JPS6022494B2 - PN junction formation method - Google Patents

PN junction formation method

Info

Publication number
JPS6022494B2
JPS6022494B2 JP50107790A JP10779075A JPS6022494B2 JP S6022494 B2 JPS6022494 B2 JP S6022494B2 JP 50107790 A JP50107790 A JP 50107790A JP 10779075 A JP10779075 A JP 10779075A JP S6022494 B2 JPS6022494 B2 JP S6022494B2
Authority
JP
Japan
Prior art keywords
type
layer
impurity
junction
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50107790A
Other languages
Japanese (ja)
Other versions
JPS5231667A (en
Inventor
幸弘 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP50107790A priority Critical patent/JPS6022494B2/en
Publication of JPS5231667A publication Critical patent/JPS5231667A/en
Publication of JPS6022494B2 publication Critical patent/JPS6022494B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明はPN接合形成方法に関する。[Detailed description of the invention] The present invention relates to a method for forming a PN junction.

PN接合を形成する有効な方法として液相ェピタキシャ
ル法が知られている。
A liquid phase epitaxial method is known as an effective method for forming a PN junction.

即ちこの方法は、第1導電型の半導体結晶からなる第1
層上に第2導電型の不純物を含む融液を被着して上記第
1層上に第2導電型の半導体結晶からなる第2層を形成
するものである。然るに斯る液相ヱピタキシャル法によ
れば、第2層の形成時、成長層中の不純物が第1層中に
拡散して、第1層中の実質的な不純物濃度を変化させた
り、あるいはPN接合形態を階段型であるべきところを
傾斜型に変化させたりするなどの欠点がある。
That is, in this method, a first semiconductor crystal made of a first conductivity type semiconductor crystal is used.
A second layer made of a semiconductor crystal of a second conductivity type is formed on the first layer by depositing a melt containing impurities of a second conductivity type on the layer. However, according to such a liquid phase epitaxial method, when forming the second layer, impurities in the grown layer diffuse into the first layer, changing the substantial impurity concentration in the first layer, or There are drawbacks such as changing the PN junction form from a stepped type to an inclined type.

特に第2層形成時の不純物が拡散定数の大なるものであ
る時この欠点は著しい。本発明は斯る点に鑑みてなされ
たもので、第1導電型の半導体結晶からなる第1層上に
拡散定数の大なる不純物を含む融液を用いて第2導電型
の半導体結晶からなる第2層を液相ェピタキシャル成長
させてPN接合を形成する際、上記第1層中に予め上記
と同一の不純物を同量だけ含ましめておくことを特徴と
するものである。
This drawback is particularly noticeable when the impurity used to form the second layer has a large diffusion constant. The present invention has been made in view of this point, and uses a melt containing an impurity with a large diffusion constant on a first layer made of a semiconductor crystal of a first conductivity type to form a semiconductor crystal of a second conductivity type. When the second layer is grown by liquid phase epitaxial growth to form a PN junction, the first layer is characterized in that the same amount of the same impurity as above is included in advance.

即ち本発明によれば、上記第2層の成長時、該層中の不
純物は第1層中にも同一且同量だけの不純物が存在して
いるので、第1層中に移動することがない。以下本発明
実施例を、Gap赤色発光PNPNダイオードの製造に
於て説明する。第1図は本実施例に於て製造されるダイ
オード1の構造を示す。
That is, according to the present invention, when the second layer is grown, since the same and the same amount of impurities are present in the first layer, the impurities in the second layer cannot migrate into the first layer. do not have. An embodiment of the present invention will now be described in the production of a Gap red light emitting PNPN diode. FIG. 1 shows the structure of a diode 1 manufactured in this embodiment.

ダイオード1は隣り合うP,、N2、P3、N4の各領
域からなり、各領域の隣接部に夫々接合J山、J23、
J桝を有し、P,及びN4各領域に夫々正電位及び負電
位を印加するとオン状態となってP3領域にて発光を生
じる。本実施例では、上記のダイオードを製造するに当
り、予め引上げ法などによって形成されたN型Gap基
板にてN4領域を構成し、この基板上に順次P3、N2
、P,の各領域を液相ェピタキシャル成長させるもので
ある。
The diode 1 consists of adjacent regions P, , N2, P3, and N4, and junctions J, J23, and J23 are connected to the adjacent portions of each region, respectively.
It has a J cell, and when a positive potential and a negative potential are applied to each of the P and N4 regions, respectively, the device is turned on and light is emitted in the P3 region. In this example, when manufacturing the above diode, an N4 region is formed on an N-type Gap substrate formed in advance by a pulling method, etc., and P3 and N2 regions are sequentially formed on this substrate.
, P, are grown by liquid phase epitaxial growth.

第2図はそのための製造装置を示し、2はカーボン製の
支持台、3は該支持台の平坦な表面に設けられた凹所、
4は該凹所内に載層されたN型Gap結晶基板、{51
さま支持台2の表面に笹勤自在に戦遣され、適当間隔に
て貫通孔6,7,8を有するカーボン製のスライド板、
9,10,11は夫々貫通孔6,7,8内に配された第
1、第2、第&a融液である。基板4はN型不純物とし
てTeを1.6×1び8仇‐8又p型不純物としてZn
を6×1び7仇‐3合んでいる。
FIG. 2 shows a manufacturing device for this purpose, in which 2 is a support made of carbon, 3 is a recess provided in the flat surface of the support,
4 is an N-type Gap crystal substrate layered in the recess, {51
A slide plate made of carbon and having through holes 6, 7, and 8 at appropriate intervals is freely mounted on the surface of the support base 2.
9, 10, and 11 are first, second, &a-th melts arranged in the through holes 6, 7, and 8, respectively. The substrate 4 contains Te as an N-type impurity and Zn as a p-type impurity.
6 x 1 and 7 enemies - 3 are combined.

又第1、第2、第やa融液9,10,11は夫々GaP
多結晶及びP型不純物としてのZnを含み、更に第IG
a融液9はN型不純物として○を、又第匁a融液10は
N型不純物としてTeを含んでいる。これら各不純物の
含有量は後述する第3図の不純物濃度分布に従って決定
され、第1、第紅a融液9,1 1はP型を、又第幻a
融液10はN型を呈する。斯る配置にて、スライド板5
を移動し、先ず第IGa高虫液9を基板4上に被着し、
冷却することによりP3のP型領域が形成され、次いで
同様にして第2、第匁a融液10,11を用いてN2、
P,の各N型、P型領域が形成される。
The first, second, and a melts 9, 10, and 11 are each made of GaP.
Contains Zn as a polycrystalline and P-type impurity, and further contains IG
The a-th melt 9 contains O as an N-type impurity, and the a-th melt 10 contains Te as an N-type impurity. The content of each of these impurities is determined according to the impurity concentration distribution shown in FIG. 3, which will be described later.
The melt 10 exhibits N type. With this arrangement, the slide plate 5
, first deposit the No. IGa insect solution 9 on the substrate 4,
A P-type region P3 is formed by cooling, and then N2,
N-type and P-type regions of P, are formed.

第3図はこの様にして製造されたPNPNダイオードの
不純物濃度分布を示し、N4領域、即ち基板4と共に他
のP3,N2,P,の各領域は同一不純物のZnを同一
量6×1び7弧‐3含み、更に、P3領域は○を3×1
び7仇‐3、N2はTeを7×1び7仇‐3含んでいる
Figure 3 shows the impurity concentration distribution of the PNPN diode manufactured in this way. 7 arc-3 is included, and the P3 area is 3×1
and 7-3, N2 contains 7×1 and 7-3 Te.

従ってP型及びN型不純物どうしの補償効果により、各
領域の実質的な不純物濃度は点線で示す通りとなり、各
領域間にPN接合が形成される。ここで注意すべきは、
各領域に全て同一量のZnが入っているため、Znはそ
の拡散定数が非常に大であるにも拘らず、結晶成長時に
、結晶層間でのZnの拡散移動がなく、従って設計通り
の不純物濃度分布が得られ、又PN接合もより階段型に
近づくことである。
Therefore, due to the mutual compensation effect between the P-type and N-type impurities, the substantial impurity concentration in each region becomes as shown by the dotted line, and a PN junction is formed between each region. What should be noted here is that
Since the same amount of Zn is contained in each region, even though Zn has a very large diffusion constant, there is no diffusion movement of Zn between crystal layers during crystal growth, and therefore impurities do not form as designed. A concentration distribution is obtained, and the PN junction becomes more step-like.

尚、P3領域に於て赤色発光中心となるZnと○のベア
ができ、この領域で赤色発光がなされる。
Incidentally, in the P3 region, a bare circle of Zn and ◯, which is the center of red light emission, is formed, and red light is emitted in this region.

かくして本発明によれば、第1導電型の半導体結晶層上
に拡散定数の大なる不純物を含む融液を用いて第2導電
型の半導体結晶層を液相ェピタキシャル成長させてPN
接合を形成する際、上記拡散定数の大なる不純物の不所
望な拡散移動が抑えられ、設計通りの不純物濃度分布及
びより耳昔段型に近いPN接合を得ることができる。
Thus, according to the present invention, a semiconductor crystal layer of a second conductivity type is grown liquid-phase epitaxially on a semiconductor crystal layer of a first conductivity type using a melt containing an impurity having a large diffusion constant.
When forming a junction, undesired diffusion and movement of the impurity having a large diffusion constant is suppressed, and it is possible to obtain a designed impurity concentration distribution and a PN junction closer to a conventional step type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例により製造されるPNPNダイオ
ードの構造図、第2図はその製造装置を示す断面図、第
3図は上訂PNPNダィオ−ドの不純物濃度分布図であ
る。 4・・・・・・基板、9,10,11・・・・・・第1
、第2、第約a葛虫液。 第1図 第2図 第3図
FIG. 1 is a structural diagram of a PNPN diode manufactured according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing apparatus thereof, and FIG. 3 is an impurity concentration distribution diagram of the revised PNPN diode. 4...Substrate, 9, 10, 11...1st
, 2nd, about a kudzu worm liquid. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体結晶層上に拡散定数の大なる不
純物を含む融液を用いて第2導電型の半導体結晶層を液
相エピタキシヤル成長させてPN接合を形成する際、上
記第1導電型の半導体結晶層中に予め上記と同一の不純
物を同量だけ均一に含ましめておくことを特徴とするP
N接合形成方法。
1. When forming a PN junction by liquid phase epitaxial growth of a semiconductor crystal layer of a second conductivity type using a melt containing an impurity with a large diffusion constant on a semiconductor crystal layer of a first conductivity type, P characterized in that the same amount of the same impurity as above is uniformly included in the conductive type semiconductor crystal layer in advance.
N-junction formation method.
JP50107790A 1975-09-04 1975-09-04 PN junction formation method Expired JPS6022494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50107790A JPS6022494B2 (en) 1975-09-04 1975-09-04 PN junction formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50107790A JPS6022494B2 (en) 1975-09-04 1975-09-04 PN junction formation method

Publications (2)

Publication Number Publication Date
JPS5231667A JPS5231667A (en) 1977-03-10
JPS6022494B2 true JPS6022494B2 (en) 1985-06-03

Family

ID=14468082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50107790A Expired JPS6022494B2 (en) 1975-09-04 1975-09-04 PN junction formation method

Country Status (1)

Country Link
JP (1) JPS6022494B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RCA REVIEW=1972 *

Also Published As

Publication number Publication date
JPS5231667A (en) 1977-03-10

Similar Documents

Publication Publication Date Title
US4035205A (en) Amphoteric heterojunction
JPH08335715A (en) Epitaxial wafer and its manufacture
JPS54152878A (en) Structure of semiconductor laser element and its manufacture
JP2795195B2 (en) Light emitting element
JPS6022494B2 (en) PN junction formation method
US5323027A (en) Light emitting device with double heterostructure
JP2663965B2 (en) Method for manufacturing semiconductor device made of compound semiconductor
JP2534945B2 (en) Method for manufacturing semiconductor device
JPS6174388A (en) Manufacture of semiconductor laser device
JPH02202085A (en) Manufacture of semiconductor laser device
JPS63213378A (en) Manufacture of semiconductor light emitting element
US5585305A (en) Method for fabricating a semiconductor device
JP2503263B2 (en) Method for manufacturing semiconductor light emitting device
US4629519A (en) Forming magnesium-doped Group III-V semiconductor layers by liquid phase epitaxy
JPS5935193B2 (en) light emitting element
JPH07169993A (en) Semiconductor structure and semiconductor light-emitting device
JP2543791B2 (en) Liquid phase epitaxial growth method
JP3046161B2 (en) Semiconductor device including undoped layer
JPS6351552B2 (en)
JP2022549229A (en) Optoelectronic structural element, semiconductor structure and method therefor
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
JPS6017961A (en) Manufacture of semiconductor controlled rectifier
JP2000082841A (en) Epitaxial wafer and manufacture thereof
JPS59124184A (en) Semiconductor light emitting device
JPH05175548A (en) Multilayer epitaxial crystal structure