JPS60221535A - Regenerated raw material for melting using aluminum swarf - Google Patents

Regenerated raw material for melting using aluminum swarf

Info

Publication number
JPS60221535A
JPS60221535A JP59077676A JP7767684A JPS60221535A JP S60221535 A JPS60221535 A JP S60221535A JP 59077676 A JP59077676 A JP 59077676A JP 7767684 A JP7767684 A JP 7767684A JP S60221535 A JPS60221535 A JP S60221535A
Authority
JP
Japan
Prior art keywords
raw material
aluminum
magnesia cement
melting
cutting waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59077676A
Other languages
Japanese (ja)
Inventor
Akira Nakai
仲井 明
Yutaka Hatano
豊 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEICHIYUU SEIKI KK
Original Assignee
MEICHIYUU SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEICHIYUU SEIKI KK filed Critical MEICHIYUU SEIKI KK
Priority to JP59077676A priority Critical patent/JPS60221535A/en
Publication of JPS60221535A publication Critical patent/JPS60221535A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide the titled regenerated raw material for melting which is easy to handle and yields a molten metal having high quality at a good yield by mixing much aluminum swarf and magnesia cement and solidifying the mixture. CONSTITUTION:The mixture composed of about 15-1% outer percentage magnesium oxide powder and about 15-1% magnesium chloride as well as about 1-10% water are added and mixed to and with aluminum swarf and the mixture is put into dies and is molded under pressure. The molding is put into a thermostatic furnace kept at about 50-200 deg.C and is dried for about 20-90min, by which the molding is dehydrated. Many small pieces of the aluminum swarf are thus solidified with the magnesia cement formed by the interreaction of the magnesium oxide and magnesium chloride as a binder, by which the regenerated raw material for melting is obtd. The raw material, when heated, generates gaseous chlorine from the magnesia cement and prevents oxidation of the aluminum swarf.

Description

【発明の詳細な説明】 本願発明は次に述べる問題点の解決を目的とする0 (産業上の利用分野) この発明はアルミニウム及びア
ルミニウム合金の溶解原料に関し、詳しくはアルミニウ
ムあるいはアルミニウム合金ヲ加工した際に生ずる切削
屑を用いた再生溶解原料に関する。
Detailed Description of the Invention The present invention aims to solve the following problems. (Industrial Field of Application) The present invention relates to melting raw materials for aluminum and aluminum alloys, and more specifically, to processing aluminum or aluminum alloys. This invention relates to regenerated melting raw materials using cutting waste generated during production.

(従来の技術) 多数の切削屑をそのままの状態で持ち
運び、かえシ材と称して溶解しつつあるアルミニウム合
金溶湯に添加する。上記ナルシミニウム切削屑は不和片
状になっているので、取扱いが面倒である。またそれら
の間に含まれる多量の空気が添加時に溶湯中に混入する
。その結果、それら細片状の切削屑が加熱され溶解する
ときに酸化が著るしく、いわゆるドロヌの発生が著しく
大きい。従ってアルミニウム切削屑の再生の歩と−17
は低値である。これを解決すべくアルミニウム切削屑を
プレスによって固形体化する方策についても試みがなさ
れているが、アルミニウム切削屑をである。
(Prior Art) A large number of cutting chips are carried as they are and added to the molten aluminum alloy that is being melted as swarf material. Since the narciminium cutting waste is in the form of discordant pieces, it is difficult to handle it. Also, a large amount of air contained between them mixes into the molten metal during addition. As a result, when these small pieces of cutting waste are heated and melted, oxidation is significant, and so-called Delonne occurs to a large extent. Therefore, the progress of recycling aluminum cutting waste and -17
is a low value. In order to solve this problem, attempts have been made to solidify the aluminum cutting waste by pressing, but the aluminum cutting waste is still solid.

(発明が解決しようとする問題点) 本発明は上記従来
技術の問題点を解決しようとするもので、取扱が容易で
、高品質の溶湯を歩留シ良く得ることのできるアルミニ
ウム切削屑を用いた再生溶解原料を提供しようとするも
のでるる。
(Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned problems of the prior art. The aim is to provide recycled dissolved raw materials.

本願発明の構成は次の通シである。The configuration of the present invention is as follows.

(問題点を解決する為の手段) 本願発明は前記請求の
範囲記載の通シの手段を講じたものであって、その作用
は次の通シである。
(Means for Solving the Problems) The present invention takes the measures described in the claims, and its effects are as follows.

(作用) 本願発明の作用は、多数の小側片状のアルミ
ニウム切削屑を塊シとして扱うことができる。多数の切
削屑の間を埋めるマグネシアセメントがそれらの切削屑
に空気が触れることを防いで、切削屑の酸化を防止する
。上記マグネシアセメントが溶解炉に持ち込まれる空気
の量を減らすことと、また加熱時にマグネシアセメント
から生ずる塩素ガスの作用とが相俟って、加熱された切
削屑の酸化を防ぐ。
(Function) The function of the present invention is that a large number of small pieces of aluminum cutting waste can be handled as a lump. The magnesia cement that fills the spaces between the many cutting chips prevents air from coming into contact with them and prevents them from oxidizing. The reduction in the amount of air brought into the melting furnace by the magnesia cement, together with the action of chlorine gas generated from the magnesia cement during heating, prevents oxidation of the heated cuttings.

(実施例) 以下本願の実施例を説明する。再生溶解原
料は、アルミニウム切削屑(以下切削屑という)と酸化
マグネシウムおよび塩化物から成る。
(Example) Examples of the present application will be described below. The recycled melted raw material consists of aluminum cutting waste (hereinafter referred to as cutting waste), magnesium oxide, and chloride.

切削屑は工具で切削されたものであるから多様な形状の
小細片であり、金属チッソ”の性質上弾性を示す。特に
ダライ粉と称されるものはその状態が顕著である。
Since the chips are cut by tools, they are small pieces of various shapes, and due to the nature of the metal Nisso, they exhibit elasticity.This condition is particularly noticeable in the material called "dry powder."

次に再生溶解原料の製造手順を説明する。切削屑に対し
て、外事で15〜1%の酸化マグネシウム粉と15〜1
%の塩化マグネシウムの混合物とこれに1〜10%程度
の水分を添加し混合したものを金型に入れて加圧成形す
る。加圧には例えば、100tフリクシヨン7°レヌが
用いられる。当用いる金型としては、例えば割れ型が用
いられ、寸法は例えば内径10an、長さ80anのも
のである。
Next, the manufacturing procedure of the recycled melted raw material will be explained. For cutting waste, 15-1% magnesium oxide powder and 15-1%
% of magnesium chloride and 1 to 10% of water are added and mixed into a mold and pressure-molded. For example, a 100t friction 7° lever is used for pressurization. The mold to be used is, for example, a split mold, and has dimensions of, for example, an inner diameter of 10 ann and a length of 80 ann.

上記の混合体を金型に入れ加圧し、成形したならば直ち
に50〜200°C(例えば150″C)の恒温炉に入
れて20〜90分間(例えば30分間)乾燥し脱水する
。尚上記乾燥、脱水は自然乾燥により行なってもよい。
The above mixture is placed in a mold and pressurized, and once molded, it is immediately placed in a constant temperature oven at 50 to 200°C (for example, 150″C) and dried for 20 to 90 minutes (for example, 30 minutes) to dehydrate. Drying and dehydration may be performed by natural drying.

上記のような手順により、多数の小細片状の切削屑は、
相互に酸化マグネシウムと塩化マグネシウムの反応によ
って生成するいわゆるマグネシアセメントを結合材とし
て固形化され、再生溶解原料ができ上る。
By the above procedure, many small pieces of cutting waste are removed.
It is solidified using so-called magnesia cement, which is produced by the reaction of magnesium oxide and magnesium chloride, as a binder, and a recycled dissolved raw material is completed.

上記のようにしてでき上った原料は、多数の切削屑相互
の間がマグネシアセメントによって埋められ、原料中に
混入している空気の量は少ない。
In the raw material produced as described above, the spaces between the many cutting chips are filled with magnesia cement, and the amount of air mixed in the raw material is small.

従ってこの原料を保管する場合に多数の切削屑がそれら
の空気によって酸化されることは少ない。
Therefore, when this raw material is stored, a large amount of cutting waste is unlikely to be oxidized by the air.

次に上記原料を再生溶解炉に入れて溶解する場合、切削
屑は加熱されて酸化され易くなる。しかし切削屑相互の
間の多くは上記マグネシアセメントで埋められて、切削
屑が直接に空気に触れることが少なくなっている。また
上記原料を加熱すると上記マグネシアセメントから塩素
ガスが発生し、そのガスが切削屑を取り囲む。これらの
結果、上記アルミニウム切削屑の酸化は極めて少ない。
Next, when the raw material is put into a regeneration melting furnace and melted, the cutting waste is heated and becomes easily oxidized. However, many of the spaces between the cutting chips are filled with the magnesia cement, so that the cutting chips are less likely to come into direct contact with the air. Further, when the raw material is heated, chlorine gas is generated from the magnesia cement, and the gas surrounds the cutting waste. As a result, oxidation of the aluminum cutting waste is extremely low.

次に上記原料中のアルミニウム切削屑は上記のように加
熱されることにより溶解して溶湯となる。
Next, the aluminum cutting waste in the raw material is heated as described above and melted into a molten metal.

一方、マグネシアセメントは分解して粉状のマグネシア
が生じ、それは溶湯の上に浮かんで溶湯表面に空気が触
れることを阻止する。その結果、溶湯の酸化が防止され
る。
On the other hand, magnesia cement decomposes to produce powdered magnesia, which floats on top of the molten metal and prevents air from coming into contact with the molten metal surface. As a result, oxidation of the molten metal is prevented.

次に実験例を示せば、切削屑のままで700’Cで再溶
解した場合と上述のように固形体化した原料を再溶解し
た場合を比較したところ、その歩どまりは前者は83%
であったが後者では97%の歩どまシであった。
Next, to give an experimental example, when we compared the case where cutting chips were remelted at 700'C and the case where solidified raw materials were remelted as described above, the yield rate was 83% in the former case.
However, in the latter case, the yield rate was 97%.

次に、上記マグネシアセメントにおける塩化マグネシウ
ムを塩化カルシウム又は塩化ナトリウムに置換してもよ
い。具体的には切削屑に対して外事で7%の酸化マグネ
シウム粉と同量の塩化カルシウム又は塩化ナトリウムを
加え、少量の水を添加し加圧成形し乾燥したときも、前
記したマグネシアセメントとほぼ同様の固化した成形体
を得ることができる。
Next, magnesium chloride in the magnesia cement may be replaced with calcium chloride or sodium chloride. Specifically, when 7% magnesium oxide powder and the same amount of calcium chloride or sodium chloride were added to the cutting waste, a small amount of water was added, and the mixture was press-molded and dried, the result was almost the same as the above-mentioned magnesia cement. Similar solidified moldings can be obtained.

(発明の効果) 以上のように本発明にあっては、第1
点として、運搬や溶解炉への装入等の取扱いの場合、多
数の切削屑はマグネシアセメントで結合一体化されてい
る為、それらを塊りとして容易に取扱うことができる。
(Effect of the invention) As described above, in the present invention, the first
In handling such as transportation and charging into a melting furnace, a large number of cutting chips are bound together with magnesia cement, so they can be easily handled as a lump.

第2点として、本願の原料を保管中、多数の小細片状の
切削屑相互間を埋めるマグネシアセメントが切削屑に空
気が触れることを防止し、切削屑の酸化が妨げられてそ
の品質を良好に維持できる。
Second, while the raw material of the present invention is stored, the magnesia cement that fills in between the many small pieces of cutting waste prevents air from coming into contact with the cutting waste, preventing oxidation of the cutting waste and improving its quality. Can be maintained well.

第3点として、溶解の為に本願原料を加熱する過程にお
いて、上記切削屑相互間を埋めているマグネシアセメン
トが切削屑の周囲に存在する空気の量を減らし、それら
空気が切削屑に触れる機会を少なくすると共に、加熱さ
れたマグネシアセメントから生ずる塩素ガスが切削屑の
算囲気ガスとなって切削屑の酸化を防止し、得られるア
ルミニウム溶湯の品質を向上させると共に歩留りをよく
する、 第4点として、本願原料を溶解したとき、マグネシアセ
メントが変化して生ずるマグネシアがアルミ溶湯表面に
浮かんで空気が溶湯に触れることを阻止し、上記品質及
び歩留りを向上させる。
Thirdly, in the process of heating the raw material of the present application for melting, the magnesia cement filling the spaces between the cutting waste reduces the amount of air existing around the cutting waste, and the opportunity for that air to come into contact with the cutting waste. At the same time, the chlorine gas generated from the heated magnesia cement becomes a gas surrounding the cutting chips, preventing oxidation of the cutting chips, improving the quality of the resulting molten aluminum, and increasing the yield. Fourth point. When the raw material of the present application is melted, the magnesia produced by the change of magnesia cement floats on the surface of the molten aluminum, preventing air from coming into contact with the molten metal, thereby improving the above-mentioned quality and yield.

Claims (1)

【特許請求の範囲】[Claims] 多数のアルミニウム切削屑とマグネシアセメントとを混
合し固形化して成るアルミニウム切削屑を用いた再生溶
解原料。
A recycled melting raw material using aluminum cutting waste, which is made by mixing a large amount of aluminum cutting waste with magnesia cement and solidifying it.
JP59077676A 1984-04-17 1984-04-17 Regenerated raw material for melting using aluminum swarf Pending JPS60221535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59077676A JPS60221535A (en) 1984-04-17 1984-04-17 Regenerated raw material for melting using aluminum swarf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077676A JPS60221535A (en) 1984-04-17 1984-04-17 Regenerated raw material for melting using aluminum swarf

Publications (1)

Publication Number Publication Date
JPS60221535A true JPS60221535A (en) 1985-11-06

Family

ID=13640483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077676A Pending JPS60221535A (en) 1984-04-17 1984-04-17 Regenerated raw material for melting using aluminum swarf

Country Status (1)

Country Link
JP (1) JPS60221535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197139A (en) * 1993-07-16 1995-08-01 Kawashima:Kk Flux-containing aluminum deoxidizing briquette

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197139A (en) * 1993-07-16 1995-08-01 Kawashima:Kk Flux-containing aluminum deoxidizing briquette

Similar Documents

Publication Publication Date Title
US4040818A (en) Addition of magnesium to molten metal
JPH0238545B2 (en)
JPS60221535A (en) Regenerated raw material for melting using aluminum swarf
US2802732A (en) Slag producing material and metallurgical method employing same to recover metal values from steel
KR102221698B1 (en) Method for manufacturing briquette for rising temperature by using silicone powder
JPS5948925B2 (en) Forming sedative for converter slag
JPS6358883B2 (en)
KR100668792B1 (en) Vanadium dioxide ingot for substituting ferro-vanadium and method of producing the same
US1025426A (en) Article composed essentially of titanium and silver and method of producing the same.
US3953219A (en) Powdery composition for heat retention of feeder head
US933357A (en) Metallurgic process to produce metals or steels of all qualities.
JPH11179322A (en) Treatment method for aluminum dross residual ash
US3720552A (en) Exothermic composition for use in steelworks and in foundries
JPS5843456B2 (en) Rare earth↓-silicon alloy manufacturing method
JPH05139725A (en) Production of titanium boride
RU2017583C1 (en) Method of manufacture of briquettes for modification of steel and alloys
JP3705757B2 (en) Method for producing high oxygen titanium
JPH03503399A (en) Manufacture of SiC, MnC and ferroalloys
US3829299A (en) Molded abrasive article of iron-silicon alloy,and diamond powder
JPS5847459B2 (en) Molten metal raw material briquette
US2759812A (en) Method of manufacturing castings of cast iron of refined graphite structure
JPS5842148B2 (en) fused alumina aggregate
JP5184822B2 (en) Metal briquette manufacturing method
RU2096319C1 (en) Method for producing carbon articles having controllable characteristics and porous structure
RU94042777A (en) Method for producing consumable electrodes from titanium and titanium alloys