JPS60224958A - Stirling engine - Google Patents

Stirling engine

Info

Publication number
JPS60224958A
JPS60224958A JP8132484A JP8132484A JPS60224958A JP S60224958 A JPS60224958 A JP S60224958A JP 8132484 A JP8132484 A JP 8132484A JP 8132484 A JP8132484 A JP 8132484A JP S60224958 A JPS60224958 A JP S60224958A
Authority
JP
Japan
Prior art keywords
space
working fluid
pressure
container
displacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132484A
Other languages
Japanese (ja)
Inventor
Kenichi Inota
猪田 憲一
Terumaru Harada
照丸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8132484A priority Critical patent/JPS60224958A/en
Publication of JPS60224958A publication Critical patent/JPS60224958A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • F02G2243/24Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder with free displacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/80Engines without crankshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To eliminate conventional piston thus to improve the thermal efficiency and the reliability by encapsulating the working fluid in an enclosed container and providing a heater and a cooler while separating the inner space of said container into two through a partitioner having a communicating hole. CONSTITUTION:Upon lifting of a displacer 21, the pressure in the expansion space 22 will go higher than that in the compression space and the differential pressure will cause motion of the working fluid in the expansion space 22 through a heater 24, a regenerator 25 and a cooler 26 into the compression space 23. Consequently, the volume of high temperature working fluid in the expansion space 22, a flow path 27 and the heater 24 will decrease while the volume of low temperature working fluid in the compression spaces 23, 18, a flow path 27' and the cooler 26 will increase. Upon lifting of the displacer 21, pulsating pressure is produced in the working space to lift a flexible partitioner 17 having a hole 20. Consequently, the working fluid in the working space will perform work against the flexible partitioner 17 which will perform work against spacific load 33.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はスターリング機関の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements to Stirling engines.

従来例の構成とその問題点 従来のスターリング機関に於ては第1図に示すように作
動流体に膨張空間1.(流路2,3.加熱器4.冷却器
6.再生器6)の作動流体側空間。
Structure of the conventional example and its problems In the conventional Stirling engine, as shown in FIG. 1, there is an expansion space 1 for the working fluid. Working fluid side space of (flow paths 2, 3. heater 4. cooler 6. regenerator 6).

圧縮空間7.8からなる作動空間の体積をほぼ一定に保
って加熱器4と冷却器6との間を往復させ、それによっ
て膨張空間1および圧縮空間7,8に圧力脈動を作り出
す為にディスプレーサ9を設けていた。ディスプレーサ
9は容器10の内面に摺動して上下運動し、ディスプレ
ーサ9が上方に移動すると、膨張空間1の圧力は圧縮空
間下の圧力より高く々す、この差圧によって膨張空間1
の作動流体は加熱器4.再生器6.冷却器5を通って圧
縮空間7の方へ移動する。その為、膨張空1V41 。
A displacer is used to reciprocate between the heater 4 and the cooler 6 while keeping the volume of the working space consisting of the compression spaces 7 and 8 almost constant, thereby creating pressure pulsations in the expansion space 1 and the compression spaces 7 and 8. 9 was set. The displacer 9 slides on the inner surface of the container 10 and moves up and down. When the displacer 9 moves upward, the pressure in the expansion space 1 becomes higher than the pressure under the compression space. Due to this pressure difference, the pressure in the expansion space 1 increases.
The working fluid of heater 4. Regenerator6. It moves through the cooler 5 towards the compression space 7 . Therefore, the expansion sky is 1V41.

流路2.加熱器4の中にある高温の作動流体の体積が減
少し、逆に圧縮空間7.8流路3.冷却器6の中にある
低温の作動流体の体積が増加する。
Channel 2. The volume of the hot working fluid in the heater 4 decreases and conversely the compression space 7.8 flow path 3. The volume of cold working fluid in the cooler 6 increases.

このディスプレーサ9が下死点から上死点まで移動する
間は、作動空間の体積はほぼ一定に保たれるので、作動
空間の平均温度が下が9.その結果。
While the displacer 9 moves from the bottom dead center to the top dead center, the volume of the working space is kept almost constant, so the average temperature of the working space is 9. the result.

作動空間の平均圧力は減少する。1だ逆に、ディスプレ
ーサ9が上死点から下死点まで移動すると、この間、作
動空間の体積はほぼ一定に保たれるので、作動空間の平
均温度は上がり、その結果1作動空間の平均圧力は増加
する。
The average pressure in the working space decreases. 1 On the contrary, when the displacer 9 moves from top dead center to bottom dead center, the volume of the working space is kept almost constant during this period, so the average temperature of the working space increases, and as a result, the average pressure of the working space increases. increases.

また、第1図のディスプレーサロッド14によってその
一部を囲まれたガススプリング15は、ディスプレーサ
9が上昇するときにはその体積が増加して圧力が下がり
、ディスプレーサを引下ける作用をし、ディスプレーサ
が下降するときにはその体積が減少して圧力が上がり、
ディスプレーサを引上げる作用をする。
Furthermore, when the displacer 9 rises, the gas spring 15 partially surrounded by the displacer rod 14 in FIG. When it does, its volume decreases and pressure increases,
It acts to pull up the displacer.

lcバウンスペース12はピストン11の運動に伴って
その体積が変化してガススプリングの働きをし、ピスト
ン11を適当な振幅で振動させる役目を果している。
The lc bounce space 12 changes its volume with the movement of the piston 11, acts as a gas spring, and serves to vibrate the piston 11 with an appropriate amplitude.

また、流路16は圧縮空間7と圧縮空間8との間で作動
流体がいききできるように設けられている。
Further, the flow path 16 is provided so that the working fluid can flow between the compression space 7 and the compression space 8.

以上のようにして、ディスプレーサ9は上下運動し、そ
れによって作動空間内に圧力の脈動が発生し、この圧力
の脈動によってピストン11は上下運動し、その結果1
作動空間の作動流体は加熱器4から熱をもらい、冷却器
6へ熱をすてピストン11に対して仕事し、ピストンは
、リニアオルタネータ、圧縮機、ポンプ等の負荷13に
−rjして仕事をするのである。
As described above, the displacer 9 moves up and down, thereby generating pressure pulsations in the working space, and this pressure pulsation causes the piston 11 to move up and down, resulting in 1
The working fluid in the working space receives heat from the heater 4, gives it away to the cooler 6, and performs work on the piston 11, and the piston performs work on the load 13 such as a linear alternator, compressor, pump, etc. This is what we do.

ところでピストン11と容器10の内面との間にはピス
トン11の運動を容易にする為にすき号があり、したが
って圧縮空間8とバウンススペース12との間に差圧が
ある時に1作動流体がこのすきまを通って圧縮空間8と
バウンススペース12の間を往来する。このとき容器1
0内の作動流体は、圧縮空間8の圧力とバウンススペー
ス12の圧力との差圧によって作動流体を流す仕事をす
る事になり、この仕事はその大半が熱になってし甘う。
By the way, there is a clearance between the piston 11 and the inner surface of the container 10 in order to facilitate the movement of the piston 11. Therefore, when there is a differential pressure between the compression space 8 and the bounce space 12, one working fluid It moves back and forth between the compression space 8 and the bounce space 12 through the gap. At this time, container 1
The working fluid in the space 0 performs the work of flowing the working fluid due to the pressure difference between the pressure in the compression space 8 and the pressure in the bounce space 12, and most of this work is converted into heat.

したがって作動流体がピストン11と容器10との間の
すきまを通って圧縮空間8とバウンススペース12との
間を往来することにより、このすきまが0の時に比べ作
動流体は余分に仕事をすることになる。つまり機関の熱
効率が低下する。
Therefore, as the working fluid passes between the compression space 8 and the bounce space 12 through the gap between the piston 11 and the container 10, the working fluid does more work than when this gap is zero. Become. In other words, the engine's thermal efficiency decreases.

またさらにピストン11と容器10の内面とは梠・動す
るので、摩擦による損失が発生し、これによってこれま
た機関の熱効率が低下する。また、スターリング機関は
容器10内に作動流体を封入しているので、ピストン1
1と容器1oとの摺動面に潤滑油を入れると、この潤滑
油が再生器6に入り9分解して、再生器6をつまらせた
りする、そこでピストン11と容器10との摺動面には
M o S 2や47ノ化エチレン、ポリイミド等の固
体潤滑剤を塗布している。ところがこれら固体潤滑剤は
運転時間の経過と共にはがれ落ちてくる。それにともな
って、ピストン11と容器10とのすきまが増大し1機
関の熱効率が低下する。また、さらに固体潤滑剤がはが
れ落ちると、ついには金属同志が接触するようになる。
Furthermore, since the piston 11 and the inner surface of the container 10 move, frictional losses occur, which also reduces the thermal efficiency of the engine. In addition, since the Stirling engine encloses the working fluid in the container 10, the piston 1
When lubricating oil is put into the sliding surface between the piston 11 and the container 1o, this lubricating oil enters the regenerator 6 and decomposes, clogging the regenerator 6. A solid lubricant such as MoS 2, 47-ethylene chloride, or polyimide is applied to the surface. However, these solid lubricants tend to peel off over time. Along with this, the gap between the piston 11 and the container 10 increases, and the thermal efficiency of one engine decreases. Furthermore, as the solid lubricant peels off, the metals eventually come into contact with each other.

この段階に到ると摩擦損失はさらに増加し、場合によっ
ては焼付きにより運転不能な事態に到る。
When this stage is reached, the friction loss further increases, and in some cases, seizure may occur, resulting in an inoperable situation.

すなわち、従来のスターリング機関は、ピストン11と
容器1oの内面にすきまがある為に、作動流体がピスト
ン11と容器10との間のすきまを通って圧縮空間8と
バウンススペース12との間を往来することによる熱効
率の低下と、摺動向での摩擦による熱効率の低下があり
、また、ピストン11と容器1oの内面との摺動面には
固体潤滑剤を塗布しているのでこれがはがれ落ちること
による焼付の発生という信頼性の低下があった。
That is, in the conventional Stirling engine, since there is a gap between the piston 11 and the inner surface of the container 1o, the working fluid passes between the compression space 8 and the bounce space 12 through the gap between the piston 11 and the container 10. There is a decrease in thermal efficiency due to friction caused by the sliding motion, and a decrease in thermal efficiency due to friction in the sliding movement.Also, solid lubricant is applied to the sliding surface between the piston 11 and the inner surface of the container 1o, so this may peel off. There was a decrease in reliability due to the occurrence of seizure.

発明の目的 本発明は以上述べてきた従来のスターリング機関の欠点
であるピストンと容器の内面との間のすきまを作動流体
が往来することによる熱効率の低下と、ピストンと容器
の内面との摩擦による熱効率の低下と、ピストンと容器
の内面との間の摺動向に塗布されている固体潤滑剤がは
がれ落ちることによる焼付の発生という信頼性の低下と
いう3つの欠点を解消し、もって従来品より、より効率
と信頼性の高いスターリング機関を提供しようとするも
のである。
Purpose of the Invention The present invention solves the drawbacks of the conventional Stirling engine as described above, such as a decrease in thermal efficiency due to the working fluid passing through the gap between the piston and the inner surface of the container, and a reduction in thermal efficiency due to friction between the piston and the inner surface of the container. This product eliminates three drawbacks: a decrease in thermal efficiency, and a decrease in reliability due to the occurrence of seizure due to the peeling of the solid lubricant applied to the sliding movement between the piston and the inner surface of the container. The aim is to provide a more efficient and reliable Starling engine.

発明の構成 本発明は密閉容器内にHe 、 H2等の作動流体を封
入し、加熱器、冷却器を備えたスターリング機関であり
、従来のスターリング機関と異るのは密閉容器内の空間
を自らに設けられた穴でのみ連通する2つの空間に分離
するように設けられた隔板を有する点である。
Components of the Invention The present invention is a Stirling engine that has a working fluid such as He or H2 sealed in a sealed container and is equipped with a heater and a cooler. It has a partition plate that is separated into two spaces that communicate only through holes provided in the space.

実施例の説明 第2図は本発明の概略の構成を示す図である。Description of examples FIG. 2 is a diagram showing a general configuration of the present invention.

本発明は従来のフリーピストン・スターリング機関(以
下、FPSEと略称する)とよく似た構成であり、従来
のFPSEのピストン11が可撓性隔板17に変った所
が異る。しかも、この可撓性隔板1了には圧縮空間18
とバウンススペース19とを連通ずる為の穴20が設け
られている。この穴2oを設けである理由は以下の通り
である。即ち。
The present invention has a configuration very similar to a conventional free piston Stirling engine (hereinafter abbreviated as FPSE), except that the piston 11 of the conventional FPSE is replaced with a flexible diaphragm 17. Moreover, this flexible diaphragm has 18 compressed spaces.
A hole 20 is provided for communicating between the bounce space 19 and the bounce space 19. The reason for providing this hole 2o is as follows. That is.

穴20がないとFPSEが運転停止中に1例えば圧縮空
間18とバウンススペース19との間に大きな温度差が
生じた場合、圧縮空間18内の圧力とバウンススペース
19内の圧力との差圧が可撓性隔板17が耐え得る差圧
を越えてし1い、破壊することがある。したがって、こ
の穴20で圧縮空間18とバウンススペース19とを均
圧して破壊を防ぐのである。
Without the hole 20, if a large temperature difference occurs between the compression space 18 and the bounce space 19 while the FPSE is out of operation, the pressure difference between the pressure in the compression space 18 and the pressure in the bounce space 19 will be If the differential pressure that the flexible diaphragm 17 can withstand is exceeded, it may break. Therefore, this hole 20 equalizes the pressure between the compression space 18 and the bounce space 19 to prevent destruction.

一方FPSEは運転中、〔(圧縮空間18の圧力)−(
バウンススペース19の圧力)〕は約20〜e o H
zで正になったり負になったりしているが。
On the other hand, during operation of the FPSE, [(pressure in compression space 18) - (
The pressure of the bounce space 19) is approximately 20~e o H
Although it becomes positive and negative in z.

このとき可撓性隔板17にかかる応力によって破壊しな
いように構成されている。また第3図に示すように可撓
性隔板17に設けられた穴20の径とFPSEO熱効率
との関係は穴20の径の増加と共に熱効率が下がってい
くということが分っている。この理由は、穴2oの径を
増加させると、運転中、圧縮空間18の圧力とバウンス
スペース19の圧力との差圧の変化にともなって生じる
、圧縮空間18とバウンススペース19との間で作動流
体を往来させるのに必要な仕事が増加し、その為に熱効
率が下がるのである。したがって熱効率を上げる為には
、穴20の径はできるだけ小さい方が良いのであるが、
加工し得る最小穴径が決まっているので、これを考慮し
て決めである。1だ28はその内部に作動流体を封入さ
れている容器、30はその周囲をディスプレーサロッド
29.支持部品31によって囲まれているガススプリン
グである。ディスプレーサ21が下降するとガススプリ
ング3Qの体積が減少して圧力が上昇しディスプレーサ
21を上昇させるような力を及し、ディスプレーサ21
が上昇すると、ガススプリング3゜の体積が増加して圧
力が減少し、ディスプレーサ21を下降させるような力
を及す。
At this time, the structure is such that the flexible partition plate 17 is not destroyed by the stress applied thereto. Further, as shown in FIG. 3, it is known that the relationship between the diameter of the hole 20 provided in the flexible partition plate 17 and the FPSEO thermal efficiency is such that the thermal efficiency decreases as the diameter of the hole 20 increases. The reason for this is that when the diameter of the hole 2o is increased, during operation, the pressure difference between the compression space 18 and the bounce space 19 changes due to a change in the pressure difference between the compression space 18 and the bounce space 19. The work required to move the fluid back and forth increases, which reduces thermal efficiency. Therefore, in order to increase thermal efficiency, it is better to make the diameter of the hole 20 as small as possible.
The minimum hole diameter that can be machined is fixed, so take this into account when deciding. 1, 28 is a container in which a working fluid is sealed, and 30 is surrounded by a displacer rod 29. A gas spring surrounded by a support part 31. When the displacer 21 descends, the volume of the gas spring 3Q decreases and the pressure increases, exerting a force to raise the displacer 21.
When the gas spring 3 rises, the volume of the gas spring 3° increases, the pressure decreases, and a force is exerted to lower the displacer 21.

また、流路32は圧縮空間23と圧縮空間18との間で
作動流体がいききできるように設けられている。
Further, the flow path 32 is provided so that the working fluid can flow between the compression space 23 and the compression space 18.

上記構成において、ディスプレーサ21が上方に移動す
ると、膨張空間22の圧力は圧縮空間23の圧力より高
くなり、この差圧によって膨張空間22の作動流体は加
熱器24.再生器26.冷却器26を通って圧縮空間2
3の方へ移動する。その為、膨張空間22.流路2了、
加熱器24の中にある高温の作動流体の体積が減少し、
逆に、圧縮空間23,18.流路27.冷却器26の中
にある低温の作動流体の体積が増加する。このディスプ
レーサ21が下死点から上死点まで移動する間は、作動
空間の体積はほぼ一定に保たれるので作動空間の平均温
度が下がり、その結果3作動空間の平均圧力は減少する
。また逆に、ディスプレーサ21が上死点から下死点ま
で移動すると、この間1作動空間の体積はほぼ一定に保
たれるので。
In the above configuration, when the displacer 21 moves upward, the pressure in the expansion space 22 becomes higher than the pressure in the compression space 23, and this pressure difference causes the working fluid in the expansion space 22 to flow into the heater 24. Regenerator 26. The compression space 2 passes through the cooler 26
Move towards 3. Therefore, the expansion space 22. Flow path 2 completed,
The volume of hot working fluid in heater 24 is reduced;
Conversely, the compressed spaces 23, 18 . Channel 27. The volume of cold working fluid in cooler 26 increases. While the displacer 21 moves from the bottom dead center to the top dead center, the volume of the working space is kept substantially constant, so the average temperature of the working space decreases, and as a result, the average pressure of the three working spaces decreases. Conversely, when the displacer 21 moves from the top dead center to the bottom dead center, the volume of one working space is kept almost constant during this time.

作動空間の平均温度は上がり、その結果1作動空間の平
均圧力は増加する。
The average temperature of the working space increases and as a result the average pressure of one working space increases.

以上のようにして、ディスプレーサ21は上下運動し、
それによって作動空間内に圧力の脈動が発生する。そう
すると〔(圧縮空間18内の圧力)−(バウンススペー
ス19内の圧力)〕が正になったり負になったり脈動す
る。そのため、可撓性隔板17にかかる圧縮空間18内
の圧力による力とバウンススペース19内の圧力による
力の合力が亥化し、その為に可撓性隔板17は上下に運
動する。そして、その結果作動空間の作動流体は加熱器
24から熱をもらい、冷却器26へ熱をすて。
As described above, the displacer 21 moves up and down,
Pressure pulsations are thereby generated in the working space. Then, [(pressure in the compression space 18) - (pressure in the bounce space 19)] becomes positive or negative and pulsates. Therefore, the resultant force of the force due to the pressure in the compression space 18 and the force due to the pressure in the bounce space 19 applied to the flexible diaphragm 17 increases, and therefore the flexible diaphragm 17 moves up and down. As a result, the working fluid in the working space receives heat from the heater 24 and releases the heat to the cooler 26.

可撓性隔板17に対して仕事をし、可撓性隔板17はそ
れに結合されているリニアオルタネータ、圧縮機、ポン
プ等の負荷33に対して仕事をするのである。
The flexible diaphragm 17 performs work on the load 33 connected to it, such as a linear alternator, compressor, pump, etc.

ところで前述のように、可撓性隔板17には穴2゜が設
けられているので運転停止時1例えば1作動空間の温度
とバウンススペース19の温度に太きな差がつき、その
為に1作動空間の圧力とバウンススペース19の圧力に
大きな差がついても、この穴2Qによって均圧するので
可撓性隔板17が破壊するようなことはない。また、こ
の穴20の径は穴20の径がOの時に比べて熱効率かは
とんと変わらないような大きさになっているので、熱効
率も穴2oのない時に比べほとんど変わらない。
By the way, as mentioned above, since the flexible diaphragm 17 is provided with a 2° hole, when the operation is stopped, there is a large difference between the temperature of the operating space 1, for example, and the temperature of the bounce space 19. Even if there is a large difference between the pressure in one working space and the pressure in the bounce space 19, the pressure is equalized by the holes 2Q, so the flexible partition plate 17 will not be destroyed. Further, the diameter of this hole 20 is so large that the thermal efficiency is not significantly different from that when the diameter of the hole 20 is O, so the thermal efficiency is also almost the same as when there is no hole 2o.

以上述べたように4本実施例は、従来のFPSEのピス
トン11のかわりに、穴20の明いた可撓性隔板17を
有しているので、従来のFPSEのようにピストン11
が容器10の内壁との間にすきまを介して摺動し、かつ
固体潤滑剤を用いていないため1作動流体がピストン1
1と容器1oとの間のすきまを通って圧縮空間8とバウ
ンススペース12との間を往来することによる熱効率の
低下がなく、ピストン11と容器10の内面との摺動面
がなくなるので、摺動による摩擦損失による熱効率の低
下や信頼性の低下がなくなるという効果がある。さらに
可撓性隔板17に矢20が明いているので、運転停止時
、圧縮空間18の圧力とバウンススペース19の圧力と
の差圧により可撓性隔板17が破壊することもない。
As described above, the fourth embodiment has a flexible diaphragm 17 with a hole 20 instead of the piston 11 of the conventional FPSE.
1 slides between the inner wall of the container 10 through a gap, and since no solid lubricant is used, 1 working fluid flows into the piston 1
There is no reduction in thermal efficiency due to movement between the compression space 8 and the bounce space 12 through the gap between the piston 11 and the container 1o, and there is no sliding surface between the piston 11 and the inner surface of the container 10. This has the effect of eliminating reductions in thermal efficiency and reliability due to friction loss due to motion. Furthermore, since the arrow 20 is visible on the flexible diaphragm 17, the flexible diaphragm 17 will not be destroyed due to the differential pressure between the pressure in the compression space 18 and the pressure in the bounce space 19 when the operation is stopped.

発明の効果 以上述べたように、本発明においては、従来のスターリ
ング機関より熱効率が向上し、さらに信頼性が向上する
という効果がある。
Effects of the Invention As described above, the present invention has the advantage of improved thermal efficiency and further improved reliability compared to conventional Stirling engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスターリング機関の概略の構成を示す図
、第2図は本発明の一実施例のスターリング機関の概略
の構成を示す図、第3図は同実施例における可撓性隔板
17に設けられた穴20の径と熱効率yとの関係を示す
グラフである。 17・・・・・可撓性隔板、19・・・・・バウンスス
ペース、20・・・・・−穴、21・・・・・ディスプ
レーサ、24・・・・・加熱器、25・・・ 再生器、
26・・・・冷却器、28・・・・・・容器、30・・
−・ガススプリング、33・・・・・リニアオルタネー
タ、圧縮機、ポンプ等の9荷。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a diagram showing a schematic configuration of a conventional Stirling engine, FIG. 2 is a diagram showing a schematic configuration of a Stirling engine according to an embodiment of the present invention, and FIG. 3 is a diagram showing a flexible diaphragm in the same embodiment. 17 is a graph showing the relationship between the diameter of the hole 20 provided in the hole 17 and the thermal efficiency y. 17...Flexible partition plate, 19...Bounce space, 20...-hole, 21... Displacer, 24... Heater, 25...・Regenerator,
26...Cooler, 28...Container, 30...
-・Gas spring, 33... 9 items such as linear alternator, compressor, pump, etc. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】 密閉容器と、密閉容器内に封入された流体と。 流体を加熱する手段と、流体を冷却する手段と。 流体を密閉容器内の空間の前記加熱する手段により加熱
される空間と前記冷却する手段により冷却される空間と
の間を移動させる手段と、密閉容器内の空間を自らに設
けられた穴でのみ連通する2つの空間に分離するように
設けられた隔板を有するスターリング機関。
[Claims] A sealed container and a fluid sealed within the sealed container. A means for heating the fluid and a means for cooling the fluid. A means for moving fluid between a space in a closed container heated by the heating means and a space cooled by the cooling means, and a means for moving a fluid between a space in the closed container that is heated by the heating means and a space cooled by the cooling means, A Stirling engine that has a partition that separates it into two communicating spaces.
JP8132484A 1984-04-23 1984-04-23 Stirling engine Pending JPS60224958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132484A JPS60224958A (en) 1984-04-23 1984-04-23 Stirling engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132484A JPS60224958A (en) 1984-04-23 1984-04-23 Stirling engine

Publications (1)

Publication Number Publication Date
JPS60224958A true JPS60224958A (en) 1985-11-09

Family

ID=13743211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132484A Pending JPS60224958A (en) 1984-04-23 1984-04-23 Stirling engine

Country Status (1)

Country Link
JP (1) JPS60224958A (en)

Similar Documents

Publication Publication Date Title
US4244192A (en) Refrigeration system and reciprocating compressor therefor with pressure stabilizing seal
JPS60224958A (en) Stirling engine
JPS6043157A (en) Stirling engine
WO1999004205A1 (en) Sealing device for gas compressor-expander
US4481777A (en) Cryogenic refrigerator
US5056419A (en) Sealing device for a piston rod of a stirling engine
JP2506776B2 (en) Stirling engine
JP2585424B2 (en) Rotary compressor
JPH1062025A (en) Vuilleumier heat pump
JP2818169B2 (en) Stirling engine
JP2590465B2 (en) Free piston type stirling engine
JP3930079B2 (en) Vibrating compressor
JPH0512546B2 (en)
JPS6043158A (en) Stirling engine
JPS6088851A (en) Stirling engine
JPS6093163A (en) Stirling-engine
JPH0325095Y2 (en)
JPH0814684A (en) Stirling cycle gas freezer
JPH0257215B2 (en)
JPH04153593A (en) Sealed type rotary compressor
JPH03121244A (en) Stirling engine
JPS6125954A (en) Stirling engine
JPH04124477A (en) Closed type compressor
JPS63143370A (en) Free piston type stirling engine
JP2901722B2 (en) Clearance seal type cylinder assembly