JPS63170547A - External combustion engine using gas occluded alloy - Google Patents

External combustion engine using gas occluded alloy

Info

Publication number
JPS63170547A
JPS63170547A JP56187A JP56187A JPS63170547A JP S63170547 A JPS63170547 A JP S63170547A JP 56187 A JP56187 A JP 56187A JP 56187 A JP56187 A JP 56187A JP S63170547 A JPS63170547 A JP S63170547A
Authority
JP
Japan
Prior art keywords
cylinder
displacer
temperature
cooler
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56187A
Other languages
Japanese (ja)
Inventor
Hiroki Tanaka
田中 博喜
Yuji Tokita
時田 雄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56187A priority Critical patent/JPS63170547A/en
Publication of JPS63170547A publication Critical patent/JPS63170547A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/05Controlling by varying the rate of flow or quantity of the working gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/38External regenerators having parallel cylinders, e.g. "Heinrici" engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To diminish variation of temperature of working fluid for relaxing thermal fatigue of components by connecting a cooler, a gas occluded alloy receiver and a heater in series for providing passages selectably connecting each of them to a displacer cylinder. CONSTITUTION:A cooler 11, a gas occluded alloy receiver 40 and a heater 10 are connected together in series and respective passages 31, 36, 37 and 31 are opened to a displacer cylinder 13 via check valves 32, 33, 34 and 35. When a displacer piston 18 is moved upward, the check valve 33 is made to close and the valve 32 is made to open, thereby gas in the upper side of the cylinder 13 flows into the cooler 11 via the passage 31 for passing through the occluded alloy receiver 40 to be discharged to the down side of the cylinder 13 form the passage 37 via the check valve 35. At this time, the fluid cooled in the cooler 11 is raised in its temperature and lowered in its pressure by occluding exothermic reaction of gas occluded alloy. And when the piston 18 goes down the fluid heated in the heater 10 in the opposite way, is lowered in its temperature and raised in its pressure in the opposite way and then discharged to the upper side of the cylinder 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディスプレーサ、シリンダとピストン及びパ
ワーシリンダとピストンを有する外燃式エンジンの改良
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in an external combustion engine having a displacer, a cylinder and a piston, and a power cylinder and a piston.

〔従来の技術〕[Conventional technology]

従来のスターリングエンジンは、第3図に示すように、
加熱器10′、冷却器11.再生熱交換器n。
The conventional Stirling engine, as shown in Figure 3,
Heater 10', cooler 11. Regenerative heat exchanger n.

ディスプレーサ−シリンダ13.同ピストン18t /
”ワーシリンダ14: 同ピストン19力とから図示の
よりに構成されており、ノ々ワーピストン19が下ると
きには、ディスプレーサ−ピストン18録下方に位置し
圧力と温度の高い気体の量が多くなり、パワー−ストン
19′を押し下げる。次に・切−一ストン19が上昇す
るときにはディスプレーサ−ピストンは上方にあり冷た
いガス体が多いので圧力が低く、このために・々ツーピ
ストン19’t−引き上げる。従って上記−周期の間に
外部に仕事をすることになる。
Displacer cylinder 13. Same piston 18t/
"War cylinder 14: The war cylinder 14 is constructed from the same piston 19 as shown in FIG. The power stone 19' is pushed down.Next, when the cutting stone 19 rises, the displacer piston is at the top and there is a lot of cold gas, so the pressure is low, so the two pistons 19't are pulled up. Therefore, work is done to the outside during the above period.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記した従来の外燃式1ンジンであるスターリ
ングエンジンにあっては、効率を上げ、出力が増すため
には、作動流体の平均圧力を上げ、かつ、高温、および
低温の温度差を大きくする必要がある。そのため加熱側
の温度が上る結果となるがそれに伴って構成部材が苛酷
な条件で使用されることとなり焼損や熱疲労などの問題
が生ずる。
However, in the Stirling engine, which is the conventional external combustion engine mentioned above, in order to increase efficiency and output, it is necessary to increase the average pressure of the working fluid and to increase the temperature difference between high and low temperatures. There is a need to. This results in an increase in the temperature on the heating side, and as a result, the constituent members are used under harsh conditions, causing problems such as burnout and thermal fatigue.

本発明は、ガス吸蔵合金を用いることによって高温時お
よび低温時の作動流体の温度差を小さくし、上記のよう
な問題を解決しようとするものである。
The present invention aims to solve the above-mentioned problems by reducing the temperature difference between working fluids at high and low temperatures by using a gas storage alloy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴とするところは、ディスプレーサ、シリン
ダとピストン及びパワーシリンダとピストンを有し、外
部的に加熱、冷却を行うことによシパワーを得る外燃式
エンジンにおいて、冷却器とガス吸蔵合金収容部と加熱
器とを直列に接続し、それぞれとディスプレーサシリン
ダとを選択的に連通ずる流路な設けたことにるる。
The present invention is characterized by an external combustion engine that has a displacer, a cylinder and a piston, and a power cylinder and a piston, and that obtains displacement power by externally heating and cooling. The displacer cylinder and the displacer cylinder are connected in series, and a flow path is provided to selectively communicate between each displacer cylinder and the displacer cylinder.

〔作 用〕[For production]

ガス吸蔵合金は、温度が上ると吸熱反応でガスを放出し
温度が下ると発熱反応でガスを吸収するが、反応点は圧
力が上るほど温度の高い所へ移行する、例えは水素吸蔵
合金(Zr 、 Ti  などを含むアルモファス合金
は水素吸蔵特性がある)の場合には、Mを吸蔵合金、H
2を水素とすると、の関係があり、これらの反応条件は
第2図に示すようになる。
Gas storage alloys release gas through an endothermic reaction when the temperature rises, and absorb gas through an exothermic reaction when the temperature falls, but as the pressure rises, the reaction point shifts to a higher temperature area.For example, in a hydrogen storage alloy ( (Amorphous alloys containing Zr, Ti, etc. have hydrogen storage properties), M is the storage alloy and H is the storage alloy.
When 2 is hydrogen, there is the following relationship, and these reaction conditions are shown in FIG.

本発明においては、上記のようにディスプレーサ、シリ
ンダとピストン及びパワーシリンダとピストンを有する
型式の外燃式エンジンにおいて、冷却器とガス吸蔵合金
収容部と加熱器とを直列に接続し、それぞれとディスプ
レーサシリンダとを選択的に連通ずる流路を設けている
ので、加熱時においては加熱部で加熱された作動流体は
上記収容部内のガス吸蔵合金の解離吸蔵反応によってそ
の温度は下り圧力は上昇してディスプレーサシリンダに
流入し、また冷却時においては冷却器で冷却された作動
流体はガス吸蔵合金の吸収発熱反応によって逆に温度は
上り圧力は下降してディスプレーサシリンダに流入する
こととなり、作動流体の圧力の上昇下降量に比較してそ
の温度変化は少くし、また加熱時の温度上昇も低く抑え
ることが可能である。
In the present invention, in an external combustion engine having a displacer, a cylinder and a piston, and a power cylinder and a piston as described above, a cooler, a gas storage alloy housing part, and a heater are connected in series, and each and a displacer are connected in series. Since a flow path is provided that selectively communicates with the cylinder, during heating, the temperature of the working fluid heated in the heating section decreases due to the dissociation and storage reaction of the gas storage alloy in the storage section, and the pressure increases. The working fluid that flows into the displacer cylinder and is cooled by the cooler during cooling increases the temperature and decreases the pressure due to the absorption exothermic reaction of the gas storage alloy, and flows into the displacer cylinder, causing the pressure of the working fluid The temperature change can be made small compared to the amount of rise and fall of the temperature, and the temperature rise during heating can also be kept low.

なお、便宜上第2図には水素吸蔵合金の場合を示したが
、本発明において、作動流体としては水素以外ヘリニー
ム等適宜のものも使用でき、作動流体の種類に応じて適
宜のガス吸蔵合金を用いることができることはいう迄も
ない。
Although the case of a hydrogen storage alloy is shown in FIG. 2 for convenience, in the present invention, any suitable fluid other than hydrogen, such as helinium, can be used as the working fluid, and an appropriate gas storage alloy may be used depending on the type of working fluid. Needless to say, it can be used.

〔実施例〕〔Example〕

第1図は、本発明になる外燃エンジンの一実施例を示す
説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of an external combustion engine according to the present invention.

図示のようにディスプレーサシリンダ13と同ピストン
18とノ々ワーシリンダ14と同ピストン19が設けら
れ、両ピストンはクランクシャフトでθの位相差を持っ
て結ばれている。ディスプレーサシリンダ13には逆止
弁あをもつ流路31が加熱器10に通じ、ガス吸蔵合金
収容部40からディスプレーサピストン18の上方と下
方に逆止弁33をもつ流路36と逆止弁訪をもつ流路3
7が通じ、冷却器11には逆止弁32をもつ流路31が
通じている。また加熱器10と吸蔵合金収容部菊と冷却
器11は吸蔵合金収容部40を中にして直列に配設され
ている。
As shown in the figure, a displacer cylinder 13, a piston 18, a nose cylinder 14, and a piston 19 are provided, and both pistons are connected by a crankshaft with a phase difference of θ. In the displacer cylinder 13, a flow path 31 having a check valve is connected to the heater 10, and a flow path 36 having a check valve 33 is connected from the gas storage alloy housing portion 40 to the upper and lower sides of the displacer piston 18. Channel 3 with
7 communicates with the cooler 11, and a flow path 31 with a check valve 32 communicates with the cooler 11. Further, the heater 10, the storage alloy housing part 40, and the cooler 11 are arranged in series with the storage alloy housing part 40 inside.

本実施例は上記のように構成されているので、ディスプ
レーサピストン18が上方へ移動するときには、逆止弁
33が閉り、逆止弁32が開くのでディスプレーサ−シ
リンダ上方にあるガスは通路31をへて冷却器Uへ流れ
たあと吸蔵合金収容部40を過少通路37をへ【逆上弁
あを通りディスプレーサシリンダ13の下方部へ流出す
る。このとき逆止弁別は閉じるので加熱器10には、ガ
スは通らない。
Since this embodiment is constructed as described above, when the displacer piston 18 moves upward, the check valve 33 closes and the check valve 32 opens, so that the gas above the displacer cylinder flows through the passage 31. After flowing to the cooler U, the water passes through the storage alloy storage portion 40 to the under-reduction passage 37 and flows out to the lower part of the displacer cylinder 13 through the reversal valve A. At this time, the check valve is closed, so no gas passes through the heater 10.

ディスプレーサピスト718が下方へ動くときには、ガ
スは加熱器10を通り吸蔵合金収容部40を通ったあと
冷却器11を通らずにシリンダ13の上方部へ流れる。
When the displacer pist 718 moves downward, the gas passes through the heater 10 , the storage alloy housing 40 , and then flows to the upper part of the cylinder 13 without passing through the cooler 11 .

従来のスターリングエンジンの特性を、圧力−容積線図
で模式化して示すと第4図のようになり、高圧圧縮ガス
(状態1)を、パワーピストンに伝え膨張させてパワー
を得たあとは状態2になる。
The characteristics of a conventional Stirling engine are schematically shown in a pressure-volume diagram as shown in Figure 4. After the high-pressure compressed gas (state 1) is transmitted to the power piston and expanded to obtain power, the state It becomes 2.

しかる後ガスを冷却(状態3)にしたあと圧縮し状態4
にする。その後ガスを加熱し状態1に戻し1周期を形成
する。
After that, the gas is cooled (state 3) and then compressed to state 4.
Make it. Thereafter, the gas is heated and returned to state 1 to form one cycle.

従来のエンジンにおける同じサイクルを圧力、温度図で
示すと、第5図のようになり、状態1から状態2へは断
熱膨張、状態2から3へは等容積冷却、3から4は断熱
圧縮、4から1は等容積加熱となるが、状態1の温度T
□、状態3の温度T3が大巾に変化するために、エンジ
ン構成部材の焼損や熱疲労等が問題が生ずるとととなる
The same cycle in a conventional engine is shown in pressure and temperature diagrams as shown in Figure 5. From state 1 to state 2 is adiabatic expansion, from state 2 to 3 is isovolume cooling, from 3 to 4 is adiabatic compression, 4 to 1 results in equal volume heating, but the temperature T in state 1
□, since the temperature T3 in state 3 changes widely, problems such as burnout and thermal fatigue of the engine components may occur.

これに対して、本実施例においては、上記のようにガス
吸蔵合金を加熱器10と冷却器110間に設置している
ので、圧力−容積線図は従来のものと同様であるが、圧
力一温度の特性が相違することになる。
In contrast, in this embodiment, the gas storage alloy is installed between the heater 10 and the cooler 110 as described above, so the pressure-volume diagram is the same as the conventional one, but the pressure The characteristics of one temperature will be different.

ガスを暖め、断熱膨張させる過程(1→2)及び断熱圧
縮過程(3→4)はガス吸蔵合金の有無に拘らず同じで
ある。しかし、ガス吸蔵合金を設置した場合における加
熱時の温度状態を示すと、第6図に示すようにシリンダ
下部の流体は加熱部を通って昇温され、ガス吸蔵合金の
入って吸熱反応でガス(例えばH2)を放出しながら、
温度は下るが圧力は上昇し、ディスプレーサシリンダ上
部へ流入する。この状態の変化を第7図に示す。一方、
冷却時には逆に冷却された流体は発熱反応で温度が上り
、かつガスが吸蔵されるので圧力が下る。そのために、
シリンダ部へ入る流体の温度変化は、実際上には断熱変
化時の温度変化のみを考えれば良く、温度範囲を大巾に
狭くすることができる。
The process of warming the gas and adiabatically expanding it (1→2) and the process of adiabatic compression (3→4) are the same regardless of the presence or absence of the gas storage alloy. However, the temperature state during heating when a gas storage alloy is installed is shown in Figure 6. The fluid at the bottom of the cylinder passes through the heating section and is heated up, and the gas storage alloy enters and gas is generated by an endothermic reaction. (e.g. H2) while releasing
The temperature decreases but the pressure increases and flows into the upper part of the displacer cylinder. FIG. 7 shows changes in this state. on the other hand,
Conversely, during cooling, the temperature of the cooled fluid increases due to an exothermic reaction, and the pressure decreases as gas is occluded. for that,
Regarding the temperature change of the fluid entering the cylinder section, in practice, only the temperature change during adiabatic change needs to be considered, and the temperature range can be greatly narrowed.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記のように、ディスプレーサ、シリンダと
ピストン及びパワーシリンダとピストンを有する外燃式
エンジンにおいて、冷却器とガス吸蔵合金収容部と加熱
器とを直列に接続し、それぞれとディスプレーサシリン
ダとを選択的に連通ずる流路を設けるように構成されて
いるので、加熱時には加熱部で加熱された作動流体はガ
ス吸蔵合金の解離吸熱反応によってその温度は下り圧力
は上昇してディスプレーサシリンダに流入し、また、冷
却時には冷却器で冷却された作動流体はガス吸蔵合金の
吸収発熱反応によって逆に温度は上り圧力は下降してデ
ィスプレーサシリンダに流入することとなる。
As described above, in an external combustion engine having a displacer, a cylinder and a piston, and a power cylinder and a piston, the present invention connects a cooler, a gas storage alloy housing part, and a heater in series, and connects each to the displacer cylinder. During heating, the temperature of the working fluid heated in the heating section decreases due to the dissociation and endothermic reaction of the gas storage alloy, the pressure increases, and it flows into the displacer cylinder. Furthermore, during cooling, the working fluid cooled by the cooler will conversely rise in temperature and drop in pressure due to the absorption exothermic reaction of the gas storage alloy, and will flow into the displacer cylinder.

従って、作動時の作動流体は、圧力の上昇・降下量に比
較して温度変化は少いこととなり、構成部材の熱応力、
熱疲労、焼損などの問題が大巾に緩和される効果を有す
るものである。
Therefore, the temperature change of the working fluid during operation is small compared to the amount of pressure increase/decrease, and the thermal stress of the component parts is reduced.
This has the effect of greatly alleviating problems such as thermal fatigue and burnout.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、 第2図は吸蔵合金の特性を示す圧力一温度線図、第3図
は従来の外燃式エンジンの説明図、第4図は第3図に示
すエンジンの圧力−容積線図、第5図は同圧カ一温度特
性線図、第6図は第1図に示す実施例に係る装置の加熱
時の温度分布線図、第7図は同装置の圧力一温度特性線
図である。 図面中、 10は加熱器 11は冷却器 12は再生熱交換器 13はディスプレーサシリンダ 14はパワーシリンダ 18はディスプレーサピストン 19はパワーピストン 32 、33 、34 、35は逆止弁40はガス吸蔵
合金収容部 をそれぞれ示す。
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is a pressure-temperature diagram showing the characteristics of an occlusion alloy, Fig. 3 is an explanatory diagram of a conventional external combustion engine, and Fig. 4 is a diagram of a conventional external combustion engine. Figure 5 is a pressure-volume diagram of the engine shown in the figure, Figure 5 is a pressure-temperature characteristic diagram, Figure 6 is a temperature distribution diagram during heating of the device according to the embodiment shown in Figure 1, and Figure 7 is is a pressure-temperature characteristic diagram of the same device. In the drawings, 10 is a heater 11 is a cooler 12 is a regenerative heat exchanger 13 is a displacer cylinder 14 is a power cylinder 18 is a displacer piston 19 is a power piston 32, 33, 34, 35 is a check valve 40 is a gas storage alloy housing The parts are shown respectively.

Claims (1)

【特許請求の範囲】[Claims] デイスプレーサ、シリンダとピストン及びパワーシリン
ダとピストンを有し外部的に加熱、冷却を行うことによ
りパワーを得る外燃式エンジンにおいて、冷却器とガス
吸蔵合金収容部と加熱器とを直列に接続し、それぞれと
デイスプレーサシリンダとを選択的に連通する流路を設
けたことを特徴とするガス吸蔵合金を用いた外燃式エン
ジン。
In an external combustion engine that has a displacer, a cylinder and a piston, and a power cylinder and a piston and obtains power by heating and cooling externally, a cooler, a gas storage alloy housing part, and a heater are connected in series. An external combustion engine using a gas storage alloy, characterized in that a flow path is provided to selectively communicate between each of the displacer cylinders and the displacer cylinder.
JP56187A 1987-01-07 1987-01-07 External combustion engine using gas occluded alloy Pending JPS63170547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187A JPS63170547A (en) 1987-01-07 1987-01-07 External combustion engine using gas occluded alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187A JPS63170547A (en) 1987-01-07 1987-01-07 External combustion engine using gas occluded alloy

Publications (1)

Publication Number Publication Date
JPS63170547A true JPS63170547A (en) 1988-07-14

Family

ID=11477136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187A Pending JPS63170547A (en) 1987-01-07 1987-01-07 External combustion engine using gas occluded alloy

Country Status (1)

Country Link
JP (1) JPS63170547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018375A3 (en) * 2008-10-30 2010-09-07 Smet Erick Johan IMPROVED DEVICE FOR CONVERSING THERMAL IN MECHANICAL ENERGY.
WO2011091576A1 (en) * 2010-02-01 2011-08-04 Lei Tao Zero-leakage external combustion heat engine
RU2659598C1 (en) * 2017-07-14 2018-07-03 Анатолий Александрович Рыбаков Method of thermal energy transformation to electricity by free linked energy-module with linear electric generator, heat exchanger and refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018375A3 (en) * 2008-10-30 2010-09-07 Smet Erick Johan IMPROVED DEVICE FOR CONVERSING THERMAL IN MECHANICAL ENERGY.
WO2011091576A1 (en) * 2010-02-01 2011-08-04 Lei Tao Zero-leakage external combustion heat engine
RU2659598C1 (en) * 2017-07-14 2018-07-03 Анатолий Александрович Рыбаков Method of thermal energy transformation to electricity by free linked energy-module with linear electric generator, heat exchanger and refrigerator

Similar Documents

Publication Publication Date Title
CN101561196B (en) High-power pulse tube refrigerator based on Stirling refrigerator
JP2511604B2 (en) Cryogen freezer
JP3806185B2 (en) Thermal storage type refrigerator with fluid control mechanism and pulse tube type refrigerator with fluid control mechanism
US4622813A (en) Stirling cycle engine and heat pump
EP0162868B1 (en) Stirling cycle engine and heat pump
JPS629827B2 (en)
JPS63170547A (en) External combustion engine using gas occluded alloy
US5209065A (en) Heat engine utilizing a cycle having an isenthalpic pressure-increasing process
JPS63302259A (en) Cryogenic generator
Haywood An introduction to Stirling-cycle machines
SU785609A1 (en) Piston-type refrigerating gas machine
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
Getie et al. Investigation of thermal and fluidic losses and their effect on the performances of a Stirling refrigerator-Influence des pertes thermiques et fluidiques sur les performances d’un réfrigérateur Stirling Résumé
Getie et al. Investigation of thermal and fluidic losses and their effect on the performances of a Stirling refrigerator
SU901761A2 (en) Refrigeration gaseous machine
EP0456446B1 (en) Heat engine utilizing a cycle having an isenthalpic pressure-increasing process
SU779760A1 (en) Cooling arrangement
JP2001207909A (en) Sterling cycle and heat exchanger
JPS5840455A (en) Cryogenic refrigerator
JPH085173A (en) Pulse tube refrigerator
SU1245816A1 (en) Method of operating microcooler
JPH0240454Y2 (en)
JPH0250384B2 (en)
Ghosh et al. Analysis and performance prediction of Stirling cryogenerator
JPH06147686A (en) Low temperature generator using metal hydride