JPS60221519A - Production of austenitic stainless steel having high corrosion resistance and high strength - Google Patents

Production of austenitic stainless steel having high corrosion resistance and high strength

Info

Publication number
JPS60221519A
JPS60221519A JP7206884A JP7206884A JPS60221519A JP S60221519 A JPS60221519 A JP S60221519A JP 7206884 A JP7206884 A JP 7206884A JP 7206884 A JP7206884 A JP 7206884A JP S60221519 A JPS60221519 A JP S60221519A
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
austenitic stainless
stainless steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7206884A
Other languages
Japanese (ja)
Other versions
JPS6360809B2 (en
Inventor
Yasushi Torii
康司 鳥井
Kojiro Kitahata
北畑 浩二郎
Tadamasa Yokoyama
横山 忠正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7206884A priority Critical patent/JPS60221519A/en
Priority to PCT/JP1985/000051 priority patent/WO1985003528A1/en
Priority to US06/786,960 priority patent/US4689198A/en
Publication of JPS60221519A publication Critical patent/JPS60221519A/en
Publication of JPS6360809B2 publication Critical patent/JPS6360809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve corrosion resistance as well as strength, machineability for elongation, drawing, etc. of an austenitic stainless steel by controlling the upper limit for the content of C and N, making a solid solution of said steel at a specific temp., allowing V to coexist with Cr, Ni, etc. and heat-treating the steel under prescribed conditions. CONSTITUTION:The austenitic stainless steel consisting, by weight %, of 0.05- 0.15 C, 0.10-0.50 Si, 0.51-5.0 Mn, 18-25 Cr, 6.0<Ni<=10, 2-4 Mo, 0.05-0.25 V, 0.15-0.45 N and the balance iron is solubilized at 1,030-1,100 deg.C and is then quickly cooled. The steel can be thereby solubilized and strengthened while the decrease in the corrosion resistance occuring in addition of C and N and defects in the stage of producing the steel ingot are prevented. V is made to coexist with Cr, Ni, etc., by which the formation of Cr carbide is suppressed and the yield strength occuring in the dispersion and precipitation of the V carbonitride is improved. The quickly cooled steel is tempered to 250-500 deg.C, by which the intended product is obtd.

Description

【発明の詳細な説明】 本発明は耐食性にすぐれた高強度のオーステナイト系ス
テンレス鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high strength austenitic stainless steel with excellent corrosion resistance.

近年、石油資源の涸渇化が問題視されるに至っており、
これを背景としてエネルギー資源の拡大と安定確保を図
るために、海上においては海底油田の開発が進められて
おり、また、陸上においても従来は放置されてきた硫化
水素や炭酸ガス等の酸性ガスを含有する所謂サワーガス
やサワーオイルが採掘されるに至っている。このような
エネルギー資源の生産に関連する材料や装置は、塩化物
や酸性ガスとの接触が避けられず、従って、このような
分野での材料や装置に使用される鋼材料には先ず耐食性
が要求され、更には深井戸化に伴って強度要求が厳しさ
を増しつつあり、また、寒冷地での使用には低温靭性も
要求されることとなる。
In recent years, the depletion of oil resources has come to be seen as a problem.
Against this background, in order to expand and stably secure energy resources, offshore oil fields are being developed, and acid gases such as hydrogen sulfide and carbon dioxide, which have traditionally been left untreated, are being removed on land. The so-called sour gas and sour oil that it contains has come to be mined. Materials and equipment related to the production of such energy resources inevitably come into contact with chlorides and acid gases, and therefore the steel materials used in materials and equipment in these fields must first have corrosion resistance. In addition, strength requirements are becoming more severe as wells become deeper, and low-temperature toughness is also required for use in cold regions.

このような要求に応え得る材料としてはNi基合金、T
i基合金、CO基合金等が知られているが、これらの合
金は従来の通常の低合金鋼に比べて余りにも高価である
。また、比較的低廉な材料として、例えば、従来よりオ
ーステナイト系ステンレス鋼が゛知られているが、現状
では耐食性−強度ハランスに劣り、また、耐塩化物耐食
性にも劣る。
Materials that can meet these demands include Ni-based alloys and T
I-based alloys, CO-based alloys, etc. are known, but these alloys are too expensive compared to conventional low alloy steels. Further, although austenitic stainless steel, for example, has been known as a relatively inexpensive material, it currently has poor corrosion resistance and strength, and is also poor in chloride corrosion resistance.

一方、マルテンサイト系ステンレス鋼は、強度はほぼ満
足すべきものの、硫化物応力腐食割れに対して著しく弱
い欠点をもっている。
On the other hand, although martensitic stainless steel has almost satisfactory strength, it has the disadvantage of being extremely susceptible to sulfide stress corrosion cracking.

一般にオーステナイト系ステンレス鋼の耐力を向上させ
るための方法として、CやNによる固溶強化のほか、析
出強化、加工強化等が知られているが、析出強化及び加
工強化は耐食性に悪影響を及ぼし、一方、C量を多くす
ると、Cr炭化物を生して鋼の耐食性を劣化させ、また
、N量を多くすると、鋼塊製造時に欠陥を生じさせやす
い。
In general, methods for improving the yield strength of austenitic stainless steel include solid solution strengthening with C and N, precipitation strengthening, work strengthening, etc. However, precipitation strengthening and work strengthening have a negative effect on corrosion resistance. On the other hand, when the amount of C is increased, Cr carbide is produced and the corrosion resistance of the steel is deteriorated, and when the amount of N is increased, defects are likely to occur during the production of a steel ingot.

そこで、本発明者らは、上記した問題を解決するために
鋭意研究した結果、オーステナイト系ステンレス鋼にお
いて、C及びNの含有量の上限を規制すると共に、これ
ら元素の添加による耐食性の低下と鋼塊製造時の欠陥発
生を防ぎつつ固溶強化を図る一方、VをCr % N 
i等の元素と共存させることによって、Cr炭化物の生
成を抑制し、更に、■炭窒化物の分散析出によって耐力
を改善させ、かくして、特に鋼の耐力及び耐食性を共に
向上させ、更に、かかる綱を所定の条件に従って熱処理
することにより、伸び、絞り等の機械加工性を一層改善
した鋼を得ることができることを見出して、本発明に至
ったものである。
Therefore, as a result of intensive research to solve the above-mentioned problems, the inventors of the present invention have regulated the upper limit of the C and N content in austenitic stainless steel, and have determined that the addition of these elements will reduce the corrosion resistance of the steel. While aiming at solid solution strengthening while preventing the occurrence of defects during ingot production, V is reduced to Cr%N.
By coexisting with elements such as i, the formation of Cr carbides is suppressed, and furthermore, the yield strength is improved by the dispersion and precipitation of carbonitrides, thus improving both the yield strength and corrosion resistance of steel in particular. The present invention was achieved based on the discovery that a steel with improved machinability such as elongation and drawing can be obtained by heat-treating the steel according to predetermined conditions.

従って、本発明の目的は、耐食性にすぐれた高強度のオ
ーステナイト系ステンレス鋼、特に、塩化物及び硫化物
を含む環境下での耐食性にすぐれると共に高強度であり
、更に、伸び、絞り等の機械加工性にもすぐれたオース
テナイト系ステンレス鋼の製造方法を提供することを目
的とする。
Therefore, an object of the present invention is to provide a high-strength austenitic stainless steel with excellent corrosion resistance, particularly in an environment containing chlorides and sulfides, and high strength. The purpose of the present invention is to provide a method for manufacturing austenitic stainless steel with excellent machinability.

本発明による高耐食性高強度オーステナイト系ステンレ
ス銅の製造方法の第1は、重量%でCO,05〜0.1
5%、 Si0.10〜0.50%、 Mn 0.5〜5.0%、 Cr18〜25%、 Ni 6〜10%、 Mo2〜4%、 V O,05〜0.25%、 N O,15〜0.45%、 残部鉄及び不可避的不純物よりなるオーステナイト系ス
テンレス鋼を1030〜1100”cの温度にて固溶化
処理した後に急冷し、次いで、250〜500℃の温度
に焼戻し処理することを特徴とする。
The first method for producing highly corrosion-resistant and high-strength austenitic stainless copper according to the present invention is CO,05 to 0.1% by weight.
5%, Si0.10-0.50%, Mn 0.5-5.0%, Cr18-25%, Ni 6-10%, Mo2-4%, VO, 05-0.25%, NO , 15 to 0.45%, the balance being iron and unavoidable impurities, the austenitic stainless steel is solution treated at a temperature of 1030 to 1100"C, then rapidly cooled, and then tempered to a temperature of 250 to 500C. It is characterized by

また、その第2は、重量%で CO,05〜0.15%、 Si0.10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6〜10%、 Mo 2〜4%、 V O,05〜0.25%、及び N O,15〜0.45%に加えて、 Nb 0005〜0.50%及びTi0.01〜0゜5
0%から選ばれる少なくとも1種、 残部鉄及び不可避的不純物よりなるオーステナイト系ス
テンレス鋼を1030〜1100°Cの温度にて固溶化
処理した後に急冷し、次いで、250〜500℃の温度
に焼戻し処理することを特徴とする。
Moreover, the second is CO, 05-0.15%, Si 0.10-0.50%, Mn 0.5-5.0%, Cr 18-25%, Ni 6-10%, in weight%. In addition to Mo 2-4%, VO, 05-0.25%, and NO, 15-0.45%, Nb 0005-0.50% and Ti 0.01-0°5
Austenitic stainless steel consisting of at least one type selected from 0%, the balance being iron and unavoidable impurities is solution treated at a temperature of 1030 to 1100°C, then rapidly cooled, and then tempered to a temperature of 250 to 500°C. It is characterized by

先ず、本発明によるオーステナイト系ステンレス鋼にお
ける成分の限定理由について説明する。
First, the reason for limiting the components in the austenitic stainless steel according to the present invention will be explained.

Cはオーステナイトの安定化元素であると同時に、侵入
型固溶強化元素として鋼の耐力を含めて強度向上に効果
がある。本発明においては、Ni及びVとの共存下で微
細な炭窒化物を析出させて、鋼の耐力及び靭性を向上さ
せるために、0.05%以上を添加させることが必要で
あるが、0,15%を越えるときは、Cr炭化物を生成
して耐食性を低下させる。従って、C含有量は0.05
〜0.15%とする。
C is an austenite stabilizing element, and at the same time is an interstitial solid solution strengthening element that is effective in improving the strength of steel, including its yield strength. In the present invention, it is necessary to add 0.05% or more in order to precipitate fine carbonitrides in the coexistence with Ni and V and improve the yield strength and toughness of the steel. , 15%, Cr carbides are formed and corrosion resistance is deteriorated. Therefore, the C content is 0.05
~0.15%.

Siは鋼の脱酸剤として0.10%以上を添加すること
が必要であるが、過度に添加するときは、溶接割れ感受
性を高め、また、熱間圧延時に割れを生じることもある
ので、上限を0.50%とする。
It is necessary to add Si in an amount of 0.10% or more as a deoxidizing agent for steel, but if it is added in excess, it increases the susceptibility to weld cracking and may also cause cracking during hot rolling. The upper limit is set to 0.50%.

MnはSiと同様に鋼の脱酸剤として必要であるのみで
なく、Nの固溶量の増加、オーステナイトの安定化及び
耐溶接割れ性の改善のために0.5%以上を添加するこ
とが必要である。しかし、5%を越えるときは、熱間加
工性を損なう等の問題を生じる。従って、Mn含有量は
0.5〜5%の範囲が好ましく、特に、耐溶接割れ性を
改善する観点からは2.0〜4.0%の範囲が好ましい
Like Si, Mn is not only necessary as a deoxidizing agent for steel, but also should be added in an amount of 0.5% or more to increase the amount of solid solution of N, stabilize austenite, and improve weld cracking resistance. is necessary. However, when it exceeds 5%, problems such as impairing hot workability occur. Therefore, the Mn content is preferably in the range of 0.5 to 5%, and particularly preferably in the range of 2.0 to 4.0% from the viewpoint of improving weld cracking resistance.

本発明において、Crは鋼の耐食性の向上のために必須
の元素であると共に、Nの固溶限を増加させるためにも
必要な元素である。しかし、過度に添加するときは、オ
ーステナイトとフェライトとのバランスを崩し、本発明
鋼の特性を維持するためには、高価なNi等を多量に添
加する必要が生じるので好ましくなく、かくして、Cr
含有量は18〜25%とする。
In the present invention, Cr is an essential element for improving the corrosion resistance of steel, and is also an element necessary for increasing the solid solubility limit of N. However, if it is added excessively, the balance between austenite and ferrite will be disrupted, and in order to maintain the properties of the steel of the present invention, it will be necessary to add a large amount of expensive Ni, etc., which is undesirable.
The content is 18-25%.

NiはCr等とのバランスによって耐食性や機械的特性
の向上のために必要不可欠の元素であり、この目的のた
めには6.0%よりも多くを添加することが必要である
が、反面、Crに対して過度に添加するときは、却って
耐食性を劣化させるので、上限を10%とする。
Ni is an essential element for improving corrosion resistance and mechanical properties depending on the balance with Cr etc. For this purpose, it is necessary to add more than 6.0%, but on the other hand, When added excessively to Cr, the corrosion resistance deteriorates, so the upper limit is set at 10%.

Moは鋼の耐食性、特に隙間腐食、孔食防止に不可欠な
元素であり、このために2%以上の添加を必要とするが
、しかし、過剰に添加しても耐食性の向上効果が飽和す
る傾向にあり、更に製品価格を高くするので、上限を4
%とする。
Mo is an essential element for the corrosion resistance of steel, especially for preventing crevice corrosion and pitting corrosion.For this purpose, it is necessary to add 2% or more, but even if it is added in excess, the effect of improving corrosion resistance tends to be saturated. , which further increases the product price, so the upper limit is set to 4.
%.

■は本発明において、鋼の強度、靭性及び耐食性をバラ
ンスよく向上させるために、特に、Cr炭化物の生成を
抑えて耐食性を改善すると共に、■の炭窒化物の分散析
出による耐力の向上を図るために、少なくとも0.05
%の添加を必要とする。
(2) In the present invention, in order to improve the strength, toughness, and corrosion resistance of steel in a well-balanced manner, in particular, suppressing the formation of Cr carbides to improve corrosion resistance, and (2) improving the yield strength by dispersing precipitation of carbonitrides. for at least 0.05
% addition is required.

しかし、過多に添加するときは、フェライトの生成を促
し、オーステナイトとフェライトとのバランスを崩して
耐食性を劣化させる。従って、上限を0.25%とする
However, when added in excess, it promotes the formation of ferrite, disrupts the balance between austenite and ferrite, and deteriorates corrosion resistance. Therefore, the upper limit is set to 0.25%.

NはCと同様にオーステナイト形成元素であり、固溶に
よって鋼の耐力を向上させると共に、微細な炭窒化物を
形成して靭性を改善する効果を有する。この効果を有効
に発現させるためには0.15%以上の添加を必要とす
るが、しかし、過剰に低下すると、鋼塊製造時に不都合
を生じるので上限を0.45%とする。
Like C, N is an austenite-forming element, and has the effect of improving the yield strength of steel by solid solution and improving toughness by forming fine carbonitrides. In order to effectively exhibit this effect, it is necessary to add 0.15% or more; however, if the amount decreases excessively, it will cause problems during the production of steel ingots, so the upper limit is set at 0.45%.

本発明によるオーステナイト系ステンレス鋼においては
、上記した元素に加えて、Nb及びTiから選ばれる少
なくとも1種の元素を添加することができる。
In addition to the above-described elements, at least one element selected from Nb and Ti can be added to the austenitic stainless steel according to the present invention.

Nbは炭化物を形成して、Cを安定化する元素として知
られているが、N含有量が多い鋼においては、微細な炭
窒化物を形成して、耐力及び靭性を共に改善する。かか
る効果を発現させるためには、0.05%以上を添加す
ることが必要であるが、過剰に添加するときは溶接性を
劣化させると共に、Nbが安定な炭窒化物を形成する元
素であるところから、固溶C及びN量の減少を招き、却
って耐力を減少させ、また、巨大な炭窒化物を形成して
靭性を著しく損なう。従って、その上限を0,50%と
する。
Nb is known as an element that forms carbides and stabilizes C, but in steel with a high N content, it forms fine carbonitrides and improves both yield strength and toughness. In order to produce such an effect, it is necessary to add 0.05% or more, but when added in excess, weldability deteriorates, and Nb is an element that forms stable carbonitrides. This results in a decrease in the amount of solid solution C and N, which actually reduces the yield strength, and also forms huge carbonitrides, which significantly impairs toughness. Therefore, the upper limit is set to 0.50%.

TiもNbと同様に非常に安定な炭窒化物を形成する元
素であって、0.01〜0.50%の範囲で添加すると
き鋼の耐力を改善するが、過剰の添加は却って耐力のみ
ならず、靭性の低下を招くので、その含有量を上記のよ
うに規制する。
Like Nb, Ti is also an element that forms very stable carbonitrides, and when added in the range of 0.01 to 0.50%, it improves the yield strength of steel, but when added in excess, it only improves the yield strength. However, the content is regulated as described above, since this leads to a decrease in toughness.

本発明の方法においては、上記のような化学組成を存す
る鋼を1030〜1100℃の温度にて固溶化処理した
後に水冷或いは油冷にて急冷し、次いで、250〜50
0℃の温度に焼戻し処理する。
In the method of the present invention, steel having the above chemical composition is subjected to solution treatment at a temperature of 1030 to 1100°C, then rapidly cooled with water or oil cooling, and then
Tempering treatment to a temperature of 0°C.

本発明の方法において、上記温度範囲での固溶化処理に
よって、Cr炭化物の固溶のほか、再結晶による軟化、
耐食性の向上、内部応力の除去等を達成することができ
る。しかし、固溶化処理温度が1030℃よりも低いと
きは、特にCr炭化物の固溶化が不十分であって、鋼中
に未溶解のCr炭化物が残存し、鋼の耐食性に有害な影
響を与える。一方、1100℃を越える高温に加熱して
固溶化処理をするときは、V、NbXTi等の炭化物も
熔解するため、耐力の劣化を招く。特に好ましい固溶化
処理温度範囲は1040〜1080℃である。
In the method of the present invention, by solid solution treatment in the above temperature range, in addition to solid solution of Cr carbide, softening due to recrystallization,
It is possible to improve corrosion resistance, eliminate internal stress, etc. However, when the solution treatment temperature is lower than 1030° C., the solution treatment of Cr carbides is insufficient, and undissolved Cr carbides remain in the steel, which has a detrimental effect on the corrosion resistance of the steel. On the other hand, when performing solution treatment by heating to a high temperature exceeding 1100° C., carbides such as V and NbXTi are also melted, resulting in deterioration of yield strength. A particularly preferable solution treatment temperature range is 1040 to 1080°C.

固溶化加熱時間は鋼材の厚みに比例して長くすることが
必要であるが、−a的には鋼材25鶴厚につき1時間の
割合で定めればよい。固溶化加熱を完了した鋼材の冷却
については、油冷以上の急速冷却、即ち、平均冷却速度
が約0.2”07秒以上の冷却を必要とするが、特に、
例えば900〜500℃の温度域においては、結晶粒界
にCr炭化物が析出しやすいので、この温度域では急冷
して、すぐれた耐食性を確保することが好ましい。
The solution heating time needs to be increased in proportion to the thickness of the steel material, but in terms of -a, it may be determined at a rate of 1 hour per 25 mm thickness of the steel material. Cooling of steel materials that have undergone solution heating requires rapid cooling faster than oil cooling, that is, cooling with an average cooling rate of about 0.2"07 seconds or more, but in particular:
For example, in a temperature range of 900 to 500°C, Cr carbide is likely to precipitate at grain boundaries, so it is preferable to perform rapid cooling in this temperature range to ensure excellent corrosion resistance.

本発明の方法によれば、上記固溶化処理及び急冷の後に
、鋼を250〜500℃の温度に焼戻し処理をして鋼中
の熱歪みを除去することによって、耐食性及び耐力のみ
ならず、特に、伸び及び絞りを一層向上させることがで
きる。即ち、上記温度域への焼戻し処理によって、前記
君、冷による焼入れ効果を緩和し、固溶化処理に伴う熱
歪みを除去すると共に、靭性を向上させることができる
。焼戻し温度が250℃未満では熱歪を十分に除去でき
ないので、鋼の耐応力腐食割れ性が減少するおそれがあ
る。他方、焼戻し温度が500℃を越える高温度である
ときは、Cr炭化物の粒界析出を生じるために耐食性も
機械的性質も共に劣化する。
According to the method of the present invention, after the solution treatment and rapid cooling, the steel is tempered at a temperature of 250 to 500°C to remove thermal strain in the steel, thereby improving not only corrosion resistance and yield strength but also , elongation and reduction of area can be further improved. That is, by tempering to the above-mentioned temperature range, it is possible to alleviate the hardening effect due to the above-mentioned cold, remove thermal strain caused by solution treatment, and improve toughness. If the tempering temperature is less than 250° C., thermal strain cannot be sufficiently removed, so there is a risk that the stress corrosion cracking resistance of the steel will decrease. On the other hand, when the tempering temperature is high, exceeding 500° C., both corrosion resistance and mechanical properties deteriorate due to grain boundary precipitation of Cr carbide.

より好ましい焼戻し温度範囲は350〜500℃、特に
好ましい温度範囲は400〜500℃である。
A more preferable tempering temperature range is 350 to 500°C, and an especially preferable temperature range is 400 to 500°C.

従来、オーステナイト系ステンレス鋼は、固溶化処理状
態で最も耐食性がすぐれ、その後の加熱はCr炭化物の
析出を招き、耐食性を劣化させることが知られている。
Conventionally, it has been known that austenitic stainless steel has the best corrosion resistance in a solution treated state, and that subsequent heating causes precipitation of Cr carbides and deteriorates corrosion resistance.

しかし、本発明の方法によれば、このように従来、低温
鋭敏化現象が生じるとされている温度域での焼戻し処理
によって、鋼のすぐれた耐食性を損なわないで、伸び及
び絞り等の機械的性質を向上させることができるのであ
以上のように、本発明のオーステナイト系ステンレス鋼
の製造方法によれば、C及びNの含有量の上限を規制し
て、これらの添加による耐食性の低下と鋼塊製造時の欠
陥発生を防ぎっつ固溶強化を図る一方、■をCr、Ni
等の元素と共存させることによって、Cr炭化物の生成
を抑制しつつ、■炭窒化物の分散強化を図り、これら固
溶強化と析出強化とをバランスさせることにより、酸性
環境下で耐食性にすぐれると共に、耐力にもすぐれる特
性を有するオース妥ナイト系ステンレス鋼を得、更に、
かかるステンレス鋼を従来は耐食性や機械的性質を劣化
させるといわれている温度範囲で焼戻し処理することに
より、すぐれた耐食性を確保しつつ、一層伸びや絞り等
の機械的性質を向上させることができるのである。
However, according to the method of the present invention, by tempering in the temperature range where low-temperature sensitization phenomenon occurs conventionally, mechanical stress such as elongation and drawing can be improved without impairing the excellent corrosion resistance of steel. As described above, according to the method for manufacturing austenitic stainless steel of the present invention, the upper limit of the content of C and N is regulated, and the addition of these elements reduces the corrosion resistance and improves the steel. While preventing the occurrence of defects during ingot production and aiming for solid solution strengthening,
By coexisting with elements such as Cr, the formation of Cr carbides is suppressed, and by dispersion strengthening of carbonitrides and a balance between solid solution strengthening and precipitation strengthening, excellent corrosion resistance is achieved in acidic environments. At the same time, an ausonitic stainless steel with excellent yield strength was obtained, and furthermore,
By tempering such stainless steel at a temperature range that is conventionally said to degrade corrosion resistance and mechanical properties, it is possible to further improve mechanical properties such as elongation and drawing while ensuring excellent corrosion resistance. It is.

以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 第1表綱紀号Aに示す鋼を種々の温度に加熱して固溶化
処理を施したときの機械的性質を第2表に示す。103
0℃以上の温度で固溶化処理後、450°Cの温度で焼
戻すことによって、特に伸びが改善されることが示され
る。また、それぞれの鋼についての応力腐食割れ試験の
結果を第2表に併せて示す。1030℃以上の温度で固
溶化することによって、同様に耐食性が向上することが
認められる。
Table 2 shows the mechanical properties of the steel shown in Example A in Table 1, which was heated to various temperatures and subjected to solution treatment. 103
It is shown that elongation is particularly improved by solution treatment at a temperature of 0°C or higher and then tempering at a temperature of 450°C. Table 2 also shows the results of stress corrosion cracking tests for each steel. It is recognized that corrosion resistance is similarly improved by solid solution treatment at a temperature of 1030° C. or higher.

次に、第1表綱紀号A、B及びCの名調を固溶化処理後
に水冷し、次いで、種々の温度に焼戻し処理したときの
機械的性質と、応力腐食割れ試験結果を第3表に示す。
Next, Table 3 shows the mechanical properties and stress corrosion cracking test results of the namesakes with grade numbers A, B, and C in Table 1, which were solution-treated, water-cooled, and then tempered to various temperatures. show.

但し、鋼Aについては1040℃の温度で固溶化処理後
、水冷し、@B及びCについては1050℃の温度で固
溶化処理後、水冷し、450°C焼戻しした。本発明の
方法に従って、固溶化処理後急冷し、次いで、所定の温
度域にて焼戻し処理を行なうことによって、鋼はそのす
ぐれた耐食性を保持しつつ、伸びが著しく改善されるこ
とが明らかである。
However, steel A was solution treated at a temperature of 1040°C and then water cooled, and steel @B and C were solution treated at a temperature of 1050°C, water cooled, and tempered at 450°C. It is clear that by rapidly cooling after solution treatment and then tempering in a predetermined temperature range according to the method of the present invention, the elongation of the steel is significantly improved while maintaining its excellent corrosion resistance. .

尚、本発明においては1、特に耐力の改善に寄与するC
 −、S 1% N i及びNが次式の関係を満たすこ
とが、オーステナイト系ステンレス鋼の耐力と耐食性を
共に改善するために重要である。
In addition, in the present invention, 1, especially C, which contributes to improvement of yield strength.
-, S 1% Ni and N satisfy the following relationship in order to improve both the yield strength and corrosion resistance of austenitic stainless steel.

37≦100C%+2O3i%十Ni%+6ON%≦4
9上記式の値が49よりも大きいときは耐食性が劣化し
、一方、37よりも小さいときは耐食性と耐力のバラン
スが崩れ、ともにすぐれたオーステナイト系ステンレス
鋼を得難い傾向があるからである。
37≦100C%+2O3i% 10Ni%+6ON%≦4
9 When the value of the above formula is larger than 49, corrosion resistance deteriorates, while when it is smaller than 37, the balance between corrosion resistance and yield strength is lost, and it tends to be difficult to obtain an austenitic stainless steel with excellent both.

腐食試験は、試験片をU字曲げにて応力付加し、NAC
E液(5%食塩溶液+0.5%酢酸41気圧硫化水素ガ
ス飽和)中に1か月間浸漬した後、腐食率を測定すると
共に、顕微鏡(10(B@)にて割れ発生の有無及び孔
食・隙間腐食の有無を判定した。
In the corrosion test, stress is applied to the test piece by U-bending, and NAC
After being immersed in E solution (5% salt solution + 0.5% acetic acid saturated with hydrogen sulfide gas at 41 atm), the corrosion rate was measured, and the presence or absence of cracks and holes were observed using a microscope (10 (B@)). The presence or absence of corrosion and crevice corrosion was determined.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で C,0,05〜0.15%、 Si0.10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni6,0%を越えて10%まで、 Mo2〜4%、 V O,05〜0,25%、 N O,15〜0.45%、 残部鉄及び不可避的不純物よりなるオーステナイト系ス
テンレス鋼を1030〜1100℃の温度にて固溶化処
理した後に急冷し、次いで、250〜500℃の温度に
焼戻し処理することを特徴とする高耐食性高強度オース
テナイト系ステンレス鋼の製造方法。
(1) C, 0.05-0.15% by weight, Si 0.10-0.50%, Mn 0.5-5.0%, Cr 18-25%, Ni 6.0% over 10 %, Mo2 to 4%, VO, 05 to 0.25%, NO, 15 to 0.45%, and the balance iron and unavoidable impurities. A method for producing a highly corrosion-resistant, high-strength austenitic stainless steel, which comprises solution treatment followed by rapid cooling and then tempering at a temperature of 250 to 500°C.
(2) 重量%で CO,05〜0.15%、 Sin、10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni5.Q%を越えて10%まで、 Mo2〜4%、 V O,05〜0.25%、及び N O,15〜0.45%に加えて、 Nb O,05〜0.50%及びTi o、01〜0.
50%から選ばれる少なくとも1種、残部鉄及び不可避
的不純物よりなるオーステナイト系ステンレス鋼を10
30〜1100℃の温度にて固溶化処理した後に急冷し
、次いで、250〜500℃の温度に焼戻し処理するこ
とを特徴とする高耐食性高強度オーステナイト系ステン
レス鋼の製造方法。
(2) CO, 05-0.15%, Sin, 10-0.50%, Mn 0.5-5.0%, Cr 18-25%, Ni5. Above Q% up to 10%, Mo2-4%, VO, 05-0.25%, and NO, 15-0.45%, plus NbO, 05-0.50% and TiO , 01-0.
10% austenitic stainless steel consisting of at least one type selected from 50%, the balance being iron and unavoidable impurities.
A method for producing highly corrosion resistant, high strength austenitic stainless steel, which comprises solution treatment at a temperature of 30 to 1100°C, followed by rapid cooling, and then tempering at a temperature of 250 to 500°C.
JP7206884A 1984-02-09 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength Granted JPS60221519A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7206884A JPS60221519A (en) 1984-04-10 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength
PCT/JP1985/000051 WO1985003528A1 (en) 1984-02-09 1985-02-07 Highly corrosion-resistant, high-strength austenitic stainless steel and process for its production
US06/786,960 US4689198A (en) 1984-02-09 1985-02-07 Austenitic stainless steel with high corrosion resistance and high strength when heat treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7206884A JPS60221519A (en) 1984-04-10 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength

Publications (2)

Publication Number Publication Date
JPS60221519A true JPS60221519A (en) 1985-11-06
JPS6360809B2 JPS6360809B2 (en) 1988-11-25

Family

ID=13478710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7206884A Granted JPS60221519A (en) 1984-02-09 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength

Country Status (1)

Country Link
JP (1) JPS60221519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295486A (en) * 1992-04-16 1993-11-09 Nippon Steel Corp High-strength and nonmagnetic stainless steel wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295486A (en) * 1992-04-16 1993-11-09 Nippon Steel Corp High-strength and nonmagnetic stainless steel wire rod

Also Published As

Publication number Publication date
JPS6360809B2 (en) 1988-11-25

Similar Documents

Publication Publication Date Title
KR100353300B1 (en) Manufacturing method of high and low pressure integrated turbine rotor
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
JP2834276B2 (en) Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JP2001115233A (en) High strength steel sheet excellent in weldability and stress corrosion cracking resistance and producing method therefor
JPS581012A (en) Production of homogeneous steel
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
CN113166901B (en) Chromium-molybdenum steel plate with excellent creep strength and preparation method thereof
EP0224591B1 (en) Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
US4689198A (en) Austenitic stainless steel with high corrosion resistance and high strength when heat treated
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JPS6132384B2 (en)
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS60221519A (en) Production of austenitic stainless steel having high corrosion resistance and high strength
JPS6031898B2 (en) Turbine rotor material
JP2000063947A (en) Manufacture of high strength stainless steel
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH0225969B2 (en)
JPS6017022B2 (en) High-strength oil country tubular steel with excellent sulfide stress corrosion cracking resistance