JPS60220849A - Detecting device for addled albumen - Google Patents

Detecting device for addled albumen

Info

Publication number
JPS60220849A
JPS60220849A JP60061403A JP6140385A JPS60220849A JP S60220849 A JPS60220849 A JP S60220849A JP 60061403 A JP60061403 A JP 60061403A JP 6140385 A JP6140385 A JP 6140385A JP S60220849 A JPS60220849 A JP S60220849A
Authority
JP
Japan
Prior art keywords
albumen
fluorescence
optical filter
egg
egg white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60061403A
Other languages
Japanese (ja)
Inventor
Koichi Akiyama
秋山 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kewpie Corp
Original Assignee
QP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QP Corp filed Critical QP Corp
Priority to JP60061403A priority Critical patent/JPS60220849A/en
Publication of JPS60220849A publication Critical patent/JPS60220849A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To detect an addled albumen and prevent an error in decision making by using an optical filter system which has a transmission band nearly from the upper-limit wavelength of ultraviolet rays nearly to the lower-limit wavelength of the fluorescent spectrum of a normal yolk. CONSTITUTION:The optical fiber system 9 of a fluorescence detecting means 7 is constituted by combining an optical fiber 91 which removes light with shorter wavelength than nearly the upper-limit wavelength of ultrasonic rays with an optical fiber 92 which removes light with longer wavelength than nearly the lower-limit wavelength of the fluorescent spectrum of the normal yolk. Then, a sample albumen 1 is irradiated with ultraviolet rays and if the albumen 1 is addled, the albumen emits fluorescence, which is converged on the lens of the means 7. At this time, the ultraviolet rays reflected by the albumen 1 and the fluorescence characteristic to the yolk when the albumen 1 contains the yolk are converged on the lens 1. The transmitted fluorescence of the filter system 9 is inputted to a discrimination means 8 through a photodetecting element 4, which outputs a signal indicating the addled albumen when the input level exceeds a reference value.

Description

【発明の詳細な説明】 本発明は、光学的手法を用゛いた腐敗卵白検出装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spoiled albumen detection device using an optical method.

一般に、マヨネーズ等の卵白の加工製品を製造する場合
、原料である卵(鶏卵)の卵白の腐敗の判別を行うこと
が必要である。
Generally, when producing processed egg white products such as mayonnaise, it is necessary to determine whether the egg whites of raw materials (chicken eggs) are rotten.

かつては卵白の腐敗の判別は、視覚、嗅覚等の人間の感
覚による経験的な判断により行われ、其体的には外観検
査、透光検査或いは割卵検査等によシ行われていた。し
かしながらこのような判別方法では卵白の腐敗の判別を
自動化することは困難である。そして卵白の加工工程は
機械化、自動化されているが、卵白の腐敗の判別は作業
者が直接行うようにしているため、製造工程の全てを自
動化することができず、作業の効率化の妨げとなってい
た。
In the past, rottenness of egg whites was determined based on empirical judgment using human senses such as sight and smell, and was generally carried out by visual inspection, transillumination inspection, egg-breaking inspection, etc. However, with such a determination method, it is difficult to automate the determination of rottenness of egg white. Although the process of processing egg whites has been mechanized and automated, since workers are required to directly determine whether the egg whites are spoiled, it is not possible to automate the entire manufacturing process, which hinders work efficiency. It had become.

そこで最近において、割卵後の卵白に紫外線を照射し、
螢光の発生の有無によシ卵白の腐敗の判別を行う方法が
検討されている。このような方法の原理を第1図、第2
図及び第3図によシ説明する。1は、割卵され卵黄を除
いて卵白のみとなった試料卵白であシ、この試料卵白1
に、365nmの波長をピーク値とする300〜410
 nm程度の紫外線を照射する。試料卵白1が正常であ
る場合には、ごく微弱な青白色の螢光を発し、試料卵白
1がある種の細菌に↓シ腐敗している場合には、青色や
緑色の強い螢光を発することが知られている。ここでい
うある種の細菌とは、螢光シュードモナ) m (Ps
eudmonas fluorescent )等の螢
光物質生産菌のことである。そして試料卵白1よシ発せ
られた螢光を螢光検出手段により検出してここで電気信
号に変換し、予め正常非0の螢光の強さを測定して定め
たしきい値に対応する基準電気信号のレベルと螢光検出
手段よシの出力電気信号とを比較し、当該出力電気信号
がこの基準電気信号のレベルを越えたときに腐敗卵白と
判定される。
Therefore, recently, we irradiated the egg white after breaking with ultraviolet rays,
A method of determining rottenness of egg white based on the presence or absence of fluorescence is being considered. The principle of this method is shown in Figures 1 and 2.
This will be explained with reference to FIG. 1 is a sample egg white that has been broken and the yolk has been removed, leaving only the albumen, and this sample egg white 1
300 to 410 with a peak wavelength of 365 nm.
Irradiate ultraviolet light of about nm. If sample egg white 1 is normal, it emits very weak blue-white fluorescence, and if sample egg white 1 is rotten by some kind of bacteria, it emits strong blue or green fluorescence. It is known. The certain bacteria referred to here are Pseudomonas fluorescens) m (Ps
It refers to fluorescent substance-producing bacteria such as eudmonas fluorescent). Then, the fluorescence emitted from the sample egg white 1 is detected by a fluorescence detection means and converted into an electrical signal, which corresponds to a threshold value determined in advance by measuring the intensity of normal and non-zero fluorescence. The level of the reference electric signal is compared with the output electric signal of the fluorescence detection means, and when the output electric signal exceeds the level of the reference electric signal, it is determined that the egg white is spoiled.

第2図は螢光検出手段の構成を示すブロック図テアシ、
この螢光検出手段においては、螢光及び紫外線が集光レ
ンズ2にょシ集光され、光学フィルタ3によシ紫外線が
除去され、かつ受光素子4の特性によシ可視螢光(すな
わち、400〜700nmの光)のみが受光素子4に受
光され、この受光素子4によシ可視螢光の強さが電気信
号に変換され、更にこの電気信号が増幅器5によシ増幅
されて判別手段に入力される。ここで光学フィルタ6の
役割について説明すると、試料卵白1に照射され次紫外
線の一部が当該試料卵白で反射されるが、反射され次紫
外線が受光素子4に入射するとこの紫外線に対応した出
力電気信号が発せられるため、これを防止するために光
学フィルタ6が用いられている。この光学フィルタ6と
しては、従来商品名L−42,Y−43,Y−44、或
いはG−558(いずれも東芝ガラス社製)等の色ガラ
スフィルタが用いられていた。また受光素子4としては
QaAs P系のフォトダイオードが用いられていた。
FIG. 2 is a block diagram showing the configuration of the fluorescence detection means.
In this fluorescence detection means, fluorescence and ultraviolet rays are collected by a condensing lens 2, ultraviolet rays are removed by an optical filter 3, and visible fluorescence (i.e., 400 ~700 nm) is received by the light receiving element 4, and the intensity of the visible fluorescence is converted into an electrical signal by the light receiving element 4. This electrical signal is further amplified by the amplifier 5 and sent to the discrimination means. is input. To explain the role of the optical filter 6 here, a part of the ultraviolet rays irradiated onto the sample egg white 1 is reflected by the sample egg white, but when the reflected ultraviolet rays enter the light receiving element 4, an output voltage corresponding to this ultraviolet ray is generated. Since a signal is emitted, an optical filter 6 is used to prevent this. As the optical filter 6, colored glass filters such as product names L-42, Y-43, Y-44, or G-558 (all manufactured by Toshiba Glass Co., Ltd.) have conventionally been used. Further, as the light receiving element 4, a QaAs P-based photodiode was used.

このため受光素子4の受光範囲については、短波長側線
光学フィルタ6によシ、長波長側は受光素子4の特性に
よシ夫々制限され、受光範囲は例えば400nmから7
00nmまでとなっていた。第3図は、光学フィルタ6
の透過特性等の一例を示すグラフであシ、実線の曲線(
1)は光学フィルタ6の分光透過率、実線の曲線(2)
は受光素子4の受光特性、破線の曲線(3)は腐敗卵白
の螢光スペクトルを夫々示す。これらのグラフから、腐
敗卵白からの可視螢光のみが効率よく受光素子4に受光
されることが理解される。
Therefore, the light receiving range of the light receiving element 4 is limited by the short wavelength side line optical filter 6, and the long wavelength side is limited by the characteristics of the light receiving element 4. For example, the light receiving range is limited from 400 nm to 7 nm.
It was up to 00 nm. FIG. 3 shows the optical filter 6
This is a graph showing an example of the transmission characteristics, etc. of
1) is the spectral transmittance of the optical filter 6, and the solid curve (2)
indicates the light-receiving characteristics of the light-receiving element 4, and the broken line curve (3) indicates the fluorescence spectrum of rotten egg white. It is understood from these graphs that only visible fluorescence from rotten egg white is efficiently received by the light receiving element 4.

しかしながら上述の方法を利用する)1電敗卵検出装置
には次のような欠点がある。即ら、現在自動割卵器の中
には、卵白と卵黄とを分離する分離型のものと、それら
を分離しない非分離型のものとがあるが、従来の検出装
置は、分離型の割卵器によυ割卵された卵については適
用できるが、非分離型の割卵器によp割卵され^卵につ
いては適用できない。−その理由は、正常卵黄に紫外線
が照射されると螢光を発し、その螢光スペクトルは第3
図の破線(4)にて表わされるが、正常卵黄の螢光スペ
クトルが腐敗卵白の螢光スペクトルと一部重なっている
ため、例えば、正常卵白の螢光の強さのしきい値が50
%に設定された場合には、腐敗卵白の螢光と正常卵黄の
螢光とが区別できず、この結果、腐敗卵白の検出ができ
ないのである。更に分離型の割卵器によって割卵された
卵についても、卵白中に卵黄が混入する「乱れ」が起こ
ることがある。このため、この「乱れ」を卵白の腐敗と
して検出し、誤判定を行うことがアリ、実用的ではない
However, the single-voltage egg detection device (using the method described above) has the following drawbacks. In other words, there are currently automatic egg breakers that separate egg whites and egg yolks, and non-separator types that do not separate them. It can be applied to eggs that have been cracked using an egg machine, but not to eggs that have been cracked using a non-separating machine. -The reason is that when a normal egg yolk is irradiated with ultraviolet light, it emits fluorescence, and the fluorescence spectrum is
As shown by the broken line (4) in the figure, the fluorescence spectrum of normal egg yolk partially overlaps with the fluorescence spectrum of rotten egg white, so for example, the threshold for the fluorescence intensity of normal egg white is 50%.
%, it is impossible to distinguish between the fluorescence of rotten albumen and the fluorescence of normal egg yolk, and as a result, rotten albumen cannot be detected. Furthermore, even when eggs are broken using a separate egg breaker, "disturbance" may occur in which the egg yolk is mixed into the egg white. Therefore, it is impractical to detect this "disturbance" as rotten egg white and make a false determination.

本発明はこのような事情のもとになされたものであり、
卵黄の有無に拘わらず腐敗卵白を自動的に検出すること
ができて分離型、非分離型のいずれの割卵器についても
適用でき、しかも誤判定をするおそれのない腐敗卵白検
出装置を提供することを目的とするものである。
The present invention was made under these circumstances,
To provide a rotten egg white detection device that can automatically detect rotten egg white regardless of the presence or absence of egg yolk, can be applied to both separable and non-separable egg breakers, and is free from the risk of misjudgment. The purpose is to

本発明の特徴とするところは、透過帯域が、紫外線の上
限波長付近から、正常卵黄の螢光スペクトルの下限波長
付近までである光学フィルタ系を用いた点にある。
The present invention is characterized by the use of an optical filter system whose transmission band ranges from near the upper limit wavelength of ultraviolet rays to near the lower limit wavelength of the fluorescence spectrum of normal egg yolk.

以1図面によって本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to one drawing.

第4図は本発明の実施例を示す構成図でID、6は試料
卵白1に紫外線を照射するための紫外線照射用光源、7
は螢光検出手段、8はこの螢光検出手段7よシの出力電
気信号のレベルと予め正常卵白の螢光の強さを測定して
定めたしきい値に対応する基準電気信号のレベルとを比
較してその比較結果から卵白の腐敗の判別を行う判別手
段でおる。第5図は螢光検出手段7を示すブロック図で
あり、第2図と同符号のものは同一部分、若しくL相当
部分を示す。9は光学フィルタ系であり、この光学フィ
ルタ系9としては、透過帯域が、紫外線の上限波長付近
から、卵黄の螢光スペクトルの下限波長付近まで(すな
わち約400nm〜約500nm)のものが用いられる
。このような条件を満足する光学フィルタ系9は、例え
ば紫外線の上限波長付近よシも短い波長の光を除去する
第1の光学フィルタ91と、正常卵黄の螢光スペクトル
の下限波長付近よシも長い波長の光を除去する第2の光
学フィルタ92とを組み合わせて構成される。そして第
1の光学フィルタ91としては、第2図に示された従来
例と同様に、例えば商品名L−42,Y−43,Y−4
4,G−558(いずれも東芝ガラス社製)等の色・ガ
ラスフィルタを用いることができる。ここで例えば鶏卵
の正常卵黄の螢光スペクトルは、第6図の点線(5)に
示すように略520nmをピークとして約500 nm
 〜600 nmに亘って広がっておシ、従って第2の
光学フィルタ92としては、例えば500 nmよシも
長い波長の光を除去する誘電体の多層膜から成る干渉フ
ィルタを用いることができる。この場合光学フィルタ系
9は、上記の色ガラスフィルタから成る第1の光学フィ
ルタ91の表面に上記誘電体の多層膜を真全蒸着によシ
形成して作られた第2の光学フィルタ92から構成され
る。第6図は、このようにして作った光学フィルタ90
元透過特性を示す図であシ、この例に係る光学フィルタ
9は、第1の光学フィルタ91として商品名L−42の
色カラスフィルタを用い、これの表面に500nmよシ
も長い波長の光を除去する誘電体の多層膜を形成して成
るものである。第6図において、第1の光学フィルタ9
1の光透過特性及び第2の光学フィルタ92の光透過特
性は、夫々実線の曲線(6)及び(7)で示され、従っ
て光学フィルタ系9の透過帯域は、これら実線の曲線(
6)及び(7)で挾まれた部分となる。そして正常卵黄
の螢光スペクトルは回れることになる。
FIG. 4 is a configuration diagram showing an embodiment of the present invention, in which ID, 6, a light source for ultraviolet irradiation for irradiating sample egg white 1 with ultraviolet rays, and 7
8 is a fluorescence detection means, and 8 is the level of an output electric signal from this fluorescence detection means 7 and the level of a reference electric signal corresponding to a threshold value determined by measuring the fluorescence intensity of normal egg white in advance. This is a method for determining whether the egg white is spoiled or not based on the comparison results. FIG. 5 is a block diagram showing the fluorescence detection means 7, and the same reference numerals as in FIG. 2 indicate the same parts or parts corresponding to L. Reference numeral 9 denotes an optical filter system, and the optical filter system 9 used has a transmission band from around the upper limit wavelength of ultraviolet rays to around the lower limit wavelength of the fluorescence spectrum of egg yolk (that is, about 400 nm to about 500 nm). . The optical filter system 9 that satisfies these conditions includes, for example, a first optical filter 91 that removes light with a shorter wavelength than near the upper limit wavelength of ultraviolet rays, and a first optical filter 91 that removes light with a shorter wavelength than near the upper limit wavelength of ultraviolet rays, and a first optical filter 91 that removes light with a shorter wavelength than near the upper limit wavelength of the fluorescent spectrum of normal egg yolk. It is configured in combination with a second optical filter 92 that removes long wavelength light. As the first optical filter 91, similar to the conventional example shown in FIG.
4. A color/glass filter such as G-558 (both manufactured by Toshiba Glass Co., Ltd.) can be used. For example, the fluorescence spectrum of a normal yolk of a chicken egg has a peak of about 520 nm and a wavelength of about 500 nm, as shown by the dotted line (5) in Figure 6.
Therefore, as the second optical filter 92, it is possible to use an interference filter made of a dielectric multilayer film that removes light having a wavelength longer than 500 nm, for example. In this case, the optical filter system 9 includes a second optical filter 92 made by forming a multilayer film of the dielectric material by full vapor deposition on the surface of the first optical filter 91 made of the colored glass filter described above. configured. FIG. 6 shows an optical filter 90 made in this way.
The optical filter 9 according to this example uses a colored glass filter with the trade name L-42 as the first optical filter 91, and the surface of this filter is coated with light having a wavelength as long as 500 nm. It is formed by forming a multilayer dielectric film that removes the . In FIG. 6, the first optical filter 9
The light transmission characteristics of the first optical filter system 9 and the light transmission characteristics of the second optical filter 92 are shown by solid curves (6) and (7), respectively, and therefore the transmission band of the optical filter system 9 is defined by these solid curves (
This is the part sandwiched between 6) and (7). And the fluorescence spectrum of normal egg yolk can be changed.

このような構成の実施例では、紫外#照射用光源6よシ
の紫外線が試料卵白1に照射されると、試料卵白1が腐
敗している場合には卵白よシ螢光が発せられる。この螢
光は螢光検出手段7の集光レンズ2に集光されるが、こ
のとき試料卵白1で反射された紫外線及び、試料卵白1
に卵黄が含まれている場合には卵黄特有の螢光も集光レ
ンズ1に集光される。そして紫外線は第1の光学フィル
タ91により、卵黄特有の螢光は第2の光学フィルタ9
2によシ夫々除去され、この結果卵白よシの螢光のみが
選択的に光学フィルタ系9を透過する。透過した螢光は
受光素子4によって螢光の強さに応じた電気信号に変換
され、この電気信号はのレベルと比較されてこの基準電
気信号のレベル信号が出力される。一方試料卵白が腐敗
していない場合には、正常卵黄が混じっていたとしても
卵黄特有の螢光は光学フィルタ系9により除去され、ま
た紫外線も同様に除去されるので、受光素子4よシの出
力信号は正常卵白としての螢光の強さのしきい値に対応
する電気信号のレベルを越えることがなく、従って腐敗
卵白の判断信号は出力されない。
In an embodiment with such a configuration, when the sample albumen 1 is irradiated with ultraviolet rays from the ultraviolet #irradiation light source 6, the albumen itself emits fluorescence if the sample albumen 1 is rotten. This fluorescent light is focused on the condensing lens 2 of the fluorescent light detection means 7, but at this time, the ultraviolet rays reflected by the sample egg white 1 and
If the image contains egg yolk, the fluorescent light unique to the egg yolk is also focused on the focusing lens 1. The ultraviolet rays are passed through a first optical filter 91, and the fluorescent light peculiar to egg yolk is passed through a second optical filter 9.
As a result, only the fluorescent light from the egg whites is selectively transmitted through the optical filter system 9. The transmitted fluorescent light is converted into an electrical signal according to the intensity of the fluorescent light by the light-receiving element 4, and this electrical signal is compared with the level of the reference electrical signal, and a level signal of this reference electrical signal is output. On the other hand, when the sample egg white is not rotten, even if normal egg yolk is mixed in, the fluorescent light peculiar to the egg yolk is removed by the optical filter system 9, and ultraviolet rays are also removed, so that the light receiving element 4 The output signal does not exceed the level of the electrical signal corresponding to the threshold of fluorescence intensity for normal albumen, and therefore no judgment signal for spoiled albumen is output.

第7図は、光学フィルタとして、商品名L−42の色ガ
ラスフィルタのみよ構成るもの(従来技術)、及び商品
名L−42の色ガラスフィルタとこれの表面に形成した
波長500 nm以下の光を除去する誘電体の多層膜と
より成る干渉フィルタとから成るもの(本発明)を用い
、従来技術及び本発明の場合について、卵1個分の正常
卵白に混入する正常卵黄の量を変えたときの螢光検出手
段の出力信号と正常卵白のみの場合の螢光検出手段の出
力信号との比がどのように変わるかを測゛定した結果を
示すものである。第7図において、縦軸には正常卵白に
対する、正常卵白に正常卵黄が混入したものに関する出
力比を、横軸には正常卵白への正常卵黄の混入量を夫々
とり、また実線の曲+ilAは、従来技術による測定結
果を、実線の曲線Bは本発明による測定結果を夫々示す
。第7図から、従来の腐敗卵白検出装置では、卵黄が混
入するとその影響を受けて上記の出力比が大きくなるが
、本発明にかかる腐敗卵白検出装置では卵黄の混入の影
響を受けないことが判る。
FIG. 7 shows an optical filter consisting only of a colored glass filter (trade name L-42) (prior art), and a colored glass filter (trade name L-42) and a filter with a wavelength of 500 nm or less formed on its surface. The amount of normal egg yolk mixed in the normal egg white of one egg is changed in the case of the prior art and the case of the present invention by using a filter (the present invention) consisting of a multilayer film of a dielectric material that removes light and an interference filter consisting of a multilayer film of a dielectric material that removes light. This figure shows the results of measuring how the ratio of the output signal of the fluorescence detection means changes when normal egg white is used and the output signal of the fluorescence detection means when only normal egg white is used. In FIG. 7, the vertical axis shows the output ratio of normal egg white mixed with normal egg yolk, and the horizontal axis shows the amount of normal egg yolk mixed into normal egg white, and the solid line curve +ilA is , the solid line curve B shows the measurement results according to the present invention. From FIG. 7, it can be seen that in the conventional rotten egg white detection device, the output ratio increases due to the influence of egg yolk contamination, but in the rotten egg white detection device according to the present invention, it is not affected by egg yolk contamination. I understand.

以上のように本発明によれば、螢光検出手段の光学フィ
ルタ系の透過帯域が紫外線の上限波長付近までの間に存
在するため、正常卵黄の螢光は光学フィルタ系より除去
されるから、正常卵黄の有無にかかわらず腐敗卵白を自
動的に検出することができ、従って分離型、非分離型の
いずれの割卵器についても適用できる。そして分離型の
割卵器によυ割卵された卵白に、正常卵黄の混入する「
乱れ」が起こっても、この「乱れ」を腐敗卵白として検
出することがないので誤判定を行うおそれがない。
As described above, according to the present invention, since the transmission band of the optical filter system of the fluorescence detection means exists up to around the upper limit wavelength of ultraviolet rays, the fluorescence of normal egg yolk is removed by the optical filter system. It is possible to automatically detect rotten egg white regardless of the presence or absence of normal egg yolk, and therefore it can be applied to both separating and non-separating egg breakers. Then, normal egg yolk is mixed into the egg white that is broken using a separate egg breaker.
Even if "disturbance" occurs, this "disturbance" will not be detected as spoiled egg white, so there is no risk of misjudgment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、腐敗卵白の自動検出方法の原理を模式的に示
す説明図、第2図は、従来の腐敗卵白検出装置の螢光検
出手段の構成を示すブロック図、第3図は、従来の腐敗
卵白検出装置の光学フィルタの透過特性及び受光素子の
受光特性並びに螢光スペクトルを示すグラフ、第4図は
、本発明の一実施例に係る腐敗卵白検出装置の概要の模
式蒋図、第5図は、同腐敗卵白検出装置の螢光検出手段
の構成を示すブロック図、第6図は、同腐敗卵検出装置
の光学フィルタ系の分光透過率、及び腐敗卵白及び正常
卵白からの螢光の相対強度を示すグラフ、第7図は、本
発明に係る腐敗卵白検出装置と従来技術に係る腐敗卵白
検出装置とについて、卵白への正常卵黄の混入量の影響
の測定結果を示すグラフである。 1・・・試料卵白、2・・・集光レンズ、6・・・光学
フィルタ、4・・・受光素子、6・・・紫外線照射用光
源、7・・・螢光検出手段、8・・・判別手段、9・・
・光学フィルタ系、91・・・第1の光学フィルタ、9
2・・・第2の光学フィルタ。 第4図 第61剣 第7図
FIG. 1 is an explanatory diagram schematically showing the principle of an automatic method for detecting rotten egg white, FIG. 2 is a block diagram showing the configuration of a fluorescence detection means of a conventional rotten albumen detection device, and FIG. 3 is a conventional FIG. 4 is a graph showing the transmission characteristics of the optical filter, the light receiving characteristics of the light receiving element, and the fluorescence spectrum of the rotten albumen detection device according to an embodiment of the present invention. Fig. 5 is a block diagram showing the configuration of the fluorescence detection means of the rotten egg white detection device, and Fig. 6 shows the spectral transmittance of the optical filter system of the rotten egg detection device and the fluorescence from rotten albumen and normal albumen. FIG. 7 is a graph showing the measurement results of the influence of the amount of normal egg yolk mixed into the egg white for the rotten egg white detection device according to the present invention and the rotten egg white detection device according to the prior art. . DESCRIPTION OF SYMBOLS 1... Sample albumen, 2... Condensing lens, 6... Optical filter, 4... Light receiving element, 6... Light source for ultraviolet irradiation, 7... Fluorescence detection means, 8...・Discrimination means, 9...
- Optical filter system, 91... first optical filter, 9
2...Second optical filter. Figure 4 61 Sword Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1)試料割卵に紫外線を照射するための紫外線照射用
光源と、この光源からの紫外線の照射によって試料割卵
よシ発せられる螢光を、集光レンズ及び光学フィルタ系
を介して受光素子にて受光し、この螢光に対応する電気
信号を出力する螢光検出手段と、この螢光検出手段よシ
の出力電気信号と予め設定された正常卵白の螢光の強さ
のしきい値に対応する電気信号とを比較し、試料割卵中
の卵白の腐敗の判別を行う判別手段とを有し、前記光学
フィルタ系の透過帯域が紫外線の上限波長付近から正常
卵黄の螢光スペクトルの下限波長付近までの帯域である
ことを特徴とする腐敗卵白検出装置。
(1) A light source for ultraviolet irradiation to irradiate the sample cracked egg with ultraviolet rays, and the fluorescent light emitted from the sample cracked egg by the ultraviolet ray irradiation from this light source is transmitted to the light receiving element through a condensing lens and an optical filter system. a fluorescence detection means for receiving light and outputting an electrical signal corresponding to the fluorescence; an output electric signal from the fluorescence detection means; and a preset threshold value for the fluorescence intensity of normal albumen. and a discriminating means for discriminating rottenness of the albumen in the sample cracked egg by comparing it with an electric signal corresponding to the sample, and the transmission band of the optical filter system ranges from near the upper limit wavelength of ultraviolet rays to the fluorescence spectrum of normal egg yolk. A rotten egg white detection device characterized by a band extending around the lower limit wavelength.
(2)光学フィルタ系の透過帯域が420 nm付近か
ら500 nm付近までであることを特徴とする特許請
求の範囲第1項記載の腐敗卵白検出装置。
(2) The rotten egg white detection device according to claim 1, wherein the transmission band of the optical filter system is from around 420 nm to around 500 nm.
(3)光学フィルタ系が第1及び第2の光学フィルタか
ら成り、第1光学フイルタが色ガラスフィルタで構成さ
れ、第2光学フイルタが誘電体の多層膜から成る干渉フ
ィルタで構成されたことを特徴とする特許請求の範囲第
1又は第2項に記載の腐敗卵白検出装置。
(3) The optical filter system is composed of first and second optical filters, the first optical filter is composed of a colored glass filter, and the second optical filter is composed of an interference filter composed of a dielectric multilayer film. A rotten egg white detection device according to claim 1 or 2.
(4)色ガラスフィルタがL−42(商品名)であるこ
とを特徴とする特許請求の範囲第3項に記載の腐敗卵白
検出装置。
(4) The rotten egg white detection device according to claim 3, wherein the colored glass filter is L-42 (trade name).
(5) fi!電体の多層膜が色ガラスフィルタの透過
面に付着して形成されたことを特徴とする特許請求の範
囲第3項に記載の腐敗卵白検出装置。
(5) fi! 4. The spoiled egg white detection device according to claim 3, wherein a multilayer film of an electric body is formed by adhering to a transparent surface of a colored glass filter.
JP60061403A 1985-03-26 1985-03-26 Detecting device for addled albumen Pending JPS60220849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061403A JPS60220849A (en) 1985-03-26 1985-03-26 Detecting device for addled albumen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061403A JPS60220849A (en) 1985-03-26 1985-03-26 Detecting device for addled albumen

Publications (1)

Publication Number Publication Date
JPS60220849A true JPS60220849A (en) 1985-11-05

Family

ID=13170135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061403A Pending JPS60220849A (en) 1985-03-26 1985-03-26 Detecting device for addled albumen

Country Status (1)

Country Link
JP (1) JPS60220849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300810A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Freshness discrimination apparatus, refrigerator provided with the same, and freshness discrimination method
JP2018072094A (en) * 2016-10-26 2018-05-10 国立大学法人三重大学 Method and device of embryo inspection of fish

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892933A (en) * 1981-11-30 1983-06-02 Meidensha Electric Mfg Co Ltd Optical detector for rottenness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892933A (en) * 1981-11-30 1983-06-02 Meidensha Electric Mfg Co Ltd Optical detector for rottenness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300810A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Freshness discrimination apparatus, refrigerator provided with the same, and freshness discrimination method
JP2018072094A (en) * 2016-10-26 2018-05-10 国立大学法人三重大学 Method and device of embryo inspection of fish

Similar Documents

Publication Publication Date Title
US4650326A (en) Apparatus for inspecting bottles
US4121103A (en) Caustic detection system
DK167659B1 (en) Method for identifying contaminated and non-contaminated containers
AU583556B2 (en) System for automatically inspecting transparent containers for sidewall and dimensional defects
JPH01253642A (en) Apparatus for optically inspecting closed surface of glass container
US6771365B1 (en) Method and device for detecting foreign matter in a fibre assembly which is moved lengthwise
US4622469A (en) Method for detecting rotten albumen and apparatus therefor
JPS60220849A (en) Detecting device for addled albumen
NO834320L (en) PROCEDURE AND APPARATUS FOR ANALYSIS OF HETEROGENIC ELEMENTS IN A TRANSPARENT MATERIAL
EP0070610A1 (en) Method of and apparatus for determining the state of ageing of plastics products
JPS61231436A (en) Method for discriminating color
GB2236848A (en) Sorting apparatus utilizing transmitted light
US12007337B2 (en) System and method for detecting glass-ceramic material
JP2675915B2 (en) Egg inspection method and apparatus
JP3541291B2 (en) Egg test method and egg test device
JPS641939A (en) Inspector for filament package
RU2814069C2 (en) Method for detecting glass ceramics
JPH029710B2 (en)
JPS6326774Y2 (en)
JPH0125017B2 (en)
JPH0443616B2 (en)
JPH0336923Y2 (en)
JPH10132733A (en) Measuring method for surface state of steel material
JPH05113411A (en) Bottle inspecting apparatus
JPS61111442A (en) Egg inspection device