JPS60221380A - Metallization of silicon carbide sintered body - Google Patents

Metallization of silicon carbide sintered body

Info

Publication number
JPS60221380A
JPS60221380A JP7271484A JP7271484A JPS60221380A JP S60221380 A JPS60221380 A JP S60221380A JP 7271484 A JP7271484 A JP 7271484A JP 7271484 A JP7271484 A JP 7271484A JP S60221380 A JPS60221380 A JP S60221380A
Authority
JP
Japan
Prior art keywords
silicon carbide
unsintered
substrate
setter
metallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7271484A
Other languages
Japanese (ja)
Inventor
忠道 浅井
大河内 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7271484A priority Critical patent/JPS60221380A/en
Publication of JPS60221380A publication Critical patent/JPS60221380A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は炭化けい未焼結体基板のメタライズ法に係り、
特に高温焼付メタライズ法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of metallizing silicon carbide unsintered substrates,
In particular, it relates to high-temperature baking metallization.

〔発明の背景〕[Background of the invention]

従来、炭化けい未焼結体基板のメタライズ法には、導電
ガラスペースト焼付法、金属ペースト高温焼付法など各
種方法があるが、接着強度が要求されるものは、金属ペ
ースト高温焼付法が採用される。例えばモリブデンメタ
ライズについては、炭化けい未焼結体基板にモリブデン
ペーストを塗布し、乾燥後アルミナセッターに載置し、
窒素と水素のフォーミングガス中、1400r程度で焼
成される。
Conventionally, various methods have been used to metallize silicon carbide unsintered substrates, such as conductive glass paste baking method and metal paste high temperature baking method, but metal paste high temperature baking method is used for those that require adhesive strength. Ru. For example, for molybdenum metallization, molybdenum paste is applied to a silicon carbide unsintered substrate, and after drying, it is placed on an alumina setter.
It is fired at about 1400 r in a forming gas of nitrogen and hydrogen.

しかるにこの従来法によってメタライズされた炭化けい
未焼結体基板は、一部変質する、炭化け・、い未焼結体
基板表面に斑点があるなどのため基板表面の抵抗が低下
する。或は炉内の温度分布の影響を受けやすいなどの問
題がある。
However, the unsintered silicon carbide substrate metallized by this conventional method is partially altered in quality, has carbonization, and has spots on the surface of the unsintered substrate, resulting in a decrease in the resistance of the substrate surface. Another problem is that it is easily affected by the temperature distribution within the furnace.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来技術の問題点を解消し、変質や
斑点がなく基板表面の抵抗が低下することのない良好な
炭化けい未焼結体基板のメタライズ法を提供することに
ある。
An object of the present invention is to solve the problems of the prior art described above and to provide a method for metallizing a silicon carbide unsintered substrate that is free from deterioration or spots and does not cause a decrease in the resistance of the substrate surface.

〔発明の概要〕[Summary of the invention]

発明者らは上記アルミナセッターを使った場合に炭化け
い未焼結体基板が変質したり、斑点があるため基板表面
抵抗が低下する或は炉内の温度分布の影響を受けやすい
原因について調べだ結果、セッター(メタライズ工程の
焼成作業に際し、SiC焼結体基板を載置するもの)に
接している部分で炭化けい未焼結体基板とアルミナセッ
ターが反応による炭化けい未焼結体基板の変質に関与し
ていること、炭化けい未焼結体基板が1400U程度の
温度で反応しやすくなり、炉中の浮遊不純物と反応した
だめに斑点ができること及びアルミナセッターの熱伝導
率が悪いことが温度分布の影響を受けやすい原因である
ことを見い出した。しかして、1400U程度の温度及
び窒素と水素のフォーミングガス中で、炭化けい未焼結
体基板と反応しにくい炭化けい素糸のセッターを使うこ
とにより、良好なメタライズ品ができることを見出した
The inventors investigated the causes of deterioration of the unsintered silicon carbide substrate when using the above alumina setter, the decrease in substrate surface resistance due to spots, and the reasons why the substrate is easily affected by the temperature distribution in the furnace. As a result, the unsintered silicon carbide substrate reacted with the alumina setter at the part where it was in contact with the setter (on which the SiC sintered substrate is placed during the firing process of the metallization process), resulting in deterioration of the unsintered silicon carbide substrate. This is because silicon carbide unsintered substrates tend to react at temperatures of around 1400 U, causing spots to form as a result of reacting with floating impurities in the furnace, and the poor thermal conductivity of the alumina setter. We found that the cause is easily influenced by distribution. However, we have found that a good metallized product can be produced by using a setter made of silicon carbide yarn that does not easily react with the unsintered silicon carbide substrate at a temperature of about 1400 U and in a forming gas of nitrogen and hydrogen.

本発明はこのような知見に基づいて成されたものであっ
て、炭化は匹素焼結体基板をメタライズ焼成するに際し
、少なくともSiC焼結体基板と接する部分が炭化けい
未焼結体基板と同材質或は、90チ以上のSiCのセラ
ミックス製セッター1を使うことを特徴とするものであ
る。
The present invention has been made based on such knowledge, and when carbonizing a silicon carbide sintered substrate to metallize and fire it, at least the portion in contact with the SiC sintered substrate is the same as that of the unsintered silicon carbide substrate. The setter 1 is characterized by using a ceramic setter 1 made of the material SiC or more than 90 inches.

本発明においてセッターの材質としては、破メタライズ
材と同材質或は90俤以上の炭化けい素からなるセラミ
ックスが良好であるが、さらに望ましくは、メタライズ
焼成時に被メタライズ基板全体をカバーできる構造が、
浮遊不純物による汚染を防止できるため良好である。
In the present invention, the setter is preferably made of the same material as the broken metallized material or a ceramic made of silicon carbide with a thickness of 90 or more. More preferably, the setter has a structure that can cover the entire substrate to be metalized during metallization firing.
This is good because it prevents contamination caused by floating impurities.

本発明のメタライズで得られるSiC焼結体の表面抵抗
は500 V/副の電界強度で1012Ω/口以上であ
る。
The surface resistance of the SiC sintered body obtained by the metallization of the present invention is 10<12 >Ω/hole or more at an electric field strength of 500 V/sub.

〔発明の実施例〕[Embodiments of the invention]

実施例1 酸化ベリリウム2Wt4を含む炭化けい未焼結体基板の
片面にモリブデンペーストを印刷し、乾燥後、表1に示
す各種セッター上に載置し、1400U−1h、窒素と
水素のフォーミングガス中で焼成した。結果は表1に示
す通りであり、炭化けい素を90%以上含むセッター以
外はいずれも基板が変質したり、基板表面抵抗が低下し
たりセッターと反応接着した。
Example 1 Molybdenum paste was printed on one side of a silicon carbide unsintered substrate containing beryllium oxide 2Wt4, and after drying, it was placed on various setters shown in Table 1 and heated at 1400U-1h in a forming gas of nitrogen and hydrogen. It was fired in The results are shown in Table 1, and in all cases, except for the setter containing 90% or more of silicon carbide, the substrate changed in quality, the substrate surface resistance decreased, or the substrate reacted and adhered to the setter.

表 2 実施例2 酸化ぺIJ IJウム2Wtlを含む炭化けい未焼結体
基板の片面にモリブデンペーストを印刷し、乾燥後、第
1図、第2図に示すように箱型のセッターと板状のセッ
ターにそれぞれ載置し、1400C−1h、窒素と水素
のフォーミングガス中で焼成した結果、箱型のセッター
を使った場合基板の変質や基板表面の斑点が見られなか
った。
Table 2 Example 2 Molybdenum paste was printed on one side of a silicon carbide unsintered body substrate containing PeIJ IJium 2Wtl oxide, and after drying, a box-shaped setter and a plate-shaped setter were printed as shown in FIGS. 1 and 2. As a result of firing in a forming gas of nitrogen and hydrogen at 1400C for 1 hour, no deterioration of the substrate or spots on the substrate surface were observed when using a box-shaped setter.

実施例3 酸化ベリリウム2wt%を含む炭化けい未焼結体基板(
20閣口×1t)の片面にモリブデンペーストを印刷し
、乾燥後、各200枚をアルミナセッター及び炭化けい
素焼給体セッター上に載着し、図に示す温度に1h保持
し、窒素と水素のフォーミングガス中で焼成した結果、
図に示すように、炭化けい素焼給体セッターを使った方
が接着強度のばらつきが小さい、これは炭化けい未焼結
体の熱伝導率が270W/mKであり、アルミナの熱伝
導率が28W/mKであるのに比較して大キく、炉内の
温度分布の影響を小さくできるため、接着強度のばらつ
きが小さくなったものと思われる。
Example 3 Silicon carbide unsintered body substrate containing 2 wt% beryllium oxide (
After drying, 200 sheets each were placed on an alumina setter and a silicon carbide burner setter, kept at the temperature shown in the figure for 1 hour, and heated with nitrogen and hydrogen. As a result of firing in forming gas,
As shown in the figure, the variation in adhesive strength is smaller when using a silicon carbide sintered body setter, because the thermal conductivity of the silicon carbide unsintered body is 270 W/mK and that of alumina is 28 W/mK. /mK, which is large compared to the above, and it is thought that the influence of temperature distribution in the furnace can be reduced, which reduces the variation in adhesive strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はセッターの構造図、第3図は温度と接
着強度を示す図である。
FIGS. 1 and 2 are structural diagrams of the setter, and FIG. 3 is a diagram showing temperature and adhesive strength.

Claims (1)

【特許請求の範囲】 1、メタライズした炭化けい未焼結体の表面抵抗が50
0V/crr1の電界強度で1012Ω/口以上あるこ
とを特徴とする炭化けい未焼結体のメタライズ法。 2、特許請求の範囲第1項において、メタライズ工程に
おける焼成作業に際し、炭化けい未焼結体基板を載置す
るセッターとして少なくとも炭化けい未焼結体基板と接
する部分が、炭化けい未焼結体基板と同材質或すは90
%以上の炭化けい素からなるセラミックスを使うことを
特徴とする炭化けい未焼結体のメタライズ法。 3、%許請求の範囲第1項において、炭化けい未焼結体
は、α−8iCを主成分とする炭化けい素と0.05〜
3.5重量部のベリリウム及びベリリウム化合物からな
ることを特徴とする炭化けい未焼結体のメタライズ法。
[Claims] 1. The surface resistance of the metallized silicon carbide unsintered body is 50.
A method for metallizing a silicon carbide unsintered body, characterized in that the electric field strength is 1012Ω/or more at an electric field strength of 0V/crr1. 2. In claim 1, at least a portion of the setter that contacts the unsintered silicon carbide substrate as a setter on which the unsintered silicon carbide substrate is placed during the firing operation in the metallization process is an unsintered silicon carbide substrate. Same material as the board or 90
A method for metallizing silicon carbide unsintered bodies, characterized by using ceramics containing silicon carbide of % or more. 3.% Permissible scope In claim 1, the silicon carbide unsintered body contains silicon carbide whose main component is α-8iC and 0.05 to 0.05%.
A method for metallizing a silicon carbide unsintered body, comprising 3.5 parts by weight of beryllium and a beryllium compound.
JP7271484A 1984-04-13 1984-04-13 Metallization of silicon carbide sintered body Pending JPS60221380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7271484A JPS60221380A (en) 1984-04-13 1984-04-13 Metallization of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7271484A JPS60221380A (en) 1984-04-13 1984-04-13 Metallization of silicon carbide sintered body

Publications (1)

Publication Number Publication Date
JPS60221380A true JPS60221380A (en) 1985-11-06

Family

ID=13497294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7271484A Pending JPS60221380A (en) 1984-04-13 1984-04-13 Metallization of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS60221380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442662B2 (en) * 2001-12-21 2008-10-28 Ngk Insulators, Ltd. High-heat conductive Si-containing material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442662B2 (en) * 2001-12-21 2008-10-28 Ngk Insulators, Ltd. High-heat conductive Si-containing material and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100353387B1 (en) Aluminum Nitride Sintered Body and Method of Preparing the Same
US5663865A (en) Ceramic electrostatic chuck with built-in heater
US5683791A (en) Ceramic oxide circuit board
US4814581A (en) Electrically insulating ceramic sintered body
US6071592A (en) Metal-ceramic composite substrate
US4737416A (en) Formation of copper electrode on aluminum nitride
JPS60221380A (en) Metallization of silicon carbide sintered body
JPS6331434B2 (en)
JPS61117161A (en) Manufacture of aluminium nitride ceramics
KR100285789B1 (en) Metallizing metal paste composition
JPH10167804A (en) Ceramic substrate, circuit board using same and its production
JP4596622B2 (en) Ceramic heater and wafer heating device using the same
JPH0360443A (en) Low-temperature calcined glass ceramic body
JP2892163B2 (en) Low temperature firing glass ceramic body
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JPS62108788A (en) Metallization for silicon carbide sintered body
JPS6236091A (en) Metallization of ceramics
JP3298283B2 (en) Method for firing aluminum nitride substrate
JPS60255677A (en) Manufacture of aluminum nitride sintered body
JP2890543B2 (en) Aluminum nitride substrate composition
JPS62119155A (en) Method of burning low temperature burning ceramic substrate
JPH02159096A (en) Manufacture of aln multilayer substrate
JPS58154289A (en) Method of producing ceramic board
JPH0212888A (en) Enameled wiring board having high heat dissipating properties
JPS61158881A (en) Method of correcting aluminum nitride ceramic