° around its positive peak value, so the regenerative current from the load side in the direction against this voltage V AB is transistor 61 → AC reactor 2 → It flows in the route of AC power supply 1 → AC reactor 2 → transistor 64. Assuming that the impedances of the transistors 61 and 64 are sufficiently small, the regenerative current I is t / 2 seconds after the transistor 61 is turned on when the inductance of one phase of the AC reactor 2 is L / 2. That is Determined by. Here, t is very small, and the voltage E, V
If both AB are considered constant And the current I increases almost linearly. Due to this rise, when the regenerative current I reaches its command value I 0 , the output of the comparator 24 becomes 0 and the output of the AND gate 37 also becomes 0, and the transistor 61 is turned off. And the current I flowing through the detector 4
Is 0, but the regenerative current that has been flowing is a transistor.
64 → diode 72 → AC reactor 2 → AC power source 1 → AC reactor 2 → Transmits the path of the transistor 64 while attenuating. As a result, the output of the amplifier 18 appears again, and the comparator 24
Becomes the output 1 and the above operation is repeated, so that the current I flowing through the current detector 4 has a peak value I 0 as shown in FIG.
Saw-tooth wave current with the effective current (average value)
It becomes 1/2 of the peak value I 0 regardless of the repeating cycle.
However, since the AC power receiving voltage often fluctuates by about ± 10%, it is necessary to set the regeneration start voltage E 1 shown in FIG. 3 to a high value on the assumption that the power receiving voltage is increasing. When the received voltage is high, the DC voltage E when supplying power to the load is also high. Therefore, the regeneration start voltage E 1 must be set higher than this, and the regenerative operation will occur even if it is not in the regenerative state. Because it will start. However, when E 1 is set in this way, when the received voltage drops, V AB
Since E-V AB in equation (1) increases because the rise of DC regenerative current I shown in FIG. 5 becomes steep and the regenerative current command value I 0 is reached in a short time. The period T of the sawtooth wave in FIG. 5 is also reduced, and accordingly the number of sawtooth waves in the period 40 in FIG. 4 is also increased. Since this is exactly the same for the other transistors, the on / off frequency of the transistors 61 to 66 is increased when the power receiving voltage is decreased, and the regenerative current command value I 0 is increased due to the increase in switching loss and the control delay of the control circuit. Further, the regenerative current I causes a problem such as overshoot.

〔発明の目的〕[Object of the Invention]

本発明の目的は前述の従来技術の欠点をなくし、交流
受電電圧が変動しても回生電流の変化率をほぼ一定に保
つことができ、従つて制御効率がよくかつ安定な回生制
御を行える回生コンバータの制御装置を提供するにあ
る。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to keep the rate of change of the regenerative current substantially constant even when the AC power receiving voltage fluctuates, and therefore, the regenerative control with good control efficiency and stable regenerative control is possible. It is to provide a control device for a converter.

〔発明の概要〕[Outline of Invention]

上記目的は、回生コンバータの入力交流電源の相間電
圧ピーク値を検出するピーク値検出手段と、該相間電圧
ピーク値に一定値を加えた値を回生開始電圧値として設
定する回生電圧設定手段と、回生コンバータの出力端の
直流電圧が前記回生開始電圧値を越えた時にその差に応
じた電流指令値を出力する電流指令値設定手段と、前記
出力端から回生コンバータへ流入する回生電流が前記電
流指令値を下まわっている時にその差に比例したパルス
幅のオン信号を生成し該回生電流をリアクトルを介して
交流電源側へ流すためのスイツチング素子に前記オン信
号を与えて前記回生電流の実効値を制御する制御手段と
を備えることで、達成される。
The above-mentioned object is a peak value detecting means for detecting the inter-phase voltage peak value of the input AC power supply of the regenerative converter, and a regenerative voltage setting means for setting a value obtained by adding a constant value to the inter-phase voltage peak value as the regenerative start voltage value, Current command value setting means for outputting a current command value according to the difference when the DC voltage at the output end of the regenerative converter exceeds the regenerative start voltage value, and the regenerative current flowing from the output end to the regenerative converter is the current When the command value is lowered, an ON signal having a pulse width proportional to the difference is generated, and the ON signal is given to the switching element for causing the regenerative current to flow to the AC power supply side through the reactor, and the effective regenerative current is supplied. It is achieved by including a control means for controlling the value.

相間電圧ピーク値に一定値を加算した値を回生開始電
圧値としたので、回生開始電圧値は交流受電電圧の変動
に応じて変動し、回生電流の変化率は略一定となる。し
かも、直流電圧が交流受電電圧より大きくなることは絶
対なく、スイツチング損失が小さく効率が高くなる。
Since the regenerative start voltage value is a value obtained by adding a constant value to the interphase voltage peak value, the regenerative start voltage value fluctuates according to the fluctuation of the AC power receiving voltage, and the rate of change of the regenerative current becomes substantially constant. Moreover, the DC voltage never becomes larger than the AC power receiving voltage, and the switching loss is small and the efficiency is high.

〔発明の実施例〕Example of Invention

以下本発明の実施例を第6図により説明する。同図で
交流受電電圧の相間電圧VAB(他の相間電圧でも同じ)
のピーク値を検出し、これに一定値を加えた回生開始電
圧E0を出力する電圧設定回路26を設け、その出力E0を減
算器13へ入力するようにした点を除いて、第2図の従来
例と全く構成は同じである。ただ上記のように設定電圧
E1をE0としたので減算器13、増幅器14の入出力特性も第
3図のE1をE0に変えた第7図となり、かつこのE0はE1
ように固定値ではなく受電電圧によつて変化する。但し
ここで相間電圧のピーク値に一定値を加えるのはピーク
値の検出等の誤差を考慮してのことで、一定値の大きさ
は十分小さいものと考えてよい。そこで負荷としての電
動機が無負荷あるいは力行状態では、直流電圧Eは交流
受電電圧(相間電圧)のピーク値以上になることはない
ため、第6図の電圧誤差増幅器14の入出力特性により回
生電流指令値I0は0となり回生電流は流れない。電動機
が減速状態となり、電動機の回転エネルギーが電気エネ
ルギーとして直流電源に帰還されると直流電圧Eは交流
受電電圧のピーク値をこえて電圧E0以上となり、第7図
の特性で定まる回生電流指令値I0が発生し、回生電流が
流れるのは従来と同様である。更に直流電圧Eの上昇と
共に回生電流指令I0が増加するため、電動機からの帰還
パワーと交流電源への回生電力がバランスする回生電流
指令値I0を発生するまで直流電圧Eは上昇して定常状態
となる。この場合の直流電圧Eの値をE2とすると、それ
は設定値E0に対しE2−E0がほぼ一定となりかつ第7図の
特性を傾斜した部分にくるように制御系が設計されてい
るため、この直流電圧E2は設定値E0,従つて交流受電電
圧ピーク値より若干高い値となる。しかもこの定常状態
で受電電圧が変動しても設定値E0がその変動分と同じだ
け変化し、従つて電圧E2も同じだけ変化する。一方式
(1)の相間電圧VABの変化は受電電圧の変化分そのも
のであるから、式(1)で定められる回生電流の変化率
は殆ど変化しない。このためトランジスタスイツチング
周波数が受電電圧の上昇によつて増加することはほとん
どなく、また回生時の直流電圧E2が、予期される交流受
電電圧変動範囲の最大値より大きい値に固定されずにそ
の時の交流受電電圧の大きさに応じて設定されるので、
トランジスタのスイツチング損失を従来の制御方法より
小さくすることができる。さらに受電電圧の低下時にも
回生電流の電流変化率が変化しないため制御回路の制御
遅れによる回生電流のオーバシユート量を低減させるこ
とができ、電流制限動作が安定し、制御性能が向上する
ことになる。また上述のように直流電圧E2が従来の様に
不必要に高い値に固定されることがないため、本回生コ
ンバータにインバータを負荷として用いた時には、イン
バータのスイツチング損失を低減させることができ、さ
らに直流電動機を負荷とした時には回生時の電動機端子
電圧の上昇が不必要に高くならないから、端子電圧上昇
による整流制限およびフラツシユオーバ等の生じる機会
を大幅に低減させることができる。
An embodiment of the present invention will be described below with reference to FIG. In the figure, the interphase voltage V AB of the AC received voltage (same for other interphase voltages)
Detecting a peak value, this providing a voltage setting circuit 26 for outputting a regeneration starting voltage E 0 plus a predetermined value, except that so as to enter its output E 0 to the subtracter 13, the second The configuration is exactly the same as the conventional example shown in the figure. Just set the voltage as above
Since E 1 is E 0 , the input / output characteristics of the subtracter 13 and the amplifier 14 are also shown in FIG. 7 in which E 1 in FIG. 3 is changed to E 0 , and this E 0 is not a fixed value like E 1. It changes depending on the received voltage. However, the constant value is added to the peak value of the interphase voltage in consideration of an error in the detection of the peak value, and the size of the constant value may be considered to be sufficiently small. Therefore, when the motor as a load is unloaded or in the power running state, the DC voltage E does not exceed the peak value of the AC power receiving voltage (phase-to-phase voltage). Therefore, the input / output characteristics of the voltage error amplifier 14 in FIG. The command value I 0 becomes 0 and no regenerative current flows. When the motor decelerates and the rotational energy of the motor is returned to the DC power supply as electrical energy, the DC voltage E exceeds the peak value of the AC power reception voltage and becomes voltage E 0 or higher, and the regenerative current command determined by the characteristics in Fig. 7 The value I 0 is generated and the regenerative current flows as in the conventional case. Further, since the regenerative current command I 0 increases as the DC voltage E increases, the DC voltage E rises and becomes steady until the regenerative current command value I 0 in which the feedback power from the motor and the regenerative power to the AC power supply are balanced. It becomes a state. When the value of the DC voltage E in this case is E 2 , the control system is designed so that E 2 −E 0 is almost constant with respect to the set value E 0 and the characteristic of FIG. Therefore, the DC voltage E 2 becomes a value slightly higher than the set value E 0 , and accordingly the AC power receiving voltage peak value. Moreover, even if the received voltage fluctuates in this steady state, the set value E 0 changes by the same amount as the fluctuation, and accordingly the voltage E 2 also changes by the same amount. On the other hand, since the change in the interphase voltage V AB in the equation (1) is the change in the received voltage itself, the rate of change in the regenerative current defined by the equation (1) hardly changes. For this reason, the transistor switching frequency hardly increases as the power receiving voltage rises, and the DC voltage E 2 during regeneration is not fixed to a value higher than the maximum value of the expected AC power receiving voltage fluctuation range. Since it is set according to the magnitude of the AC received voltage at that time,
The switching loss of the transistor can be made smaller than that of the conventional control method. Furthermore, since the current change rate of the regenerative current does not change even when the received voltage drops, the amount of overcurrent of the regenerative current due to the control delay of the control circuit can be reduced, the current limiting operation becomes stable, and the control performance improves. . Further, as described above, the DC voltage E 2 is not fixed to an unnecessarily high value as in the conventional case, so that when the inverter is used as a load in the regenerative converter, the switching loss of the inverter can be reduced. Moreover, when the DC motor is used as a load, the increase in the motor terminal voltage during regeneration does not become unnecessarily high, so that the chance of rectification limitation and flashover due to the terminal voltage increase can be greatly reduced.

〔発明の効果〕〔The invention's effect〕

以上の実施例から明らかなように、本発明によれば、
受電電圧が変化した場合も回生電流の変化率をほぼ一定
にでき、かつ直流電圧も必要最小限に保持できるから、
回生コンバータを高効率で良好な制御状態として運転す
ることができるという効果がある。
As apparent from the above examples, according to the present invention,
Even if the received voltage changes, the rate of change of the regenerative current can be kept almost constant, and the DC voltage can be kept to the necessary minimum.
There is an effect that the regenerative converter can be operated with high efficiency and in a good control state.

【図面の簡単な説明】[Brief description of drawings]

第1図は回生コンバータの主回路を示す図,第2図は回
生コンバータの従来の制御装置を示す図、第3図は従来
の回生電流指令値の特性図、第4図は120゜位相検出回
路の動作を示すタイムチヤート、第5図は直流回生電流
の波形を示す図、第6図は本発明の一実施例を示す図、
第7図は第6図の実施例に於る回生電流指令値の特性図
である。 1……交流電源、3……交流リアクトル、4……電流検
出器、5……直流電圧検出器、61〜66……トランジス
タ、13,17,22……減算器、14……電圧誤差増幅器、20…
…三角波発生器、24……比較器、25……位相検出回路、
31〜36……オン信号、37〜39……アンドゲート、E……
直流電圧、I……回生電流、I0……電流指令値、E0……
回生開始電圧。
1 is a diagram showing a main circuit of a regenerative converter, FIG. 2 is a diagram showing a conventional control device of a regenerative converter, FIG. 3 is a characteristic diagram of a conventional regenerative current command value, and FIG. 4 is a 120 ° phase detection. A time chart showing the operation of the circuit, FIG. 5 is a diagram showing a waveform of a DC regenerative current, and FIG. 6 is a diagram showing an embodiment of the present invention.
FIG. 7 is a characteristic diagram of the regenerative current command value in the embodiment of FIG. 1 ... AC power supply, 3 ... AC reactor, 4 ... Current detector, 5 ... DC voltage detector, 61-66 ... Transistor, 13,17,22 ... Subtractor, 14 ... Voltage error amplifier , 20 ...
… Triangle wave generator, 24 …… Comparator, 25 …… Phase detection circuit,
31-36 …… ON signal, 37-39 …… AND gate, E ……
DC voltage, I ... regenerative current, I 0 ... current command value, E 0 ...
Regeneration start voltage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二宮 寿一 習志野市東習志野7丁目1番1号 株式 会社日立製作所習志野工場内 (72)発明者 小林 澄男 習志野市東習志野7丁目1番1号 株式 会社日立製作所習志野工場内 (56)参考文献 特開 昭58−179180(JP,A) 特開 昭58−108972(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Juichi Ninomiya 7-1-1 Higashi Narashino, Narashino-shi Narashino Factory, Hitachi Ltd. (72) Inventor Sumio Kobayashi 7-1-1 Higashi Narashino, Narashino City Hitachi, Ltd. Narashino Factory (56) Reference JP-A-58-179180 (JP, A) JP-A-58-108972 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回生コンバータの入力交流電源の相間電圧
ピーク値を検出するピーク値検出手段と、該相間電圧ピ
ーク値に一定値を加えた値を回生開始電圧値として設定
する回生電圧設定手段と、回生コンバータの出力端の直
流電圧が前記回生開始電圧値を越えた時にその差に応じ
た電流指令値を出力する電流指令値設定手段と、前記出
力端から回生コンバータへ流入する回生電流が前記電流
指令値を下まわっている時にその差に比例したパルス幅
のオン信号を生成し該回生電流をリアクトルを介して交
流電源側へ流すためのスイッチング素子に前記オン信号
を与えて前記回生電流の実効値を制御する制御手段とを
備えたことを特徴とする回生コンバータの制御装置。
1. A peak value detecting means for detecting a peak value of an interphase voltage of an input AC power supply of a regenerative converter, and a regenerative voltage setting means for setting a value obtained by adding a constant value to the peak value of the interphase voltage as a regenerative start voltage value. A current command value setting means for outputting a current command value corresponding to the difference when the DC voltage at the output end of the regenerative converter exceeds the regenerative start voltage value, and the regenerative current flowing from the output end to the regenerative converter is When the current command value is lowered, an ON signal having a pulse width proportional to the difference is generated, and the ON signal is given to the switching element for flowing the regenerative current to the AC power source side through the reactor to supply the ON signal. A control device for a regenerative converter, comprising: a control means for controlling an effective value.
JP59081909A 1984-04-25 1984-04-25 Regenerative converter control device Expired - Lifetime JP2567830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081909A JP2567830B2 (en) 1984-04-25 1984-04-25 Regenerative converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081909A JP2567830B2 (en) 1984-04-25 1984-04-25 Regenerative converter control device

Publications (2)

Publication Number Publication Date
JPS60226778A JPS60226778A (en) 1985-11-12
JP2567830B2 true JP2567830B2 (en) 1996-12-25

Family

ID=13759570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081909A Expired - Lifetime JP2567830B2 (en) 1984-04-25 1984-04-25 Regenerative converter control device

Country Status (1)

Country Link
JP (1) JP2567830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016008984A1 (en) 2015-07-31 2017-04-20 Fanuc Corporation A motor control apparatus, wherein a current regeneration is adjusted, control unit for an inverter, machine learning apparatus and method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108972A (en) * 1981-12-23 1983-06-29 Toshiba Corp Bidirectional power converter
JPS58179180A (en) * 1982-04-13 1983-10-20 Toshiba Corp Power regenerative controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016008984A1 (en) 2015-07-31 2017-04-20 Fanuc Corporation A motor control apparatus, wherein a current regeneration is adjusted, control unit for an inverter, machine learning apparatus and method thereof
US10135255B2 (en) 2015-07-31 2018-11-20 Fanuc Corporation Motor control apparatus in which power regeneration are adjusted, controller for converter, machine learning apparatus and method thereof

Also Published As

Publication number Publication date
JPS60226778A (en) 1985-11-12

Similar Documents

Publication Publication Date Title
JP3542313B2 (en) Driving method of semiconductor switching element and power supply device
US6373730B1 (en) Switching power supply
JP2567830B2 (en) Regenerative converter control device
JPH11150952A (en) Switching dc power supply equipment
JP3400678B2 (en) Control device for charging generator
JPH08308219A (en) Chopper type dc-dc converter
JP3166149B2 (en) DC converter device
JP2533774Y2 (en) DC-DC converter
JP2990867B2 (en) Forward converter
JP3376787B2 (en) Command converter for power converter
JP2858407B2 (en) PWM DC-DC converter
JP3107193B2 (en) DC-DC converter
JPS6118394A (en) Drive circuit for stepping motor
JP2535225B2 (en) Automatic voltage regulator
JP2000184710A (en) Dc-dc converter insulated by transformer
JPS59110376A (en) Switching regulator
JP2000152624A (en) Transformer-insulated dc-to-dc converter
JP2716290B2 (en) Power circuit
JP2549101B2 (en) Power converter
US3368138A (en) Thyristor control system for supplying rectified voltage from a three-phase alternating-current supply
JPH0214319Y2 (en)
JP3202284B2 (en) Switching regulator
JPH06319292A (en) Load drive equipment and drive method
JP3612894B2 (en) PWM inverter device
JPS61244264A (en) Multi-output dc voltage converting circuit