JPS60226188A - Package method of photoelectric conversion element - Google Patents
Package method of photoelectric conversion elementInfo
- Publication number
- JPS60226188A JPS60226188A JP59084476A JP8447684A JPS60226188A JP S60226188 A JPS60226188 A JP S60226188A JP 59084476 A JP59084476 A JP 59084476A JP 8447684 A JP8447684 A JP 8447684A JP S60226188 A JPS60226188 A JP S60226188A
- Authority
- JP
- Japan
- Prior art keywords
- weir
- photoelectric conversion
- conversion element
- resin
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 16
- 239000011347 resin Substances 0.000 claims abstract description 16
- 238000004806 packaging method and process Methods 0.000 claims description 15
- 229920003002 synthetic resin Polymers 0.000 claims description 10
- 239000000057 synthetic resin Substances 0.000 claims description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 238000007789 sealing Methods 0.000 abstract description 5
- 239000000853 adhesive Substances 0.000 abstract description 4
- 230000001070 adhesive effect Effects 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0203—Containers; Encapsulations, e.g. encapsulation of photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02325—Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
この発明は、光を電気に変換したり、電気を光に変換し
たりするフォトダイオードや発光ダイオードのごとき半
導体素子(この明細書では、この両者を含めて、光電変
換素子という)のパッケージ方法に関する。[Detailed Description of the Invention] [Technical Field] The present invention relates to semiconductor devices such as photodiodes and light emitting diodes that convert light into electricity and electricity into light (this specification includes both of them). The present invention relates to a packaging method for a photoelectric conversion element (also referred to as a photoelectric conversion element).
半導体素子は、一般に、運搬、取扱い性、素子の保護、
配線板への搭載等の必要性から、パッケージに封入され
る。半導体素子が高度の精密技術の所産であり、微細化
5高性能化、経済化を徹底的に追及して行くためには、
パッケージにより素子と外部条件の整合を適切に処理し
なくてはならない。素子の保護、すなわち、信頼性の確
保こそがパッケージの本来的役割であり、最重要ポイン
トである。Semiconductor devices generally require transportation, handling, protection of the device,
It is enclosed in a package because it is necessary to mount it on a wiring board. Semiconductor elements are the product of advanced precision technology, and in order to thoroughly pursue miniaturization, high performance, and economicalization,
Matching of the device and external conditions must be appropriately handled by the package. The essential role of a package is to protect the device, that is, to ensure reliability, and is the most important point.
このようなことは、光電変換素子においても、当然のこ
とである。振動、接触等に対しての機械的保護の目的や
、湿度等に対しての環境保護の面から、パッケージが工
夫されてきた。しかし、他〜の半導体素子と比較して、
光電変換素子には、特有のパッケージが必要とされる。This is a matter of course for photoelectric conversion elements as well. Packages have been devised from the viewpoint of mechanical protection against vibrations, contact, etc., and environmental protection against humidity, etc. However, compared to other semiconductor devices,
Photoelectric conversion elements require specific packaging.
それは、パッケージが光透過特性を有しなければならな
いことである。したがって、通常は、透明合成樹脂であ
るメチルメタアクリレート、スチロール、シリコン、エ
ポキシ等がパッケージ樹脂として用いられてきた。That is, the package must have light transmission properties. Therefore, transparent synthetic resins such as methyl methacrylate, styrene, silicone, and epoxy have generally been used as package resins.
ところが、前記機械的保護や環境保護の面から光電変換
素子のパッケージを考慮することに重点を置いていたた
めに、この光透過特性に関するさまざまな問題点を解消
し得すに今日まで来ていた。例えば、その1つの例とし
て、次のようなことがある。However, because emphasis has been placed on the packaging of photoelectric conversion elements from the viewpoints of mechanical protection and environmental protection, various problems related to light transmission characteristics have not been solved until now. For example, one example is as follows.
普通、光電変換素子をパッケージする方法としては、次
のような方法による。まず、スクリーン印刷等により光
電変換素子設置部分の周囲に堰を形成したのち、その堰
の内部に光電変換素子を実装する。そして、堰の内部に
透明合成樹脂を滴下させたのち、硬化させパッケージを
形成する。この場合にパッケージの厚み(堰の高さ、透
明合成樹脂量)等の決定を、前記したように2つの保護
の面から考慮して、行なっていたのである。 □しかし
ながら、このような光電変換素子においては、その変換
効率を考える上で、樹脂中における光の透過効率は無視
することができない重要な因子であるにもかかわらす、
従来、その面での検討がなされていなかった。Generally, the following method is used to package a photoelectric conversion element. First, a weir is formed around the area where the photoelectric conversion element is installed by screen printing or the like, and then the photoelectric conversion element is mounted inside the weir. Then, a transparent synthetic resin is dropped inside the weir and then hardened to form a package. In this case, the thickness of the package (the height of the weir, the amount of transparent synthetic resin), etc., was determined by considering the two protection aspects as described above. □However, when considering the conversion efficiency of such photoelectric conversion elements, the light transmission efficiency in the resin is an important factor that cannot be ignored.
Until now, no consideration has been made in this aspect.
以上の事情に鑑みて、この発明は、充分な強度を備えて
いて、かつ、光透過特性にも優れている光電変換素子の
パッケージ方法を提供することをその目的とする。In view of the above circumstances, an object of the present invention is to provide a method for packaging a photoelectric conversion element that has sufficient strength and excellent light transmission characteristics.
発明者は、光透過特性が優れた光電変換素子のパッケー
ジ方法を開発するべく、鋭意検討を重ね、ここにこの発
明を完成した。The inventor has made extensive studies to develop a packaging method for photoelectric conversion elements with excellent light transmission characteristics, and has now completed this invention.
この発明は、回路基板上に設けられる光電変換素子の周
囲に堰を立設して、この堰の内側に透明合成樹脂を充填
することにより光電変換素子をパッケージする方法にお
いて、前記堰の高さHと最小径りを、堰の内部に位置す
る光電変換素子の地上面からの距離りがほぼ0.5D≦
L≦Dとなるように設定するとともに、充填する樹脂が
前記堰の上面で凸状に盛り上がるようにすることを特徴
とする光電変換素子のパッケージ方法をその要旨とする
。The present invention provides a method for packaging a photoelectric conversion element by erecting a weir around a photoelectric conversion element provided on a circuit board and filling the inside of the weir with a transparent synthetic resin, in which the height of the weir is H and the minimum radius, the distance from the ground surface of the photoelectric conversion element located inside the weir is approximately 0.5D≦
The gist thereof is a method for packaging a photoelectric conversion element, which is characterized in that L≦D is set, and the resin to be filled rises in a convex shape on the upper surface of the weir.
この発明の詳細な説明する前に、前提となる光学理論に
ついて説明しておく。第1図にみるように、球面を境界
として光透過特性(屈曲率)を測定する場合を想定する
。第1図において、入射光1が球面2で屈曲して屈曲光
3となり、球面2の内部へ透過される。球面2を形成し
ている球の中心4を通る光軸5と、屈曲光3の交点を6
とする。また、入射光1が球面2で屈曲せずに、球面2
内に透過されたと仮定した場合に、透過光(破駈泉で示
す)が光軸5と交わる点を7とする。そして、光軸5と
球面2との交わる点を8とする。この交点8から前記法
の中心4までの距離(すなわち、球の半径)をC2この
交点8から前記交点6までの距離をす、この交点8から
前記交点7までの距離をaとする。Before explaining the present invention in detail, the underlying optical theory will be explained. As shown in FIG. 1, a case is assumed in which the light transmission characteristics (index of curvature) are measured using a spherical surface as a boundary. In FIG. 1, incident light 1 is bent by a spherical surface 2 to become bent light 3, which is transmitted into the interior of the spherical surface 2. The intersection of the optical axis 5 passing through the center 4 of the sphere forming the spherical surface 2 and the bent light 3 is 6
shall be. In addition, the incident light 1 is not bent by the spherical surface 2, and the spherical surface 2
If it is assumed that the transmitted light is transmitted within, the point where the transmitted light (indicated by Hakusen) intersects with the optical axis 5 is defined as 7. The point where the optical axis 5 and the spherical surface 2 intersect is 8. The distance from this intersection 8 to the center 4 of the law (ie, the radius of the sphere) is C2, the distance from this intersection 8 to the intersection 6 is C2, and the distance from this intersection 8 to the intersection 7 is a.
以上述べた場合において、球面2内の屈曲率をn2球面
2の外の屈曲率を1 (真空または空気中)と仮定する
。すると、一般に良く知られてし)るように、
−1,/a、+n/b=、n/f
ここに、fは球面2の焦点距離
という公式が導かれる。ところが、系の光軸5Gこ十分
接近していてその方向がほとんど光軸に平行であるよう
な近軸光線においては、この公式からさらに、
f =n −c/ (n−1) ・・・(1)という公
式が導きだされる。In the case described above, it is assumed that the curvature index within the spherical surface 2 is n2 and the curvature index outside the spherical surface 2 is 1 (vacuum or in air). Then, as is generally well known, the formula -1,/a, +n/b=, n/f where f is the focal length of the spherical surface 2 is derived. However, for paraxial rays that are sufficiently close to the optical axis 5G of the system and whose direction is almost parallel to the optical axis, from this formula, f = n - c / (n - 1)... The formula (1) is derived.
光電変換素子のパッケージに用いられるメチルメタアク
リレート、スチロール、シリコン、エポキシ等の透明合
成樹脂の屈曲率は、通常の光の波長範囲である500〜
11000n程度では、番よむ王1.5であることが知
られている。そこで、この数値1.5を(1)式に代入
してやると、f=3c
となる。このことより、上記透明合成樹脂を光電変換素
子のパッケージに用いた場合、それらの焦点距離はそれ
らのパッケージの球面部を形成している球の半径の3倍
ということになる。The refractive index of transparent synthetic resins such as methyl methacrylate, styrene, silicone, and epoxy used in photoelectric conversion element packages is within the wavelength range of normal light, 500~
It is known that at around 11,000n, the number is 1.5. Therefore, by substituting this value 1.5 into equation (1), we get f=3c. From this, when the above-mentioned transparent synthetic resin is used for a package of a photoelectric conversion element, the focal length thereof will be three times the radius of the sphere forming the spherical portion of the package.
つぎに、第2図を参照しつつ話を進めると、この場合に
おいて、一般に良く知られているように、光源が焦点F
にある光Ll は、球面2において屈曲して光軸5と平
行な光となる。球面2と光軸5との交点8から、球面2
を形成している球の中心4までのある位置に光源がある
光L3は、球面2において全く屈曲せずにそのまま球面
2外へ出てしまう。また、前記中心4から焦点Fまての
ある位置に光源がある光L2は、球面2で折曲して光軸
5の側へ傾斜した光となる。Next, referring to Figure 2, in this case, as is generally well known, the light source is at the focal point F.
The light Ll located at is bent at the spherical surface 2 and becomes light parallel to the optical axis 5. From the intersection 8 of the spherical surface 2 and the optical axis 5, the spherical surface 2
The light L3 whose light source is located at a certain position up to the center 4 of the sphere forming the sphere will not be bent at all on the spherical surface 2 and will go out of the spherical surface 2 as it is. Further, the light L2 whose light source is located at a position from the center 4 to the focal point F is bent by the spherical surface 2 and becomes light inclined toward the optical axis 5 side.
したがって、以上のことより、光電変換素子に前記透明
合成樹脂をパッケージとして用いる場合には、前記中心
4から焦点Fまでの間の適宜の位置に光電変換素子を設
けなければならない。もし、前記交点8から前記中心4
までのある位置に光電変換素子を設けたならば、パッケ
ージの球面2は全くレンズの役割を果たさず、したがっ
て集光効果が生じず、光電変換素子の保護作用のみしか
期待し得ない。それでは、光電変換素子の光電特性を有
効に生かすことができず、甚だ効率の悪いものとなって
しまう。Therefore, from the above, when the transparent synthetic resin is used as a package for a photoelectric conversion element, the photoelectric conversion element must be provided at an appropriate position between the center 4 and the focal point F. If from the intersection 8 to the center 4
If the photoelectric conversion element is provided at a certain position, the spherical surface 2 of the package will not play the role of a lens at all, and therefore no light condensing effect will occur, and only a protective effect for the photoelectric conversion element can be expected. In this case, the photoelectric characteristics of the photoelectric conversion element cannot be effectively utilized, resulting in extremely poor efficiency.
発明者は、以上述べたことを考慮して、以下に述べるこ
の発明にがかる光電変換素子のパッケージ方法を発明し
た。In consideration of the above, the inventor invented a method for packaging a photoelectric conversion element according to the present invention, which will be described below.
この発明の1実施例である第3図にみるように、回路基
板9上には、2つの回路10a、10’bが形成されて
いる。一方の回路10a上には、光電変換素子11が導
電性接着剤によって搭載固定され、この光電変換素子1
1と他の回路10bとの間がボンディングワイヤ13に
よって接続されている。他方、回路基板9上には、接着
剤14を今して、円筒状の堰15が光電変換素子IIを
囲むように立設されている。この堰15の寸法は、つぎ
のようになっていることが重要である。すなわち、堰の
高さをH2最小径(実施例では直径)をり、堰の内部に
位置する光電変換素子11の堰上面からの距離をLとす
ると、距離りがほぼ0.5D≦17≦Dとなるように、
堰の高さHと最小径りを設定することである。As shown in FIG. 3, which is an embodiment of the present invention, two circuits 10a and 10'b are formed on a circuit board 9. A photoelectric conversion element 11 is mounted and fixed on one circuit 10a with a conductive adhesive, and this photoelectric conversion element 1
1 and another circuit 10b are connected by a bonding wire 13. On the other hand, a cylindrical weir 15 is erected on the circuit board 9 with an adhesive 14 so as to surround the photoelectric conversion element II. It is important that the dimensions of this weir 15 are as follows. That is, if the height of the weir is H2 minimum diameter (diameter in the example) and the distance from the top surface of the weir to the photoelectric conversion element 11 located inside the weir is L, then the distance is approximately 0.5D≦17≦ So that it becomes D,
The purpose is to set the height H and minimum diameter of the weir.
この堰の中に、透明常温加硫型シリコン樹脂等の透明封
止樹脂16を充填し、硬化させるのである。その際、封
止樹脂16の上面が球面状の凸状となって堰15の上面
部を覆うようにさせることが重要である。A transparent sealing resin 16 such as a transparent room-temperature vulcanizable silicone resin is filled into this weir and cured. At this time, it is important that the upper surface of the sealing resin 16 has a spherical convex shape and covers the upper surface of the weir 15.
このパッケージされた光電変換素子において、封止樹脂
16の球面部(凸レンズ部)16aを形成している球の
半径Cは、堰15の最小径の2分の1すなわち0.5
Dである。したがって、前記り、Lの関係式に基づけば
、球の半径Cと堰の最小径りとの関係は、はぼ下式のよ
うになる。In this packaged photoelectric conversion element, the radius C of the sphere forming the spherical part (convex lens part) 16a of the sealing resin 16 is 1/2 of the minimum diameter of the weir 15, that is, 0.5
It is D. Therefore, based on the above-mentioned relational expression for L, the relationship between the radius C of the sphere and the minimum diameter of the weir is expressed by the Haboshita equation.
C≦L≦20
すなわち、光電変換素子11は、球面部16aを形成し
ている球の半径Cの3倍の位置にあたる焦点Fの位置と
、球の中心4との間に来ることになる。それゆえ、球面
部16aが、レンズとじての役割を十二分に果たすこと
になる。距離りはなるべく2Cに近いほどよい。C≦L≦20 That is, the photoelectric conversion element 11 is located between the focal point F, which is three times the radius C of the sphere forming the spherical portion 16a, and the center 4 of the sphere. Therefore, the spherical portion 16a fully fulfills the role of a lens. The closer the distance is to 2C, the better.
実施例のようなパッケージ方法を実施するにあたっては
、まず、液状の樹脂を堰15内に滴下させる。この場合
には樹脂の粘度は低い方が良い。In carrying out the packaging method as in the embodiment, first, liquid resin is dropped into the weir 15. In this case, the lower the viscosity of the resin, the better.
しかし、球面部16aを形成する際には、粘度が高くな
っていた方が球面を形成しやすい。滴下させ終わったの
ち、放置して硬化させる。However, when forming the spherical portion 16a, it is easier to form a spherical surface if the viscosity is higher. After dropping, leave it to harden.
実施例では、堰は円筒状であったが、形状はどのような
ものでも構わない。もつとも、堰の平面形状が長方形、
長円形、楕円形の場合は、最小径とは短辺の長さまたは
短径を指し、正方形の場合はその一辺の長さを指す。In the embodiment, the weir was cylindrical, but it may have any shape. However, the planar shape of the weir is rectangular,
In the case of an oval or elliptical shape, the minimum diameter refers to the length of the short side or the short axis, and in the case of a square, it refers to the length of one side.
なお、堰の水平断面積を大きくし過ぎると、樹脂の球面
部の厚みが薄くなってしまう。すると、この球面部を形
成している球の半径が大きくなり過ぎて、堰の高さを非
常に大きくしてやらなくてはいけなくなる。したがって
、堰の水平断面積は、使用される樹脂量をも考慮した上
で、光電素子の周囲を十分に囲み得る最低限度のものが
良いと言える。Note that if the horizontal cross-sectional area of the weir is made too large, the thickness of the spherical portion of the resin will become thin. Then, the radius of the sphere that forms this spherical part becomes too large, and the height of the weir must be made very large. Therefore, it can be said that the horizontal cross-sectional area of the weir should be the minimum value that can sufficiently surround the photoelectric element, taking into account the amount of resin used.
この発明にかかる光電変換素子のパッケージ方法は、回
路基板上に設けられる光電変換素子の周囲に堰を立設し
て、この堰の内側に透明合成樹脂を充填することにより
光電変換素子をパッケージする方法において、前記堰の
高さHと最小径りを、堰の内部に位置する光電変換素子
の頭上面からの距離りがほぼ0.5D≦L≦Dとなるよ
うに設定するとともに、充填する樹脂が前記堰の上面で
凸状に盛り上がるようにすることを特徴とするので、球
面部が凸レンズの作用を行ない、従来、充電変換素子の
保護作用しかなし得なかったパッケージに、光電変換素
子の光電特性を効率良く発揮させる得る等の集光効果等
をももたらす。この集光効果は、従来のパッケージと比
べて2倍以上で、ある。A method for packaging a photoelectric conversion element according to the present invention includes erecting a weir around a photoelectric conversion element provided on a circuit board, and packaging the photoelectric conversion element by filling the inside of the weir with transparent synthetic resin. In the method, the height H and minimum diameter of the weir are set so that the distance from the overhead surface of the photoelectric conversion element located inside the weir is approximately 0.5D≦L≦D, and the weir is filled. Since the resin is made to bulge in a convex shape on the upper surface of the weir, the spherical part acts as a convex lens, and the photoelectric conversion element can be placed in a package that conventionally only had the function of protecting the charge conversion element. It also brings about a light condensing effect, etc., which allows the photoelectric properties to be exhibited efficiently. This light-concentrating effect is more than twice that of conventional packages.
第1図は、球面を境界とした場合の光透過特性(屈曲率
)をあられす説明図、第2図は、球面を境界とした場合
の近軸光線の光透過特性(屈曲率)をあられす説明図、
第3図は、この発明にかかる光電変換素子のパッケージ
方法により得られるパッケージ耐の断面図である。
9・・・回路基板 11・・・光電変換素子 15・・
・堰16・・・透明封止樹脂 16a・・・球面部(凸
レンズ部)
代理人 弁理士 松 本 武 音
部1因
第2図
第3図Figure 1 is an illustration of the light transmission characteristics (curvature) when a spherical surface is the boundary, and Figure 2 is an illustration of the light transmission characteristics (curvature) of paraxial rays when the spherical surface is the boundary. explanatory diagram,
FIG. 3 is a cross-sectional view of a package obtained by the photoelectric conversion element packaging method according to the present invention. 9... Circuit board 11... Photoelectric conversion element 15...
・Weir 16... Transparent sealing resin 16a... Spherical part (convex lens part) Agent Patent attorney Takeshi Matsumoto Onbe 1 Cause 2 Figure 3
Claims (1)
堰を立設して、この堰の内側に透明合成樹脂を充填する
ことにより光電変換素子をパッケージする方法において
、前記堰の高さHと最小径りを、堰の内部に位置する光
電変換素子の壇上面からの距離りがほぼ0.5 D≦L
≦Dとなるように設定するとともに、充填する樹脂が前
記堰の上面で凸状に盛り上がるようにすることを特徴と
する光電変換素子のパッケージ方法。 (2)透明合成樹脂が、メチルメタアクリレート、スチ
ロール、シリコン、エポキシのいずれかである特許請求
の範囲第1項記載の光電変換素子のパッケージ方法。 (3)堰が円筒状である特許請求の範囲第1項または第
2項記載の光電変換素子のパッケージ方法[Claims]! 11 In a method of packaging a photoelectric conversion element by erecting a weir around a photoelectric conversion element provided on a circuit board and filling the inside of this weir with transparent synthetic resin, the height H of the weir and the maximum The distance from the top of the platform of the photoelectric conversion element located inside the weir is approximately 0.5 D≦L.
≦D, and the resin to be filled rises in a convex shape on the upper surface of the weir. (2) The method for packaging a photoelectric conversion element according to claim 1, wherein the transparent synthetic resin is any one of methyl methacrylate, styrene, silicon, and epoxy. (3) A method for packaging a photoelectric conversion element according to claim 1 or 2, wherein the weir is cylindrical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59084476A JPS60226188A (en) | 1984-04-25 | 1984-04-25 | Package method of photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59084476A JPS60226188A (en) | 1984-04-25 | 1984-04-25 | Package method of photoelectric conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60226188A true JPS60226188A (en) | 1985-11-11 |
Family
ID=13831691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59084476A Pending JPS60226188A (en) | 1984-04-25 | 1984-04-25 | Package method of photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60226188A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1745513A2 (en) * | 2004-04-15 | 2007-01-24 | SAES GETTERS S.p.A. | Integrated getter for vacuum or inert gas packaged leds |
WO2011127902A1 (en) * | 2010-04-15 | 2011-10-20 | Paul Voinea | Optical waveguide system |
JP2020053697A (en) * | 2019-12-09 | 2020-04-02 | デクセリアルズ株式会社 | Light-emitting device and manufacturing method for light-emitting device |
-
1984
- 1984-04-25 JP JP59084476A patent/JPS60226188A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1745513A2 (en) * | 2004-04-15 | 2007-01-24 | SAES GETTERS S.p.A. | Integrated getter for vacuum or inert gas packaged leds |
EP1745513A4 (en) * | 2004-04-15 | 2010-02-24 | Getters Spa | Integrated getter for vacuum or inert gas packaged leds |
WO2011127902A1 (en) * | 2010-04-15 | 2011-10-20 | Paul Voinea | Optical waveguide system |
JP2020053697A (en) * | 2019-12-09 | 2020-04-02 | デクセリアルズ株式会社 | Light-emitting device and manufacturing method for light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7443038B2 (en) | Flip-chip image sensor packages | |
US6492726B1 (en) | Chip scale packaging with multi-layer flip chip arrangement and ball grid array interconnection | |
US5893726A (en) | Semiconductor package with pre-fabricated cover and method of fabrication | |
CN105244360B (en) | Sensitive chip encapsulating structure and its packaging method | |
US20060051892A1 (en) | Methods for packaging image sensitive electronic devices | |
WO1992010856A1 (en) | Optoelectronic device component package and method of making the same | |
EP0164834A1 (en) | Improvements relating to the fabrication of optical devices | |
JPH11345905A (en) | Semiconductor device | |
JPS60214545A (en) | Package of electronic part | |
CN109273474A (en) | A kind of sensitive chip encapsulating structure and its packaging method | |
CN111276452A (en) | Chip packaging structure and packaging method thereof | |
JP2006114879A (en) | Optical semiconductor device and electronic apparatus | |
CN111900181A (en) | Wafer level packaging method for image sensing chip | |
JPS60226188A (en) | Package method of photoelectric conversion element | |
CN205159328U (en) | Sensitization chip package structure | |
CN206921858U (en) | Light-emitting device | |
CN105118843A (en) | Packaging structure and packaging method | |
KR20120076286A (en) | Lens module, lens wafer module, and method for manufacturing lens module | |
US20140353788A1 (en) | Semiconductor optical package and method | |
CN111276503A (en) | Fan-out type packaging method of optical device and optical device | |
TWM628856U (en) | Optical sensor package assembly | |
CN213936192U (en) | Packaging structure | |
CN205050824U (en) | Packaging structure | |
TWI694555B (en) | Chip packaging structure and method for manufacturing the same | |
JP3220095U (en) | LED light emitting device |