JPS60223158A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60223158A
JPS60223158A JP7926084A JP7926084A JPS60223158A JP S60223158 A JPS60223158 A JP S60223158A JP 7926084 A JP7926084 A JP 7926084A JP 7926084 A JP7926084 A JP 7926084A JP S60223158 A JPS60223158 A JP S60223158A
Authority
JP
Japan
Prior art keywords
layer
emitter
base layer
polycrystalline silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7926084A
Other languages
Japanese (ja)
Other versions
JPH0691097B2 (en
Inventor
Yoshikazu Nakagawa
義和 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP59079260A priority Critical patent/JPH0691097B2/en
Publication of JPS60223158A publication Critical patent/JPS60223158A/en
Publication of JPH0691097B2 publication Critical patent/JPH0691097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent the increase in rbb' (base spreading resistance) by a method wherein the direct contact between an external base layer and an emitter layer is prevented, the increase in CEB (capacitance between an emitter and a base) is suppressed by slightly changing the condition of processes and the like, and at the same time, a low density impurity layer constituting an inner base layer is interposed between the external base layer and the emitter layer. CONSTITUTION:After resists 15 and 15' have been removed, a heat treatment is performed on a substrate 11 using a silicon nitride film 14 as a mask, and a selective oxide film 16 is formed. At this time, the high density boric ions implanted in the part having no shielding layer are diffused, and a p<+> type outer base layer 17 is formed. On the other hand, the medium density boric ions implanted through the circumference of the silicon nitride film 14 are diffused, and a p-region 18 which is a medium density impurity region is formed. Boron is ion-implanted into polycrystalline silicon 12 as n type impurities, boron is diffused from polycrystalline silicon 12 to the substrate 11, and an n<+> type emitter layer 20 is formed by performing a self-matching process utilizing a selective oxide film 16. As a result, a p-region 18 is interposed between the outer base layer 17 and an emitter layer 19.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はバイポーラトランジスタを含む半導体装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method of manufacturing a semiconductor device including a bipolar transistor.

(ロ)従来技術 近年、バイポーラ半導体装置の高速化を図るために、種
々の手段が提案実施されている。例えば、エミツタ層と
エミッタ電極とのパターンズレをなくしてこれらの微細
加工を実現することにより、装置の高速化を図る手段が
ある。
(B) Prior Art In recent years, various means have been proposed and implemented in order to increase the speed of bipolar semiconductor devices. For example, there is a means to increase the speed of the device by eliminating pattern misalignment between the emitter layer and the emitter electrode to achieve fine processing.

第1図は前記従来の半導体装置の製造方法を示す説明図
である。
FIG. 1 is an explanatory diagram showing the conventional method for manufacturing the semiconductor device.

■N型基板1にP中型の外部ベース層(t!XTRlN
5ICBASE) 2およびP−型の内部ベース層(r
NTI?lN5ICBASE) 3を形成したのち、基
板表面に熱酸化膜4とCVD SiO25とを形成する
(同図(a)参照) ■両者の選択エラチンブト性を利用して、CVD5io
25のパターンニングを行う(同図(bl参照)。
■P medium-sized external base layer (t!
5ICBASE) 2 and P-type internal base layer (r
NTI? After forming 1N5ICBASE) 3, a thermal oxide film 4 and CVD SiO25 are formed on the substrate surface (see figure (a)).
25 patterning is performed (see the same figure (bl)).

■基板表面に窒化珪素膜6を成長させ、エミ・ツタ領域
に対応してパターンニングを行い、さらに、これをマス
クとして前記熱酸化膜4をエツチングする。(同図tc
+参照)。
(2) A silicon nitride film 6 is grown on the surface of the substrate, patterned to correspond to the emitter/vine regions, and then the thermal oxide film 4 is etched using this as a mask. (same figure tc
+Reference).

■N型不純物をイオン打ち込みして、N生型のエミツタ
層7を形成する。そして、この基板表面にアルミニウム
などを蒸着して、パターンニングすることによりエミッ
タ電極8を形成する(同図(d))。
(2) N-type impurities are ion-implanted to form an N-type emitter layer 7. Then, aluminum or the like is deposited on the surface of this substrate and patterned to form an emitter electrode 8 (FIG. 4(d)).

このように、前述した従来方法は、エミ・ツタ層とその
電極を自己整合によって形成するため、エミッタの微細
加工が可能であり、この意味において半導体装置の高速
化を図る上で一つの有効な手段である。
In this way, in the conventional method described above, the emitter layer and its electrode are formed by self-alignment, so it is possible to microfabricate the emitter, and in this sense, it is an effective method for increasing the speed of semiconductor devices. It is a means.

しかしながら、この方法はエミ・ツタ層自身が外部ベー
ス層あるいは内部ベース層に対し自己整合によって形成
されるものでない。したがって、前記窒化珪素膜のパタ
ーンニングにマスクズレが生じると、外部ベース層から
エミツタ層にいたる領域9の不純物濃度が変動する。こ
れにより高周波特性に影響を与える時定数CEB−rb
b ’ (CEBはエミッターベース間容量、rbb’
はヘース拡がり抵抗を意味する)にバラツキを生じ易い
。例えば、高濃度不純物層である外部ベース層とエミツ
タ層とが直接に接するとCEBが大きくなることにより
、一方、外部ベース層9とエミツタ層7の間に内部ベー
ス層3を構成するP−Fiが介在するとrbb“が大き
くなることにより、ともに前記時定数が増大する。その
ため、この方法は時定数C’EB −r bb ’の小
さい装置を容易に製造し難いという意味において、装置
の高速化が困難である。
However, in this method, the emery vine layer itself is not formed by self-alignment with the external base layer or the internal base layer. Therefore, if a mask misalignment occurs in the patterning of the silicon nitride film, the impurity concentration in the region 9 from the external base layer to the emitter layer changes. This causes the time constant CEB-rb to affect the high frequency characteristics.
b' (CEB is the emitter-base capacitance, rbb'
(means Heath spreading resistance) tends to vary. For example, if the external base layer, which is a high concentration impurity layer, and the emitter layer are in direct contact with each other, the CEB becomes large. If C'EB-rbb' is present, the above-mentioned time constant increases as rbb' increases.Therefore, this method is difficult to easily manufacture a device with a small time constant C'EB-rbb', so it is difficult to increase the speed of the device. is difficult.

また、前記理由によりrbb“が大きくなると、これに
伴い雑音が増えるという問題をも生じる。
Furthermore, if rbb" increases due to the above-mentioned reason, a problem arises in that noise increases accordingly.

(ハ)目的 この発明に係る半導体装置の製造方法は、装置の高速化
および低雑音化に適した半導体装置の製造方法を提供す
ることを目的としている。
(c) Purpose The method of manufacturing a semiconductor device according to the present invention is intended to provide a method of manufacturing a semiconductor device suitable for increasing the speed and reducing noise of the device.

(ニ)構成 この発明に係る半導体装置の製造方法は、バイポーラト
ランジスタを含む半導体装置の製造方法に係り、 多結晶シリコンが成長された基板のエミッタ領域に対応
する部分に、周辺部の膜厚が簿い遮蔽層を形成する工程
と、 前記遮蔽層をマスクとして、該遮蔽層の周辺部を適宜量
の不純物が通過するように、外部ベース層を形成すべき
不純物を打ち込む工程と、前記遮蔽層をマスクとして選
択酸化MQを形成する工程と、 前記遮蔽層を除去し、その下部にある多結晶シリコンを
介して不純物を打ち込み、前記選択酸化膜を利用した自
己整合によって内部ベース層を形成する工程と、 前記多結晶シリコン層に不純物を打ち込み、さらに、前
記不純物を多結晶シリコンから基板内へ拡散させること
により、前記選択酸化膜を利用した自己整合によってエ
ミツタ層を形成する工程と、前記多結晶シリコンをコン
タクトととしてエミッタ電極を自己整合によって形成す
る工程とを具備したことを特徴としている。
(D) Structure The method of manufacturing a semiconductor device according to the present invention relates to a method of manufacturing a semiconductor device including a bipolar transistor, and includes a method of manufacturing a semiconductor device including a bipolar transistor, in which a film thickness of a peripheral portion is increased in a portion corresponding to an emitter region of a substrate on which polycrystalline silicon is grown. a step of forming an unbalanced shielding layer; a step of implanting an impurity to form an external base layer using the shielding layer as a mask so that an appropriate amount of impurity passes through the periphery of the shielding layer; a step of forming a selectively oxidized MQ using the mask as a mask; and a step of removing the shielding layer, implanting impurities through the underlying polycrystalline silicon, and forming an internal base layer by self-alignment using the selectively oxidized film. and forming an emitter layer by self-alignment using the selective oxide film by implanting impurities into the polycrystalline silicon layer and further diffusing the impurities from the polycrystalline silicon into the substrate; The method is characterized by comprising a step of forming an emitter electrode by self-alignment using silicon as a contact.

(ホ)実施例 第2図はこの発明に係る半導体装置の製造方法の一実施
例の説明図である。
(E) Embodiment FIG. 2 is an explanatory diagram of an embodiment of the method for manufacturing a semiconductor device according to the present invention.

■N型のシリコン基板11の表面に多結晶シリコン12
を成長させ、さらに熱酸化膜13を形成した後、窒化珪
素膜14を気相成長させる(同図ta+参照)。
■Polycrystalline silicon 12 on the surface of N-type silicon substrate 11
After growing and further forming a thermal oxide film 13, a silicon nitride film 14 is grown in a vapor phase (see ta+ in the figure).

■エミッタ領域に当たる部分に窒化珪素膜14を残して
、他をエツチングにより除去する。そして、少なくとも
外部ベース領域に当たる部分および前記窒化珪素膜14
の周辺部を除いて、基板表面にレジスト15.15′を
被着する。したがって、窒化珪素膜14およびレジスト
15′はエミッタ領域に対応して形成され、該領域の周
辺部の膜厚を薄くした遮蔽層として作用する。これらの
遮蔽層およびレジスト15をマスクとしてP型不純物と
しての硼素をイオン打ち込みする(同図(b)参照)。
(2) The silicon nitride film 14 is left in the portion corresponding to the emitter region, and the rest is removed by etching. At least a portion corresponding to the external base region and the silicon nitride film 14
A resist 15, 15' is applied to the surface of the substrate except for the peripheral area. Therefore, the silicon nitride film 14 and the resist 15' are formed corresponding to the emitter region, and act as a shielding layer with a thinner film thickness at the periphery of the region. Using these shielding layers and the resist 15 as a mask, boron ions as a P-type impurity are implanted (see FIG. 3(b)).

イオン打ち込みの注入エネルギーは膜厚が薄く設定され
た遮蔽層、すなわち、窒化珪素膜14の周辺部を適宜量
の1tll素イオンが通過する値に設定される。
The implantation energy of the ion implantation is set to a value that allows an appropriate amount of 1tll elementary ions to pass through the peripheral portion of the thin shielding layer, that is, the silicon nitride film 14.

■前記レジスト15.15′を除去したのち、窒化珪素
膜14をマスクとして基板11を熱処理し、選択酸化膜
16を形成する。このとき、遮蔽層のない部分に打ち込
まれた高濃度の硼素イオンが拡散されP生型の外部ベー
ス層17を形成する。一方、窒化珪素膜14の周辺を通
過して打ぢ込まれた中濃度の硼素イオンが拡散されて中
濃度不純物領域であるP領域律を形成する(同図(C)
参照)。P@域18の内側端縁は拡散時の槽数がりによ
り多結晶シリコン120周辺に接する程度に前記熱処理
の温度条件が設定される。
(2) After removing the resists 15 and 15', the substrate 11 is heat-treated using the silicon nitride film 14 as a mask to form a selective oxide film 16. At this time, the highly concentrated boron ions implanted into the portion where there is no shielding layer are diffused to form a P-type external base layer 17. On the other hand, medium-concentration boron ions implanted through the periphery of the silicon nitride film 14 are diffused to form a P region, which is a medium-concentration impurity region (see (C) in the same figure).
reference). The temperature conditions for the heat treatment are set such that the inner edge of the P@ region 18 touches the periphery of the polycrystalline silicon 120 due to the increase in the number of tanks during diffusion.

■窒化珪素膜14及び熱酸化膜13を除去した後、多結
晶シリコン12を介してP型不純物としての硼素のイオ
ン打ち込みを行い、選択酸化膜16を利用した自己整合
によってP−型の内部ベース層19を形成する(同図(
dl参照)。
■After removing the silicon nitride film 14 and the thermal oxide film 13, boron ions are implanted as a P-type impurity through the polycrystalline silicon 12, and a P-type internal base is formed by self-alignment using the selective oxide film 16. Form layer 19 (see figure (
dl).

■N型不純物としての例えば砒素を多結晶シリコン12
中にイオン打ち込みし、ざらに、熱処理によって前記多
結晶シリコン12から基板IIへ砒素の拡散を行うこと
により、選択酸化膜16を利用した自己整合によってN
生型のエミツタ層20を形成する(同図tel参照)。
■As an N-type impurity, for example, arsenic is added to polycrystalline silicon 12
Arsenic is diffused from the polycrystalline silicon 12 to the substrate II by ion implantation into the substrate II, and then by rough heat treatment to diffuse arsenic from the polycrystalline silicon 12 to the substrate II.
A green emitter layer 20 is formed (see tel in the figure).

同図より明らかなように、外部ベース層17とエミッタ
N19との間にP領域18が介在する。
As is clear from the figure, P region 18 is interposed between external base layer 17 and emitter N19.

■P+のコンタクト孔を形成する工程を経た後、基板表
面にアルミニウム等の金属層を蒸着形成し、フォトエツ
チングによりエミッタ電極2Iを形成する(同図ffl
参照)。このとき、多結晶シリコン12はエミツタ層1
9を形成する際のイオン打ち込みによってN生型を呈し
ているので、いわゆるエミッタコンタクトととして機能
する。
■After the process of forming a P+ contact hole, a metal layer such as aluminum is deposited on the surface of the substrate, and an emitter electrode 2I is formed by photoetching (ffl in the same figure).
reference). At this time, the polycrystalline silicon 12 is
Since the ion implantation during the formation of 9 gives it an N-type appearance, it functions as a so-called emitter contact.

なお、上述の実施例では遮蔽層として、窒化珪素膜14
および前記窒化珪素膜14の周辺部を除いて被着された
レジスト15′により形成されるとして説明した。しか
し、この発明はこれに限られるものでなく、例えば、エ
ミッタ領域の周辺部の遮蔽層の膜厚を薄(する手段とし
ては、比較的厚く成長させた窒化珪素膜の周辺をエツチ
ングにより薄く形成するものであってもよい。
Note that in the above embodiment, the silicon nitride film 14 is used as the shielding layer.
In the above description, the resist 15' is formed except for the peripheral portion of the silicon nitride film 14. However, the present invention is not limited thereto; for example, the thickness of the shielding layer around the emitter region may be reduced by etching the periphery of a relatively thick silicon nitride film. It may be something that does.

(へ)効果 この発明に係る半導体装置の製造方法は、外部ベース層
に対し内部ベース層およびエミツタ層を自己整合によっ
て形成し、しかも、エミッタ領域に覆う遮蔽層の周辺部
を薄くすることにより、外部ベース層のイオン打ち込み
と同時に前記周辺部の下部ににも適宜のイオン打ら込み
を行い、外部ベース層とエミツタ層との間に中間不純物
層を積極的に形成しでいる。したがって、この発明によ
れば、外部ベース層とエミツタ層とが直接に接すること
がないから、工程条件等の多少の変動によってCEBが
大きくなることはない。また、同旨より、外部ベース層
とエミツタ層の間に内部ベース層を構成する低濃度不純
物層が介在することもないので、rbb’が大きくなる
ことも防止できる。
(f) Effect The method for manufacturing a semiconductor device according to the present invention forms an internal base layer and an emitter layer with respect to an external base layer by self-alignment, and furthermore, by thinning the peripheral part of the shielding layer covering the emitter region, At the same time as the ion implantation of the external base layer, appropriate ion implantation is also performed in the lower part of the peripheral portion to actively form an intermediate impurity layer between the external base layer and the emitter layer. Therefore, according to the present invention, since the external base layer and the emitter layer do not come into direct contact with each other, the CEB does not increase due to slight variations in process conditions. Furthermore, since the low concentration impurity layer constituting the internal base layer is not interposed between the external base layer and the emitter layer, it is also possible to prevent rbb' from increasing.

上述したことから、この発明によれば時定数CEB−r
bb’を小さく維持できるので、半導体装置の高速化を
実現することができる。
From the above, according to the present invention, the time constant CEB-r
Since bb' can be kept small, the speed of the semiconductor device can be increased.

また、この発明は、エミツタ層とエミッタ電極を自己整
合によって形成しているので、エミッタ構造の微細加工
が可能である。この理由からもこの発明は半導体装置の
高速化に適したものである。
Further, in the present invention, since the emitter layer and the emitter electrode are formed by self-alignment, fine processing of the emitter structure is possible. For this reason as well, the present invention is suitable for increasing the speed of semiconductor devices.

さらに、この発明によればr bb ’を小さくできる
から、該半導体装置の雑音を少なくすることができる。
Furthermore, according to the present invention, since r bb ' can be reduced, the noise of the semiconductor device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法の説明図、第2図
はこの発明に係る半導体装置の製造方法の一実施例の説
明図である。 11・・・基板、12・・・多結晶シリコン、13・・
・熱酸化膜、14・・・窒化珪素膜、16・・・選択酸
化膜、17・・・外部ベース層、I8・・・P領域、1
9・・・内部ベース層、20・・・エミツタ層、21・
・・エミッタ電極。
FIG. 1 is an explanatory diagram of a conventional method for manufacturing a semiconductor device, and FIG. 2 is an explanatory diagram of an embodiment of the method for manufacturing a semiconductor device according to the present invention. 11...Substrate, 12...Polycrystalline silicon, 13...
- Thermal oxide film, 14... Silicon nitride film, 16... Selective oxide film, 17... External base layer, I8... P region, 1
9... Internal base layer, 20... Emitter layer, 21.
...Emitter electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)バイポーラトランジスタを含む半導体装置の製造
方法において、 多結晶シリコンが成長された基板のエミッタ領域に対応
する部分に、周辺部の膜厚が薄い遮蔽層を形成する工程
と、 前記遮蔽層をマスクとして、該遮蔽層の周辺部を適宜量
の不純物が通過するように、外部ベース層を形成すべき
不純物を打ち込む工程と、前記遮蔽層をマスクとして選
択酸化膜を形成する工程と、 前記遮蔽層を除去し、その下部にある多結晶シリコンを
介して不純物を打ら込み、前記選択酸化膜を利用した自
己整合によって内部ベース層を形成する工程と、 前記多結晶シリコン層に不純物を打ち込み、さらに、前
記不純物を多結晶シリコンから基板内へ拡散させること
により、前記選択酸化膜を利用した自己整合によってエ
ミツタ層を形成する工程と、前記多結晶シリコンをコン
タクトととしてエミッタ電極を自己整合によって形成す
る工程とを具備したことを特徴とする半導体装置の製造
方法。
(1) A method for manufacturing a semiconductor device including a bipolar transistor, which includes the steps of: forming a shielding layer with a thin peripheral portion in a portion corresponding to an emitter region of a substrate on which polycrystalline silicon is grown; a step of implanting an impurity to form an external base layer so that an appropriate amount of impurity passes through the peripheral portion of the shielding layer as a mask; a step of forming a selective oxide film using the shielding layer as a mask; removing the layer, implanting an impurity through the polycrystalline silicon layer below the layer, and forming an internal base layer by self-alignment using the selective oxide film; implanting the impurity into the polycrystalline silicon layer; Furthermore, by diffusing the impurity from the polycrystalline silicon into the substrate, an emitter layer is formed by self-alignment using the selective oxide film, and an emitter electrode is formed by self-alignment using the polycrystalline silicon as a contact. A method for manufacturing a semiconductor device, comprising the steps of:
JP59079260A 1984-04-18 1984-04-18 Method for manufacturing semiconductor device Expired - Fee Related JPH0691097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079260A JPH0691097B2 (en) 1984-04-18 1984-04-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079260A JPH0691097B2 (en) 1984-04-18 1984-04-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60223158A true JPS60223158A (en) 1985-11-07
JPH0691097B2 JPH0691097B2 (en) 1994-11-14

Family

ID=13684882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079260A Expired - Fee Related JPH0691097B2 (en) 1984-04-18 1984-04-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0691097B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261748A (en) * 1987-04-17 1988-10-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS63261749A (en) * 1987-04-17 1988-10-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310979A (en) * 1976-07-16 1978-01-31 Mitsubishi Electric Corp Semiconductor device and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310979A (en) * 1976-07-16 1978-01-31 Mitsubishi Electric Corp Semiconductor device and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261748A (en) * 1987-04-17 1988-10-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS63261749A (en) * 1987-04-17 1988-10-28 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH0691097B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH0252422B2 (en)
JPS60223158A (en) Manufacture of semiconductor device
JPH0693459B2 (en) High speed bipolar transistor and manufacturing method thereof
JPH04343479A (en) Variable capacitance diode
JPS60223159A (en) Manufacture of semiconductor device
JPS5965465A (en) Manufacture of semiconductor device
JPH01238058A (en) Manufacture of high-speed bipolar transistor
JPS6148974A (en) Manufacture of transistor
JPS62299075A (en) Manufacture of semiconductor device
JPS588140B2 (en) Manufacturing method of semiconductor device
JPH0410548A (en) Manufacture of semiconductor device
JPH05326536A (en) Manufacture of bipolar transistor
JPH0343779B2 (en)
JPH02159035A (en) Integrated circuit device
JPH02295130A (en) Manufacture of semiconducton device
JPH09191016A (en) Bipolar transistor and manufacture thereof
JPS6376374A (en) Manufacture of semiconductor device
JPH07193022A (en) Manufacture of semiconductor device
JPS60152061A (en) Manufacture of semiconductor device
JPS60257572A (en) Manufacture of semiconductor device
JPS60175451A (en) Manufacture of semiconductor device
JPH03108755A (en) Manufacture of semiconductor device
JPS58110076A (en) Manufacture of semiconductor device
JPS61242057A (en) Manufacture of polycrystalline silicon resistor
JPS60213031A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees