JPS6360809B2 - - Google Patents

Info

Publication number
JPS6360809B2
JPS6360809B2 JP7206884A JP7206884A JPS6360809B2 JP S6360809 B2 JPS6360809 B2 JP S6360809B2 JP 7206884 A JP7206884 A JP 7206884A JP 7206884 A JP7206884 A JP 7206884A JP S6360809 B2 JPS6360809 B2 JP S6360809B2
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
temperature
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7206884A
Other languages
Japanese (ja)
Other versions
JPS60221519A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7206884A priority Critical patent/JPS60221519A/en
Priority to PCT/JP1985/000051 priority patent/WO1985003528A1/en
Priority to US06/786,960 priority patent/US4689198A/en
Publication of JPS60221519A publication Critical patent/JPS60221519A/en
Publication of JPS6360809B2 publication Critical patent/JPS6360809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐食性にすぐれた高強度のオーステナ
イト系ステンレス鋼の製造方法に関する。 近年、石油資源の涸渇化が問題視されるに至つ
ており、これを背景としてエネルギー資源の拡大
と安定確保を図るために、海上においては海底油
田の開発が進められており、また、陸上において
も従来は放置されてきた硫化水素や炭酸ガス等の
酸性ガスを含有する所謂サワーガスやサワーオイ
ルが採掘されるに至つている。このようなエネル
ギー資源の生産に関連する材料や装置は、塩化物
や酸性ガスとの接触が避けられず、従つて、この
ような分野での材料や装置に使用される鋼材料に
は先ず耐食性が要求され、更には深井戸化に伴つ
て強度要求が厳しさを増しつつあり、また寒冷地
での使用には低温靭性も要求されることとなる。 このような要求に応え得る材料としてはNi基
合金、Ti基合金、Co基合金等が知られているが、
これらの合金は従来の通常の低合金鋼に比べて余
りにも高価である。また、比較的低廉な材料とし
て、例えば、従来よりオーステナイト系ステンレ
ス鋼が知られているが、現状では耐食性―強度バ
ランスに劣り、また、耐塩化物耐食性にも劣る。 一方、マルテンサイト系ステンレス鋼は、強度
はほぼ満足すべきものの、硫化物応力腐食割れに
対して著しく弱い欠点をもつている。 一般にオーステナイト系ステンレス鋼の耐力を
向上させるための方法として、CやNによる固溶
強化のほか、析出強化加工強化等が知られている
が、析出強化及び加工強化は耐食性に悪影響を及
ぼし、一方、C量を多くすると、Cr炭化物を生
して鋼の耐食性を劣化させ、また、N量を多くす
ると、鋼塊製造時に欠陥を生じさせやすい。 そこで、本発明者らは、上記した問題を解決す
るために鋭意研究した結果、オーステナイト系ス
テンレス鋼において、C及びNの含有量の上限を
規制すると共に、これら元素の添加による耐食性
の低下と鋼塊製造時の欠陥発生を防ぎつつ固溶強
化を図る一方、VをCr,Ni等の元素と共存させ
ることによつて、Cr炭化物の生成を抑制し、更
に、V炭窒化物の分散析出によつて耐力を改善さ
せ、かくして、特に鋼の耐力及び耐食性を共に向
上させ、更に、かかる鋼を所定の条件に従つて熱
処理することにより、伸び、絞り等の機械加工性
を一層改善した鋼を得ることができることを見出
して、本発明に至つたものである。 従つて、本発明の目的は、耐食性にすぐれた高
強度のオーステナイト系ステンレス鋼、特に、塩
化物及び硫化物を含む環境下での耐食性にすぐれ
ると共に高強度であり、更に、伸び、絞り等の機
械加工性にもすぐれたオーステナイト系ステンレ
ス鋼の製造方法を提供することを目的とする。 本発明による高耐食性高強度オーステナイト系
ステンレス鋼の製造方法の第1は、重量%で C 0.05〜0.15%、 Si 0.10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6〜10%、 Mo 2〜4%、 V 0.05〜0.25%、 N 0.15〜0.45%、 残部鉄及び不可避的不純物よりなるオーステナ
イト系ステンレス鋼を1030〜1100℃の温度にて固
溶化処理した後に急冷し、次いで、250〜500℃の
温度に焼戻し処理することを特徴とする。 また、その第2は、重量%で C 0.05〜0.15%、 Si 0.10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6〜10%、 Mo 2〜4%、 V 0.05〜0.25%、及び N 0.15〜0.45%に加えて、 Nb 0.05〜0.50%及びTi 0.01〜0.50%から選
ばれる少なくとも1種、 残部鉄及び不可避的不純物よりなるオーステナ
イト系オーステナイト鋼を1030〜1100℃の温度に
て固溶化処理した後に急冷し、次いで、250〜500
℃の温度に焼戻し処理することを特徴とする。 先ず、本発明によるオーステナイト系ステンレ
ス鋼における成分の限定理由について説明する。 Cはオーステナイトの安定化元素であると同時
に、侵入型固溶強化元素として鋼の耐力を含めて
強度向上に効果がある。本発明においては、Ni
及びVとの共存下で微細な炭窒化物を析出させ
て、鋼の耐力及び靭性を向上させるために、0.05
%以上を添加させることが必要であるが、0.15%
を越えるときは、Cr炭化物を生成して耐食性を
低下させる。従つて、C含有量は0.05〜0.15%と
する。 Siは鋼の脱酸剤として0.10%以上を添加するこ
とが必要であるが、過度に添加するときは、溶接
割れ感受性を高め、また、熱間圧延時に割れを生
じることもあるので、上限を0.50%とする。 MnはSiと同様に鋼の脱酸剤として必要である
のみでなく、Nの固溶量の増加、オーステナイト
の安定化及び耐溶接割れ性の改善のために0.5%
以上を添加することが必要である。しかし、5%
を越えるときは、熱間加工性を損なう等の問題を
生じる。従つて、Mn含有量は0.5〜5%の範囲が
好ましく、特に、耐溶接割れ性を改善する観点か
らは2.0〜4.0%の範囲が好ましい。 本発明において、Crは鋼の耐食性の向上のた
めに必須の元素であると共に、Nの固溶限を増加
させるためにも必要な元素である。しかし、過度
に添加するときは、オーステナイトとフエライト
とのバランスを崩し、本発明鋼の特性を維持する
ためには、高価なNi等を多量に添加する必要が
生じるので好ましくなく、かくして、Cr含有量
は18〜25%とする。 NiはCr等とのバランスによつて耐食性や機械
的特性の向上のために必要不可欠の元素であり、
この目的のためには6.0%よりも多くを添加する
ことが必要であるが、反面、Crに対して過度に
添加するときは、却つて耐食性を劣化させるの
で、上限を10%とする。 Moは鋼の耐食性、特に隙間腐食、孔食防止に
不可欠な元素であり、このために2%以上の添加
を必要とするが、しかし、過剰に添加しても耐食
性の向上効果が飽和する傾向にあり、更に製品価
格を高くするので、上限を4%とする。 Vは本発明において、鋼の強度、靭性及び耐食
性をバランスよく向上させるために、特に、Cr
炭化物の生成を抑えて耐食性を改善すると共に、
Vの炭窒化物の分散析出による耐力の向上を図る
ために、少なくとも0.05%の添加を必要とする。
しかし、過多に添加するときは、フエライトの生
成を促し、オーステナイトとフエライトとのバラ
ンスを崩して耐食性を劣化させる。従つて、上限
を0.25%とする。 NはCと同様にオーステナイト形成元素であ
り、固溶によつて鋼の耐力を向上させると共に、
微細な炭窒化物を形成して靭性を改善する効果を
有する。この効果を有効に発現させるためには
0.15%以上の添加を必要とするが、しかし、過剰
に低下すると、鋼塊製造時に不都合を生じるので
上限を0.45%とする。 本発明によるオーステナイト系ステンレス鋼に
おいては、上記した元素に加えて、Nb及びTiか
ら選ばれる少なくとも1種の元素を添加すること
ができる。 Nbは炭化物を形成して、Cを安定化する元素
として知られているが、N含有量が多い鋼におい
ては、微細な炭窒化物を形成して、耐力及び靭性
を共に改善する。かかる効果を発現させるために
は、0.05%以上を添加することが必要であるが、
過剰に添加するときは溶接性を劣化させると共
に、Nbが安定な炭窒化物を形成する元素である
ところから、固溶C及びN量の減少を招き、却つ
て耐力を減少させ、また、巨大な炭窒化物を形成
して靭性を著しく損なう。従つて、その上限を
0.50%とする。 TiもNbと同様に非常に安定な炭窒化物を形成
する元素であつて、0.01〜0.50%の範囲で添加す
るとき鋼の耐力を改善するが、過剰の添加は却つ
て耐力のみならず、靭性の低下を招くので、その
含有量を上記のように規制する。 本発明の方法においては、上記のような化学組
成を有する鋼を1030〜1100℃の温度にて固溶化処
理した後に水冷或いは油冷にて急冷し、次いで、
250〜500℃の温度に焼戻し処理する。 本発明の方法において、上記温度範囲での固溶
化処理によつて、Cr炭化物の固溶のほか、再結
晶による軟化、耐食性の向上、内部応力の除去等
を達成することができる。しかし、固溶化処理温
度が1030℃よりも低いときは、特にCr炭化物の
固溶化が不十分であつて、鋼中に未溶解のCr炭
化物を残存し、鋼の耐食性に有害な影響を与え
る。一方、1100℃を越える高温に加熱して固溶化
処理をするときは、V,Nb,Ti等の炭化物も溶
解するため、耐力の劣化を招く。特に好ましい固
溶化処理温度範囲は1040〜1080℃である。 固溶化加熱時間は鋼材の厚みに比例して長くす
ることが必要であるが、一般的には鋼材25mm厚に
つき1時間の割合で定めればよい。固溶化加熱を
完了した鋼材の冷却については、油冷以上の急速
冷却、即ち、平均冷却速度が約0.2℃/秒以上の
冷却を必要とするが、特に、例えば900〜500℃の
温度域においては、結晶粒界にCr炭化物が析出
しやすいので、この温度域では急冷して、すぐれ
た耐食性を確保することが好ましい。 本発明の方法によれば、上記固溶化処理及び急
冷の後に、鋼を250〜500℃の温度に焼戻し処理を
して鋼中の熱歪みを除去することによつて、耐食
性及び耐力のみならず、特に、伸び及び絞りを一
層向上させることができる。即ち、上記温度域へ
の焼戻し処理によつて、前記急冷による焼入れ効
果を緩和し、固溶化処理に伴う熱歪みを除去する
と共に、靭性を向上させることができる。焼戻し
温度が250℃未満では熱歪を十分に除去できない
ので、鋼の耐応力腐食割れ性が減少するおそれが
ある。他方、焼戻し温度が500℃を越える高温度
であるときは、Cr炭化物の粒界析出を生じるた
めに耐食性も機械的性質も共に劣化する。より好
ましい焼戻し温度範囲は350〜500℃、特に好まし
い温度範囲は400〜500℃である。 従来、オーステナイト系ステンレス鋼は、固溶
化処理状態で最も耐食性がすぐれ、その後の加熱
はCr炭化物の析出を招き、耐食性を劣化させる
ことが知られている。しかし、本発明の方法によ
れば、このように従来、低温鋭敏化現象が生じる
とされている温度域での焼戻し処理によつて、鋼
のすぐれた耐食性を損なわないで、伸び及び絞り
等の機械的性質を向上させることができるのであ
る。 以上のように、本発明のオーステナイト系ステ
ンレス鋼の製造方法によれば、C及びNの含有量
の上限を規制して、これらの添加による耐食性の
低下と鋼塊製造時の欠陥発生を防ぎつつ固溶強化
を図る一方、VをCr,Ni等の元素を共存させる
ことによつて、Cr炭化物の生成を抑制しつつ、
V炭窒化物の分散強化を図り、これら固溶強化と
析出強化とをバランスさせることにより、酸性環
境下で耐食性にすぐれると共に、耐力にもすぐれ
る特性を有するオーステナイト系ステンレス鋼を
得、更に、かかるステンレス鋼を従来は耐食性や
機械的性質を劣化させるといわれている温度範囲
で焼戻し処理することにより、すぐれた耐食性を
確保しつつ、一層伸びや絞り等の機械的性質を向
上させることができるのである。 以下に実施例を挙げて本発明を説明する。 実施例 第1表鋼記号Aに示す鋼を種々の温度に加熱し
て固溶化処理を施したときの機械的性質を第2表
に示す。1030℃以上の温度で固溶化処理後、450
℃の温度で焼戻すことによつて、特に伸びが改善
されることが示される。また、それぞれの鋼につ
いての応力腐食割れ試験の結果を第2表に併せて
示す。1030℃以上の温度で固溶化することによつ
て、同様に耐食性が向上することが認められる。 次に、第1表鋼記号A,B及びCの各鋼を固溶
化処理後に水冷し、次いで、種々の温度に焼戻し
処理したときの機械的性質と、応力腐食割れ試験
結果を第3表に示す。但し、鋼Aについては1040
℃の温度で固溶化処理後、水冷し、鋼B及び
The present invention relates to a method for producing high-strength austenitic stainless steel with excellent corrosion resistance. In recent years, the depletion of oil resources has come to be seen as a problem, and against this backdrop, in order to expand and secure stable energy resources, offshore oil fields are being developed, and onshore oil fields are being developed. So-called sour gas and sour oil, which contain acidic gases such as hydrogen sulfide and carbon dioxide gas, have been mined until now. Materials and equipment related to the production of such energy resources inevitably come into contact with chlorides and acid gases, and therefore the steel materials used in materials and equipment in such fields must first have corrosion resistance. In addition, strength requirements are becoming more severe as wells become deeper, and low-temperature toughness is also required for use in cold regions. Ni-based alloys, Ti-based alloys, Co-based alloys, etc. are known as materials that can meet these demands.
These alloys are too expensive compared to conventional conventional low alloy steels. In addition, for example, austenitic stainless steel has been known as a relatively inexpensive material, but currently it has a poor corrosion resistance-strength balance and is also poor in chloride corrosion resistance. On the other hand, although martensitic stainless steel has almost satisfactory strength, it has the drawback of being extremely susceptible to sulfide stress corrosion cracking. In general, methods for improving the yield strength of austenitic stainless steel include solid solution strengthening with C and N, as well as precipitation strengthening and working strengthening, but precipitation strengthening and working strengthening have a negative impact on corrosion resistance. If the amount of C is increased, Cr carbides will be generated and the corrosion resistance of the steel will be deteriorated, and if the amount of N is increased, defects will easily occur during the production of steel ingots. Therefore, as a result of intensive research to solve the above-mentioned problems, the inventors of the present invention have regulated the upper limit of the C and N content in austenitic stainless steel, and have determined that the addition of these elements will reduce the corrosion resistance of the steel. While solid solution strengthening is achieved while preventing the occurrence of defects during ingot production, by making V coexist with elements such as Cr and Ni, the formation of Cr carbides is suppressed, and furthermore, the dispersion and precipitation of V carbonitrides are suppressed. As a result, the yield strength is improved, and thus both the yield strength and corrosion resistance of the steel are improved.Furthermore, by heat-treating such steel according to predetermined conditions, a steel with further improved machinability such as elongation and drawing is produced. The present invention was based on the discovery that it can be obtained. Therefore, an object of the present invention is to provide a high-strength austenitic stainless steel with excellent corrosion resistance, particularly in an environment containing chlorides and sulfides, and high strength. The purpose of the present invention is to provide a method for producing austenitic stainless steel that has excellent machinability. The first method for producing a highly corrosion-resistant, high-strength austenitic stainless steel according to the present invention consists of C 0.05 to 0.15%, Si 0.10 to 0.50%, Mn 0.5 to 5.0%, Cr 18 to 25%, Ni 6 to 10% by weight. %, Mo 2 to 4%, V 0.05 to 0.25%, N 0.15 to 0.45%, the balance being iron and unavoidable impurities. Austenitic stainless steel is solution treated at a temperature of 1030 to 1100°C and then rapidly cooled. , characterized by tempering treatment at a temperature of 250-500℃. Moreover, the second is C 0.05-0.15%, Si 0.10-0.50%, Mn 0.5-5.0%, Cr 18-25%, Ni 6-10%, Mo 2-4%, V 0.05-0.25. %, and N 0.15-0.45%, at least one selected from Nb 0.05-0.50% and Ti 0.01-0.50%, the balance being iron and unavoidable impurities. After solid solution treatment, it is rapidly cooled, and then
Characterized by tempering treatment at a temperature of ℃. First, the reason for limiting the components in the austenitic stainless steel according to the present invention will be explained. C is an austenite stabilizing element, and at the same time is an interstitial solid solution strengthening element that is effective in improving the strength of steel, including its yield strength. In the present invention, Ni
0.05 to precipitate fine carbonitrides in coexistence with V and V to improve the yield strength and toughness of steel.
It is necessary to add more than 0.15%
When it exceeds Cr, Cr carbide is formed and corrosion resistance is reduced. Therefore, the C content is set to 0.05 to 0.15%. It is necessary to add 0.10% or more of Si as a deoxidizing agent for steel, but when added in excess, it increases the susceptibility to weld cracking and may also cause cracking during hot rolling, so the upper limit should be set. It shall be 0.50%. Like Si, Mn is not only necessary as a deoxidizing agent for steel, but also increases the amount of solid solution of N, stabilizes austenite, and improves weld cracking resistance by 0.5%.
It is necessary to add the above. However, 5%
If it exceeds this, problems such as loss of hot workability will occur. Therefore, the Mn content is preferably in the range of 0.5 to 5%, and particularly preferably in the range of 2.0 to 4.0% from the viewpoint of improving weld cracking resistance. In the present invention, Cr is an essential element for improving the corrosion resistance of steel, and is also an element necessary for increasing the solid solubility limit of N. However, excessive addition is undesirable because it disrupts the balance between austenite and ferrite, and in order to maintain the properties of the steel of the present invention, it becomes necessary to add a large amount of expensive Ni, etc. The amount should be 18-25%. Ni is an essential element for improving corrosion resistance and mechanical properties when balanced with Cr etc.
For this purpose, it is necessary to add more than 6.0%, but on the other hand, when adding excessively to Cr, corrosion resistance deteriorates, so the upper limit is set at 10%. Mo is an essential element for the corrosion resistance of steel, especially for preventing crevice corrosion and pitting corrosion.For this purpose, it is necessary to add 2% or more, but even if it is added in excess, the effect of improving corrosion resistance tends to be saturated. The upper limit will be set at 4%, as this will further increase the product price. In the present invention, in order to improve the strength, toughness, and corrosion resistance of steel in a well-balanced manner, V is particularly added to Cr.
In addition to suppressing the formation of carbides and improving corrosion resistance,
In order to improve the yield strength through the dispersed precipitation of V carbonitrides, it is necessary to add at least 0.05%.
However, when added in excess, it promotes the formation of ferrite, disrupts the balance between austenite and ferrite, and deteriorates corrosion resistance. Therefore, the upper limit is set at 0.25%. Like C, N is an austenite-forming element, and improves the yield strength of steel through solid solution.
It has the effect of forming fine carbonitrides and improving toughness. In order to effectively express this effect,
It is necessary to add 0.15% or more, but if the content decreases excessively, it will cause problems during the production of steel ingots, so the upper limit is set at 0.45%. In addition to the above-mentioned elements, at least one element selected from Nb and Ti can be added to the austenitic stainless steel according to the present invention. Nb is known as an element that forms carbides and stabilizes C, but in steel with a high N content, it forms fine carbonitrides and improves both yield strength and toughness. In order to express such an effect, it is necessary to add 0.05% or more,
When added in excess, it deteriorates weldability, and since Nb is an element that forms stable carbonitrides, it leads to a decrease in the amount of solid solution C and N, which in turn decreases the yield strength and causes huge Forms carbonitrides that significantly impair toughness. Therefore, the upper limit
It shall be 0.50%. Like Nb, Ti is also an element that forms very stable carbonitrides, and when added in the range of 0.01 to 0.50%, it improves the yield strength of steel. Since it causes a decrease in toughness, its content is regulated as described above. In the method of the present invention, steel having the above chemical composition is solution treated at a temperature of 1030 to 1100°C, then rapidly cooled with water or oil cooling, and then
Tempering treatment to a temperature of 250-500℃. In the method of the present invention, by performing the solution treatment in the above temperature range, it is possible to achieve not only solid solution of Cr carbides, but also softening due to recrystallization, improvement in corrosion resistance, removal of internal stress, etc. However, when the solution treatment temperature is lower than 1030°C, the solution treatment of Cr carbides is insufficient, and undissolved Cr carbides remain in the steel, which has a detrimental effect on the corrosion resistance of the steel. On the other hand, when solution treatment is performed by heating to a high temperature exceeding 1100° C., carbides such as V, Nb, and Ti are also dissolved, leading to deterioration of yield strength. A particularly preferable solution treatment temperature range is 1040 to 1080°C. The solution heating time needs to be increased in proportion to the thickness of the steel material, but generally it may be set at a rate of 1 hour per 25 mm thickness of the steel material. Cooling of steel materials that have undergone solution heating requires rapid cooling faster than oil cooling, that is, cooling with an average cooling rate of approximately 0.2°C/sec or more, especially in the temperature range of 900 to 500°C. Since Cr carbides tend to precipitate at grain boundaries, it is preferable to rapidly cool the steel in this temperature range to ensure excellent corrosion resistance. According to the method of the present invention, after the solution treatment and rapid cooling, the steel is tempered at a temperature of 250 to 500°C to remove thermal strain in the steel, thereby improving not only corrosion resistance and yield strength. In particular, elongation and reduction of area can be further improved. That is, by tempering to the above-mentioned temperature range, the hardening effect caused by the rapid cooling can be alleviated, the thermal strain caused by the solution treatment can be removed, and the toughness can be improved. If the tempering temperature is less than 250°C, thermal strain cannot be sufficiently removed, so there is a risk that the stress corrosion cracking resistance of the steel will decrease. On the other hand, when the tempering temperature is a high temperature exceeding 500°C, both corrosion resistance and mechanical properties deteriorate due to grain boundary precipitation of Cr carbides. A more preferable tempering temperature range is 350 to 500°C, and an especially preferable temperature range is 400 to 500°C. Conventionally, it is known that austenitic stainless steel has the best corrosion resistance when solution treated, and that subsequent heating leads to precipitation of Cr carbides and deteriorates corrosion resistance. However, according to the method of the present invention, by tempering in the temperature range where low-temperature sensitization phenomena are conventionally thought to occur, elongation, reduction, etc. can be reduced without impairing the excellent corrosion resistance of steel. Mechanical properties can be improved. As described above, according to the method for producing austenitic stainless steel of the present invention, the upper limit of the content of C and N is regulated to prevent a decrease in corrosion resistance due to the addition of these substances and the occurrence of defects during the production of steel ingots. While aiming at solid solution strengthening, by coexisting elements such as Cr and Ni with V, the formation of Cr carbides is suppressed,
By aiming at dispersion strengthening of V carbonitrides and balancing solid solution strengthening and precipitation strengthening, we can obtain austenitic stainless steel that has excellent corrosion resistance in acidic environments and has excellent yield strength. By tempering such stainless steel at a temperature range that is conventionally said to deteriorate corrosion resistance and mechanical properties, it is possible to further improve mechanical properties such as elongation and drawing while ensuring excellent corrosion resistance. It can be done. The present invention will be explained below with reference to Examples. Examples Table 1 Table 2 shows the mechanical properties when the steel shown in steel code A was heated to various temperatures and subjected to solution treatment. After solution treatment at a temperature of 1030℃ or higher, 450
It is shown that tempering at a temperature of 0.degree. C. particularly improves elongation. Table 2 also shows the results of stress corrosion cracking tests for each steel. It is recognized that corrosion resistance is similarly improved by solid solution treatment at a temperature of 1030°C or higher. Next, Table 3 shows the mechanical properties and stress corrosion cracking test results of steels with steel codes A, B, and C in Table 1, which were solution-treated, water-cooled, and then tempered to various temperatures. show. However, for steel A, 1040
After solution treatment at a temperature of ℃, water cooling and steel B and

【表】【table】

【表】【table】

【表】 Cについては1050℃の温度で固溶化処理後、水冷
し、450℃焼戻しした。本発明の方法に従つて、
固溶化処理後急冷し、次いで、所定の温度域にて
焼戻し処理を行なうことによつて、鋼はそのすぐ
れた耐食性を保持しつつ、伸びが著しく改善され
ることが明らかである。 尚、本発明においては、特に耐力の改善に寄与
するC,Si,Ni及びNが次式の関係を満たすこ
とが、オーステナイト系ステンレス鋼の耐力と耐
食性を共に改善するために重要である。 37≦100C%+20Si%+Ni%+60N%≦49 上記式の値が49よりも大きいときは耐食性が劣
化し、一方、37よりも小さいときは耐食性と耐力
のバランスが崩れ、ともにすぐれたオーステナイ
ト系ステンレス鋼を得難い傾向があるからであ
る。 腐食試験は、試験片をU字曲げにて応力付加
し、NACE液(5%食塩溶液+0.5%酢酸+1気
圧硫化水素ガス飽和)中に1か月間浸漬した後、
腐食率を測定すると共に、顕微鏡(100倍)にて
割れ発生の有無及び孔食・隙間腐食の有無を判定
した。
[Table] For C, after solid solution treatment at a temperature of 1050°C, it was water-cooled and tempered at 450°C. According to the method of the invention,
It is clear that by rapid cooling after solution treatment and then tempering at a predetermined temperature range, the elongation of the steel is significantly improved while maintaining its excellent corrosion resistance. In the present invention, it is particularly important that C, Si, Ni, and N, which contribute to improving the yield strength, satisfy the following relationship in order to improve both the yield strength and corrosion resistance of the austenitic stainless steel. 37≦100C%+20Si%+Ni%+60N%≦49 When the value of the above formula is larger than 49, corrosion resistance deteriorates, while when it is smaller than 37, the balance between corrosion resistance and yield strength is lost, resulting in austenitic stainless steel having excellent properties. This is because steel tends to be difficult to obtain. In the corrosion test, stress was applied to the test piece by U-bending, and after immersing it in NACE solution (5% salt solution + 0.5% acetic acid + 1 atm hydrogen sulfide gas saturation) for one month,
In addition to measuring the corrosion rate, the presence or absence of cracking, pitting corrosion, and crevice corrosion was determined using a microscope (100x magnification).

Claims (1)

【特許請求の範囲】 1 重量%で C 0.05〜0.15%、 Si 0.10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6.0%を越えて10%まで、 Mo 2〜4%、 V 0.05〜0.25%、 N 0.15〜0.45%、 残部鉄及び不可避的不純物よりなるオーステナ
イト系ステンレス鋼を1030〜1100℃の温度にて固
溶化処理した後に急冷し、次いで、250〜500℃の
温度に焼戻し処理することを特徴とする高耐食性
高強度オーステナイト系ステンレス鋼の製造方
法。 2 重量%で C 0.05〜0.15%、 Si 0.10〜0.50%、 Mn 0.5〜5.0%、 Cr 18〜25%、 Ni 6.0%を越えて10%まで、 Mo 2〜4%、 V 0.05〜0.25%、及び N 0.15〜0.45%に加えて、 Nb 0.05〜0.50%及びTi 0.01〜0.50%から選
ばれる少なくとも1種、 残部鉄及び不可避的不純物よりなるオーステナ
イト系ステンレス鋼を1030〜1100℃の温度にて固
溶化処理した後に急冷し、次いで、250〜500℃の
温度に焼戻し処理することを特徴とする高耐食性
高強度オーステナイト系ステンレス鋼の製造方
法。
[Claims] 1% by weight: C 0.05-0.15%, Si 0.10-0.50%, Mn 0.5-5.0%, Cr 18-25%, Ni more than 6.0% up to 10%, Mo 2-4%, Austenitic stainless steel consisting of V 0.05-0.25%, N 0.15-0.45%, balance iron and unavoidable impurities is solution treated at a temperature of 1030-1100°C, then rapidly cooled, and then cooled to a temperature of 250-500°C. A method for producing highly corrosion-resistant, high-strength austenitic stainless steel, which is characterized by subjecting it to a tempering treatment. 2% by weight: C 0.05-0.15%, Si 0.10-0.50%, Mn 0.5-5.0%, Cr 18-25%, Ni over 6.0% up to 10%, Mo 2-4%, V 0.05-0.25%, and N 0.15-0.45%, at least one selected from Nb 0.05-0.50% and Ti 0.01-0.50%, the balance iron and unavoidable impurities. A method for producing a highly corrosion-resistant, high-strength austenitic stainless steel, which comprises solution treatment followed by rapid cooling and then tempering at a temperature of 250 to 500°C.
JP7206884A 1984-02-09 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength Granted JPS60221519A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7206884A JPS60221519A (en) 1984-04-10 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength
PCT/JP1985/000051 WO1985003528A1 (en) 1984-02-09 1985-02-07 Highly corrosion-resistant, high-strength austenitic stainless steel and process for its production
US06/786,960 US4689198A (en) 1984-02-09 1985-02-07 Austenitic stainless steel with high corrosion resistance and high strength when heat treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7206884A JPS60221519A (en) 1984-04-10 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength

Publications (2)

Publication Number Publication Date
JPS60221519A JPS60221519A (en) 1985-11-06
JPS6360809B2 true JPS6360809B2 (en) 1988-11-25

Family

ID=13478710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7206884A Granted JPS60221519A (en) 1984-02-09 1984-04-10 Production of austenitic stainless steel having high corrosion resistance and high strength

Country Status (1)

Country Link
JP (1) JPS60221519A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2618151B2 (en) * 1992-04-16 1997-06-11 新日本製鐵株式会社 High strength non-magnetic stainless steel wire rod

Also Published As

Publication number Publication date
JPS60221519A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
US11624098B2 (en) Precipitation hardening steel and its manufacture
US20230167522A1 (en) High Strength, High-Temperature Corrosion Resistant Martensitic Stainless Steel and Manufacturing Method Therefor
JPH05287455A (en) Martensitic stainless steel for oil well
JP2834276B2 (en) Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JPH0375337A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPS6360809B2 (en)
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH02247360A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and stress corrosion cracking resistance and its manufacture
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP2000063947A (en) Manufacture of high strength stainless steel
JP7499691B2 (en) Bolt steel and bolts
JPS6031898B2 (en) Turbine rotor material
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPS6358892B2 (en)
JPS61106747A (en) Martensitic stainless steel for oil well
JPH0776722A (en) Production of martensitic stainless steel excellent in sulfide cracking resistance
JPS5844726B2 (en) Method for manufacturing high-strength ERW steel pipes for oil wells with excellent hydrogen embrittlement resistance