JPS60226465A - Axial joint of ceramic to metal - Google Patents

Axial joint of ceramic to metal

Info

Publication number
JPS60226465A
JPS60226465A JP8174284A JP8174284A JPS60226465A JP S60226465 A JPS60226465 A JP S60226465A JP 8174284 A JP8174284 A JP 8174284A JP 8174284 A JP8174284 A JP 8174284A JP S60226465 A JPS60226465 A JP S60226465A
Authority
JP
Japan
Prior art keywords
shaft
metal
ceramic
joining
fastening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174284A
Other languages
Japanese (ja)
Inventor
中門 公明
一郎 高橋
三郎 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8174284A priority Critical patent/JPS60226465A/en
Publication of JPS60226465A publication Critical patent/JPS60226465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明のセラミックスと金属との軸締結方法に係り、特
に高温において高強度を得るに好適な軸締結方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a shaft fastening method between ceramics and metal, and particularly to a shaft fastening method suitable for obtaining high strength at high temperatures.

〔発明の背景〕[Background of the invention]

従来のセラミックス軸と金属軸との締結は第1図に示す
如く、セラミックス軸1と金属軸2と端面を接合材3を
介してつき合せ、固相接合、ろう接々合などの方法によ
り行っていた。接合は製品の使用温度以上の温度で行わ
れ、高温強度を目指すセラミックス製品においては10
00℃に達する高温接合が必要になる。接合後、この様
な高温域から室温まで冷却するが、その間に熱変形の差
による熱応力が生じ、接合部の残留応力となる。すなわ
ち、セラミックス軸1に使われる耐熱性に優れた構造用
セラミックス(S iCp S i!I Naなど)の
線膨張係数は金属軸2に使われるコバールなど低熱膨張
金属材の線膨張係数に比べ数分の1の低い値である。し
たがって、接合後の冷却過程では金属軸の方が大きな収
縮変形を示すため、セラミックス軸の接合部には第2図
に示す如き熱変形に基づく力が加わり、熱応力が発生す
る。この熱応力がセラミックスの破壊強度を越える時、
第2図に示す如き割れ6が生じ、最悪の場合には破断し
てしまう0割れ発生に至らない場合でも高い残留応力が
残るため、軸締結部の載荷力は極めて低いものとなる。
Conventionally, the ceramic shaft and the metal shaft are connected as shown in Fig. 1 by bringing the ceramic shaft 1, the metal shaft 2, and the end surfaces together via a bonding material 3, and using methods such as solid state welding and soldering. was. Bonding is performed at a temperature higher than the product's usage temperature, and for ceramic products aiming for high-temperature strength,
High-temperature bonding reaching 00°C is required. After joining, the parts are cooled from such a high temperature range to room temperature, but during this time thermal stress is generated due to the difference in thermal deformation, resulting in residual stress in the joined part. In other words, the coefficient of linear expansion of the structural ceramics with excellent heat resistance (S iCp Si! I Na, etc.) used for the ceramic shaft 1 is several times smaller than that of the low thermal expansion metal material such as Kovar used for the metal shaft 2. This is a one-fold lower value. Therefore, in the cooling process after joining, the metal shaft exhibits larger shrinkage deformation, and a force based on thermal deformation as shown in FIG. 2 is applied to the joined portion of the ceramic shaft, generating thermal stress. When this thermal stress exceeds the fracture strength of ceramics,
A crack 6 as shown in FIG. 2 occurs, and in the worst case, even if the zero crack does not occur, a high residual stress remains, so that the loading force of the shaft fastening portion becomes extremely low.

この様に、従来の締結方法は、耐熱性を上げ高温接合を
行うほど、残留応力が増加し軸締結部の載荷力が低下す
るという問題があった。
As described above, the conventional fastening method has a problem in that as the heat resistance is increased and high-temperature bonding is performed, the residual stress increases and the loading force of the shaft fastening portion decreases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、特に高温にて接合処理を行うセラミッ
クスと金属軸締結方法において、高い載荷力を有する方
法を提供することにある。
An object of the present invention is to provide a method for fastening ceramics and metal shafts, in which bonding treatment is performed at high temperatures, which has a high loading force.

〔発明の概要〕[Summary of the invention]

セラミックスと金属の接合による軸締結方法の載荷力を
向上するには、接合時に生じる残留応力を低減すること
が有効である6本発明は、セラミックス軸の接合部外周
に高い残留応力が生じること、および金属の高い延性に
着目し、金属軸の接合部外周の剛性を低くして変形を容
易にしセラミックス軸と金属軸の熱変形の差を吸収する
ことによって、上記目的を達成するものである。
In order to improve the loading force of the shaft fastening method by joining ceramics and metal, it is effective to reduce the residual stress generated during joining. The above object is achieved by focusing on the high ductility of metals, reducing the rigidity of the outer periphery of the joint of the metal shaft to facilitate deformation, and absorbing the difference in thermal deformation between the ceramic shaft and the metal shaft.

〔発明の実施例〕 以下、本発明の一実施例を第3図により説明する。セラ
ミックス軸1と金属軸2を接合材3を介して締結する場
合において、金属軸2の接合部の外側に張出し部を設け
、該張出し部は先端はど薄肉となる。なお、接合処理工
程中に加圧が必要な場合は加圧ロッド4を用いて張出し
部に加圧力を加える。本方法を用いると、接合終了後の
冷却に伴なう金属軸とセラミックス軸の収縮変形の差を
剛性の低い金属軸張出し部の変形により吸収するため、
セラミックス軸に生じる残留応力を低減することができ
、また、張出し部の肉厚を変化させることにより、軸締
結部に加わる外荷重応力を滑らかにセラミックス軸から
金属軸に伝えることが可能となる。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. When the ceramic shaft 1 and the metal shaft 2 are fastened together via the bonding material 3, an overhang is provided outside the joint of the metal shaft 2, and the overhang has a thinner end. In addition, if pressurization is required during the bonding process, pressurizing force is applied to the overhang using the pressurizing rod 4. When this method is used, the difference in shrinkage deformation between the metal shaft and the ceramic shaft due to cooling after completion of bonding is absorbed by the deformation of the metal shaft overhang, which has low rigidity.
The residual stress generated in the ceramic shaft can be reduced, and by changing the thickness of the overhanging part, it is possible to smoothly transmit the external load stress applied to the shaft fastening part from the ceramic shaft to the metal shaft.

他の実施例を第4図により説明する。セラミックス軸1
と金属製で円筒状のリング5を接合材3を介して締結す
る場合において、リング5の接合部の内側に張出し部を
設け、さらに第5図に示す如くリング円周上の数ケ所に
軸方向の溝を設ける。
Another embodiment will be explained with reference to FIG. Ceramic shaft 1
When a cylindrical ring 5 made of metal is fastened via the bonding material 3, an overhang is provided inside the joint of the ring 5, and shafts are provided at several locations on the circumference of the ring as shown in FIG. Provide a groove in the direction.

接合処理工程中に加圧が必要な場合は加圧ロッド4を用
いて張出し部に加圧力を加える。また、金属軸とリング
5との接合は摩擦圧接その他の通常の接合法により締結
することが出来る。本方法をもつリングは半径方向変形
に対する剛性が低いため、前例と同様にセラミックス軸
に生ずる残留応力を低減することができる。
If pressurization is required during the bonding process, a pressurizing rod 4 is used to apply pressurizing force to the overhanging portion. Further, the metal shaft and the ring 5 can be joined by friction welding or other ordinary joining methods. Since the ring manufactured using this method has low rigidity against radial deformation, it is possible to reduce the residual stress generated in the ceramic shaft as in the previous example.

他の実施例を第6図により説明する。上述と同様の締結
においてリング5に替えて金属製の締結体7を用いる例
であり、接合部の外側に張出し部を設け、接合部外周の
肉厚を薄くシ、さらにその外側に突起を設け、該突起が
セラミック軸外周にかん合するものである。該突起部は
薄肉としたり。
Another embodiment will be explained with reference to FIG. This is an example in which a metal fastening body 7 is used instead of the ring 5 in the same fastening as described above, and an overhang is provided on the outside of the joint, the thickness of the outer periphery of the joint is made thin, and a protrusion is provided on the outside. , the protrusion engages with the outer periphery of the ceramic shaft. The protrusion may have a thin wall.

第7図に示す如く円周上数ケ所の外周に溝を設けるなど
により剛性の低い構造とする。第6図はかん合部をテー
バ状に加工した例であり、接合を行う高温での熱膨張を
考慮し、接合処理時に接合材厚さ以上の隙間が得られる
様番;加工する。接合時には加圧ロッド4を用いて加圧
し接合部が密着するまで、締結体7を強制的に変形させ
る。800℃程の高温では金属の塑性変形能は高く、ま
た応力緩和も速やかに終了するので、上記操作により締
結体が損傷を生じることはない、接合処理後の冷却によ
り、締結体7はセラミックス軸1より大きな収縮変形を
しようとするが、この変形はかん合部により阻げられる
。この時、締結体7の突起部の剛性は低いため容易に変
形し、同接合部外周に相当する薄肉とした部分も変形す
る。すなわち、セラミックス軸との熱変形の差が塑性変
形により吸収され減少することになり、セラミックス軸
に生じる残留応力を低減することができる。なお、本実
施例のかん合部はテーパ状に加工したが、円筒状に加工
する場合も寸法管理により同様の効果が得られる。また
、金属軸と締結体7との接合は金属同士の通常の方法で
容易に行うことができる。
As shown in FIG. 7, a structure with low rigidity is achieved by providing grooves on the outer periphery at several locations on the circumference. FIG. 6 shows an example in which the mating portion is machined into a tapered shape, and in consideration of thermal expansion at the high temperature at which the joining is performed, processing is performed in a manner that allows a gap greater than the thickness of the joining material to be obtained during the joining process. At the time of joining, pressure is applied using a pressure rod 4 to forcibly deform the fastening body 7 until the joined portion is brought into close contact. At a high temperature of about 800°C, the plastic deformability of metal is high, and stress relaxation ends quickly, so the above operation does not cause damage to the fastened body.By cooling after the joining process, the fastened body 7 becomes a ceramic shaft. Although a shrinkage deformation larger than 1 is attempted, this deformation is prevented by the fitting portion. At this time, since the rigidity of the protruding portion of the fastening body 7 is low, it is easily deformed, and the thin portion corresponding to the outer periphery of the joint portion is also deformed. That is, the difference in thermal deformation with the ceramic shaft is absorbed and reduced by plastic deformation, and the residual stress generated in the ceramic shaft can be reduced. Note that although the mating portion in this embodiment was machined into a tapered shape, the same effect can be obtained by controlling the dimensions even if it is machined into a cylindrical shape. Further, the metal shaft and the fastening body 7 can be easily joined by a usual method for joining metals together.

さらに、締結体7の外周部が不必要な時は、接合終了後
に機械加工により削除することも可能である。
Furthermore, when the outer peripheral part of the fastening body 7 is unnecessary, it can be removed by machining after the joining is completed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、セラミックス軸と
金属軸の接合時にセラミックス軸に生じる残留応力を低
減することができるので、高い載荷力をもち高温で使用
可能なセラミックスと金属の軸締結構造が得られ、この
ため、高温強度を要求される部分のみにセラミックスを
用いて製造することができ1価格面で有利であると共に
、形状が単純になるために製造欠陥を低減して製品の信
頼性が向上する効果がある。
As explained above, according to the present invention, the residual stress generated in the ceramic shaft when joining the ceramic shaft and the metal shaft can be reduced, so the ceramic-metal shaft fastening structure has a high loading force and can be used at high temperatures. For this reason, ceramics can be used only in the parts that require high-temperature strength, which is advantageous in terms of price.The simple shape reduces manufacturing defects and improves product reliability. It has the effect of improving sex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のセラミックスと金属の接合による軸締結
構造外観図、第2図はセラミックス軸に加わる接合時の
残留応力と割れの説明図、第3図。 第4図、第6図は本発明による接合方法の説明図、第5
図は本発明で用いるリング外観図、第7図は本発明によ
る締結体の正面および側面図である。 ■・・・セラミックス軸、2・・・金属軸、3・・・接
合材。 4・・・加圧ロッド、5・・・リング、6・・・セラミ
ックス第 1 口 χ 2 図 ”S 3 図 第 4 ロ 第5 図
Fig. 1 is an external view of a conventional shaft fastening structure by joining ceramics and metal, Fig. 2 is an explanatory diagram of residual stress and cracks applied to the ceramic shaft during joining, and Fig. 3. 4 and 6 are explanatory diagrams of the joining method according to the present invention, and FIG.
The figure is an external view of a ring used in the present invention, and FIG. 7 is a front and side view of a fastening body according to the present invention. ■... Ceramic shaft, 2... Metal shaft, 3... Bonding material. 4...Pressure rod, 5...Ring, 6...Ceramics first opening

Claims (1)

【特許請求の範囲】[Claims] セラミックス軸と金属軸とをつき合せにより一体軸締結
する方法において、金属軸の接合部における外側あるい
は内側に張出し部を設け、該張出し部は先端はど薄肉と
し、または該張出し部の円周上の数ケ所に軸方向の溝を
設け、あるいは外側に張出し部を設けて外周部肉厚を薄
くし、さらにその外側に突起を設け、該突起がセラミッ
ク軸外周にかん合するようにしたことを特徴とするセラ
ミックと金属との軸締結方法。
In a method of integrally fastening a ceramic shaft and a metal shaft by butting each other, an overhang is provided on the outside or inside of the joint of the metal shaft, and the overhang has a thinner end, or a thin wall on the circumference of the overhang. The thickness of the outer periphery is made thinner by providing grooves in the axial direction at several locations on the shaft or protruding parts on the outside, and protrusions are provided on the outside of the axial grooves so that the protrusions engage with the outer periphery of the ceramic shaft. Features a shaft fastening method between ceramic and metal.
JP8174284A 1984-04-25 1984-04-25 Axial joint of ceramic to metal Pending JPS60226465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174284A JPS60226465A (en) 1984-04-25 1984-04-25 Axial joint of ceramic to metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174284A JPS60226465A (en) 1984-04-25 1984-04-25 Axial joint of ceramic to metal

Publications (1)

Publication Number Publication Date
JPS60226465A true JPS60226465A (en) 1985-11-11

Family

ID=13754885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174284A Pending JPS60226465A (en) 1984-04-25 1984-04-25 Axial joint of ceramic to metal

Country Status (1)

Country Link
JP (1) JPS60226465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139077A (en) * 1986-12-02 1988-06-10 工業技術院長 Method of joining different kind materials of different thermal expansion coefficient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139077A (en) * 1986-12-02 1988-06-10 工業技術院長 Method of joining different kind materials of different thermal expansion coefficient

Similar Documents

Publication Publication Date Title
JPH0139854B2 (en)
JPS6278172A (en) Bonded structure of ceramic to metal
US4709621A (en) Internal combustion engine piston and a method of producing the same
EP0472171B1 (en) Ceramic rotor and metal shaft assembly
JPS60226465A (en) Axial joint of ceramic to metal
JPS6227380A (en) Method of joining axis of ceramic structure to boss of metalstructure
JPS62167041A (en) Composite material consisting of graphite and metal
JPS58214018A (en) Power transmission method
JPS6191073A (en) Structure for bonding ceramic axis and metal axis
JPS6177678A (en) Method of bonding metal cylindrical body for ceramic cylindrical structural member
JPS5951895B2 (en) Ceramics-metal composites
JPH085726B2 (en) Combined body of ceramic body and metal body
JPS62170336A (en) Composite material consisting of graphite and metal
JP2630490B2 (en) Combined ceramic and metal
JPS59190510A (en) Clamping tool made of ceramic
JPS61219765A (en) Composite body of ceramic and metal
JPS61219766A (en) Joint structure of ceramic shaft and metal shaft
JPH0351321Y2 (en)
JPS60260481A (en) Structure for bonding ceramic axis and metal axis
JPS61222962A (en) Method of joining ceramics and metal
JPS6178638A (en) Bonding material of ceramic member and metallic member and bonding method thereof
JPS62202732A (en) Composite material consisting of graphite and copper or copper alloy
JPH0251478A (en) Method for bonding metal and ceramic
JPH04292479A (en) Bonding of ceramics to metal
JPS5978982A (en) Ceramic and metal joint mechanism