JPS5842148B2 - fused alumina aggregate - Google Patents

fused alumina aggregate

Info

Publication number
JPS5842148B2
JPS5842148B2 JP53132882A JP13288278A JPS5842148B2 JP S5842148 B2 JPS5842148 B2 JP S5842148B2 JP 53132882 A JP53132882 A JP 53132882A JP 13288278 A JP13288278 A JP 13288278A JP S5842148 B2 JPS5842148 B2 JP S5842148B2
Authority
JP
Japan
Prior art keywords
aggregate
alumina
carbon
fused alumina
alumina aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53132882A
Other languages
Japanese (ja)
Other versions
JPS5560073A (en
Inventor
昭 岩田
雅弘 玉巻
隆一 高橋
芳太 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KENMAZAI KOGYO KK
Original Assignee
NIPPON KENMAZAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KENMAZAI KOGYO KK filed Critical NIPPON KENMAZAI KOGYO KK
Priority to JP53132882A priority Critical patent/JPS5842148B2/en
Publication of JPS5560073A publication Critical patent/JPS5560073A/en
Publication of JPS5842148B2 publication Critical patent/JPS5842148B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は溶融アルミナ骨材の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in fused alumina aggregates.

従来の溶融アルミナ骨材はバイヤー法アルミナを原料と
して電気炉で溶融し冷却固化後粉砕したもので、不純物
として酸化す1ヘリウムを約0.4%程度含んだ白色の
ものである。
Conventional fused alumina aggregate is made by using Bayer process alumina as a raw material, melting it in an electric furnace, cooling it, solidifying it, and pulverizing it, and is white in color and contains about 0.4% of helium oxide as an impurity.

鉱物組成的にはほとんどがコランダムで一部β−A12
03が生成し、また微量のNa2Oがフリーの状態で残
存している。
Mineral composition is mostly corundum and some β-A12
03 is produced, and a trace amount of Na2O remains in a free state.

溶融アルミナの不定形骨材としての欠点は、溶融過程に
おいてNa2Oがガス化して、それが固化後インゴット
中に残存して多孔質になり、そのために粒子強度が低下
する点にある。
The disadvantage of fused alumina as an amorphous aggregate is that Na2O is gasified during the melting process and remains in the ingot after solidification, making it porous, thereby reducing particle strength.

またfree−Na20の存在とβ−A1203の生成
により、不定形骨材として使用した場合これらが耐火物
のマトリ、ツクス部に集まり耐蝕性を著しく悪化させる
ことも容易に予想できる。
Furthermore, due to the presence of free-Na20 and the formation of β-A1203, it can be easily predicted that when used as an amorphous aggregate, these will collect in the matrix and tuxed parts of the refractory material, significantly deteriorating the corrosion resistance.

そこで、この発明の目的とするところは従来の溶融アル
ミナ骨材より低気孔で粒子強度があり、かつNa2Oの
非常に少ない溶融アルミナ骨材を得るところにあり、融
点をあまり下げない程度に炭素を含有させることを特徴
とするものである。
Therefore, the purpose of the present invention is to obtain a molten alumina aggregate that has lower pores and particle strength than conventional fused alumina aggregates, and has very little Na2O content. It is characterized by containing.

すなわち、バイヤー法アルミナを電気炉において溶融す
る際に炭素を添加混入して溶融するものであり、これに
よって溶融の際炉内のC0分圧を高めてNa2Oの低温
気化をはかり生成物中の残留Na2Oを非常に少なくす
ることが出来る。
In other words, when Bayer process alumina is melted in an electric furnace, carbon is mixed in and added to it.This increases the C0 partial pressure in the furnace during melting, vaporizes Na2O at a low temperature, and reduces the residual content in the product. Na2O can be extremely reduced.

また炭素を添加する事によりA1404Cなる化合物が
マl−IJツクス形形成気孔を満たして気孔率を下げ、
またコランダムの結晶の境界を包晶によって充填するの
で強度を上げることもできる。
In addition, by adding carbon, a compound called A1404C fills the pores forming the Mar-IJ tux shape and lowers the porosity.
Additionally, since the boundaries of corundum crystals are filled with peritectics, the strength can be increased.

さらに炭素は溶融スラグ等にぬれにくく、化学的侵蝕に
対し強そ抵抗性を持つことから、AA−C化合物が生成
すれば、従来の溶融アルミナよりもぬれにくい性状をも
具有させ得るものである。
Furthermore, since carbon is difficult to wet with molten slag and has strong resistance to chemical attack, if an AA-C compound is formed, it can also have properties that are more difficult to wet than conventional molten alumina. .

Na2Oの減少効果をあげるにはある程度の炭素添加量
を要するが、反面炭素を過剰に加えるとA1203AA
404Cの共融点組威に近ずき耐火度が低下すること及
び水と反応しヤすいAl4C3が生成する可能性があり
、不定形耐火物原料として適切ではなくなる。
A certain amount of carbon is required to achieve the effect of reducing Na2O, but on the other hand, adding too much carbon will reduce A1203AA.
As it approaches the eutectic point of 404C, the refractoriness decreases and Al4C3, which easily reacts with water, may be produced, making it unsuitable as a raw material for monolithic refractories.

好ましい添加量としては生成骨材における含有量におい
て、0.5〜3.0%であることが判明した。
It has been found that the preferable addition amount is 0.5 to 3.0% in terms of the content in the produced aggregate.

次に種種の炭素含有量を有する骨材について行った比較
実験例を示す。
Next, examples of comparative experiments conducted on aggregates having various carbon contents will be shown.

バイヤー法アルミナ(99,6%A1203)100重
量部に対して試試料として0,0.5,2.5. 。
0, 0.5, 2.5. .

※5.0 、10.0 、12.5 、 ]、 5.0
の炭素(99,8%C)をそれぞれ添加混入して電気炉
においてアーク熱で溶融固化し、これを一般的な方法で
粉砕整粒して3〜5駕の骨材にした。
*5.0, 10.0, 12.5, ], 5.0
of carbon (99.8% C) was added and mixed in, melted and solidified by arc heat in an electric furnace, and pulverized and sized using a general method to form aggregates of 3 to 5 pieces.

なお炭素は、可及的にバイヤー法アルミナ原料全体と均
一になるように添加混入するのが好ましい。
It is preferable that carbon is added and mixed as uniformly as possible with the entire Bayer process alumina raw material.

この骨材の化学組成を第1表に示す 第2表はこれらの骨材につき見掛気孔率、見掛比重、カ
サ比重及び粒子強度を測定した結果を示すもので、見掛
気孔率、見掛比重、カサ比重は「単振法2.マグネジア
ンクリンカーの見掛気孔率、見掛比重およびカサ比重の
測定法」に従って測定した。
The chemical composition of this aggregate is shown in Table 1. Table 2 shows the results of measuring the apparent porosity, apparent specific gravity, bulk specific gravity, and particle strength of these aggregates. The hanging specific gravity and bulk specific gravity were measured according to "Single vibration method 2. Measuring method of apparent porosity, apparent specific gravity and bulk specific gravity of magnesian linker".

また粒子強度は単粒圧壊強度を用いた。こ**の方法は
試料を4000〜4760ミクロンに整粒して縮分法に
より小試料とし、その中からランダムに100個採取し
て、これを2トンアムスラ: −圧縮器で1個ずつ耐圧
強度を測定して、その平均値を粒子強度としたものであ
る。
In addition, single grain crushing strength was used as the particle strength. In this method, the sample is sized to 4,000 to 4,760 microns and made into small samples by the reduction fraction method, and 100 samples are randomly taken from among them, and 2 tons of amsla are collected. was measured and the average value was taken as the particle strength.

次に炭素含有量と見掛気孔率の関係を第1図に、強度と
の関係を第2図に示す。
Next, FIG. 1 shows the relationship between carbon content and apparent porosity, and FIG. 2 shows the relationship between carbon content and strength.

第1図および第2図から明らかなように、炭素含有量が
重量部で0.5を超すと見掛気孔率は急激に低下し、そ
の後は、はぼ平衡状態になる。
As is clear from FIGS. 1 and 2, when the carbon content exceeds 0.5 parts by weight, the apparent porosity decreases rapidly, and after that, almost reaches an equilibrium state.

粒子強度も0.5を超すと急激に高くなる。The particle strength also increases rapidly when it exceeds 0.5.

しかし3.0に近ずくにつれまた下降していく。However, as it approaches 3.0, it starts to decline again.

この骨材の鉱物組成をX線回析によって調べた。The mineral composition of this aggregate was investigated by X-ray diffraction.

それを第3表に示す。It is shown in Table 3.

生成鉱物からもわかるように、炭素含有量が重量部で0
.5以上になるとβ−A1203の生成が完全に阻止さ
れる。
As can be seen from the produced minerals, the carbon content is 0 parts by weight.
.. When it is 5 or more, the production of β-A1203 is completely blocked.

そしてA1404 Cが生成され、これが気孔をうめて
低気孔率となり、粒子強度もあがる。
Then, A1404 C is generated, which fills the pores, resulting in low porosity and increased particle strength.

しかし過剰に添加すればA1404Cの割合が増加し、
逆に粒子強度も斬次低下する。
However, if excessively added, the proportion of A1404C will increase,
On the contrary, the particle strength also decreases gradually.

この発明の溶融アルミナ骨材は上記のように、バイヤー
法アルミナに炭素を添加混入し、溶融することによって
、鉱物組成的にβ−A1203、free −N a2
0が除去され、また適量のA1404Cの生成により気
孔率がかなり低くしかも粒子強度の高い特徴を具備させ
得たものであり、耐火物骨材として最適のものである。
As mentioned above, the molten alumina aggregate of this invention is made by adding carbon to Bayer process alumina and melting it, so that it has a mineral composition of β-A1203 and free-N a2.
0 has been removed and a suitable amount of A1404C has been produced, it has characteristics of considerably low porosity and high particle strength, making it ideal as a refractory aggregate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る溶融アルミナ骨材における炭素
含有量と見掛気孔率の関係図、第2図は炭素含有量と粒
子強度の関係図である。
FIG. 1 is a diagram showing the relationship between carbon content and apparent porosity in the fused alumina aggregate according to the present invention, and FIG. 2 is a diagram showing the relationship between carbon content and particle strength.

Claims (1)

【特許請求の範囲】[Claims] 1 バイヤー法アルミナを溶融固化し、粉砕整粒した溶
融アルミナ骨材において、バイヤー法アルミナ原料に、
バイヤー法アルミナの溶融物生成骨材における含有量に
おいて0.5〜3.0重量部の炭素を添加混入して溶融
させ、副成分としてA1404Cを生成させたことを特
徴とする溶融アルミナ骨材。
1. In the fused alumina aggregate obtained by melting and solidifying Bayer process alumina and pulverizing and sizing it, the Bayer process alumina raw material is
A fused alumina aggregate characterized in that 0.5 to 3.0 parts by weight of carbon is added and mixed into the Bayer method alumina melt-generated aggregate and melted to produce A1404C as a subcomponent.
JP53132882A 1978-10-28 1978-10-28 fused alumina aggregate Expired JPS5842148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53132882A JPS5842148B2 (en) 1978-10-28 1978-10-28 fused alumina aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53132882A JPS5842148B2 (en) 1978-10-28 1978-10-28 fused alumina aggregate

Publications (2)

Publication Number Publication Date
JPS5560073A JPS5560073A (en) 1980-05-06
JPS5842148B2 true JPS5842148B2 (en) 1983-09-17

Family

ID=15091756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53132882A Expired JPS5842148B2 (en) 1978-10-28 1978-10-28 fused alumina aggregate

Country Status (1)

Country Link
JP (1) JPS5842148B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412798C1 (en) * 1994-04-14 1995-04-06 Thyssen Industrie Process for producing and using a ceramic shell as casting mould with reducing properties
JP2012066986A (en) * 2010-09-27 2012-04-05 Kurosaki Harima Corp Aluminum oxycarbide composition and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318442A (en) * 1969-09-12 1973-05-31 Electro Refractaire Method of manufacturing electrically fused refractory products of alumina with a high corundum content and products obtained thereby
JPS5314248A (en) * 1976-07-23 1978-02-08 Sutaatengu Kougiyou Kk Dust removing apparatus for air cooled engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318442A (en) * 1969-09-12 1973-05-31 Electro Refractaire Method of manufacturing electrically fused refractory products of alumina with a high corundum content and products obtained thereby
JPS5314248A (en) * 1976-07-23 1978-02-08 Sutaatengu Kougiyou Kk Dust removing apparatus for air cooled engine

Also Published As

Publication number Publication date
JPS5560073A (en) 1980-05-06

Similar Documents

Publication Publication Date Title
US5994252A (en) Process for producing spherical metal-oxide powder particles
CA1132314A (en) Rapid cooling of molten abrasives
KR101322442B1 (en) Alumina - titanium oxide - zirconia fused grain
US4222782A (en) Refractory ramming mix containing aluminum powder for metal melting furnaces
US4703022A (en) Alumina and MgO preheatable insulating refractory liners and methods of use thereof
US4522926A (en) Aluminum resistant refractory composition
US3326273A (en) Exothermic hot top
JPS59227794A (en) Ceramic fiber composition
US4622070A (en) Fibrous composite material for fused aluminum
JPS5964574A (en) Baddeleyite sinter refractory composition and refractory pr-oduct
US4869468A (en) Alumina and MgO preheatable insulating refractory liners and methods of using
KR20180052717A (en) Magnesium-rich fused magnesium aluminate particles
US2876122A (en) Calcium oxide articles and method of making the same
US3116156A (en) Fused refractory grain
US4696455A (en) Zircon and MgO preheatable insulating refractory liners and methods of use thereof
SE431536B (en) ELFFAST EXOTERMALLY INSULATIVE FORMAL
JPS5842148B2 (en) fused alumina aggregate
US4107255A (en) Manufacture of improved fused cast refractory
US4167418A (en) Protective coating for metal ingot molds and cores
US3949803A (en) Method of casting molten metal using mold additives
US2791816A (en) Method of applying exothermic material to the hot-top of steel
US3732177A (en) Exothermic insulating compositions comprising glass polishing residue
US4006891A (en) Crucible for melting super-alloys
JPS605066A (en) Fusion molded high chromium content refractory substance
US2137715A (en) Casting of metal