JP2018072094A - Method and device of embryo inspection of fish - Google Patents

Method and device of embryo inspection of fish Download PDF

Info

Publication number
JP2018072094A
JP2018072094A JP2016210039A JP2016210039A JP2018072094A JP 2018072094 A JP2018072094 A JP 2018072094A JP 2016210039 A JP2016210039 A JP 2016210039A JP 2016210039 A JP2016210039 A JP 2016210039A JP 2018072094 A JP2018072094 A JP 2018072094A
Authority
JP
Japan
Prior art keywords
spectrum
fish
fertilized egg
egg
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016210039A
Other languages
Japanese (ja)
Other versions
JP6729894B2 (en
Inventor
利男 田中
Toshio Tanaka
利男 田中
橋本 正敏
Masatoshi Hashimoto
正敏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIMOTO DENSHI KOGYO KK
Mie University NUC
Original Assignee
HASHIMOTO DENSHI KOGYO KK
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIMOTO DENSHI KOGYO KK, Mie University NUC filed Critical HASHIMOTO DENSHI KOGYO KK
Priority to JP2016210039A priority Critical patent/JP6729894B2/en
Publication of JP2018072094A publication Critical patent/JP2018072094A/en
Application granted granted Critical
Publication of JP6729894B2 publication Critical patent/JP6729894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an embryo inspection method of a zebra fish capable of realizing a practically usable inspection accuracy and inspection time.SOLUTION: An excitation light source 3 is provided obliquely above a fish egg tray 2 arranged with a number of wells 20 accommodating one embryo 10 of a zebra fish together with the water, and a fluorescence detector 4 is provided immediately above the fish embryo tray 2. A highly accurate determination between a normal egg and an abnormal egg can be made based on an optical spectrum intensity of a peak wavelength or a narrow channel alone in the vicinity thereof from among the fluorescence spectra acquired from the embryo of the zebra fish after five to eight hours elapsed from the conception using an inspection device for inputting a signal voltage outputted from the fluorescence detector 4 into a determination part 5 for the embryo. The high-speed and high accuracy quality determination can be realized using a multi-well plate.SELECTED DRAWING: Figure 1

Description

本発明は、ゼブラフィッシュ等の魚類の受精卵の良否判別を高精度かつ短時間に実施可能な検査方法に関する。 The present invention relates to an inspection method capable of determining whether a fertilized egg of a fish such as a zebrafish is good and accurate in a short time.

ゼブラフィッシュは、ほぼ毎日産卵し、かつ、成魚となるまでの生育日数が非常に短いという利点をもつ。さらに、ゼブラフィッシュの体格が小さいため取り扱いが簡単であり、かつ、比較的小型の装置で容易に多数のデータが得られるという利点もある。このため、ゼブラフィッシュは遺伝子研究、病理研究及び薬剤研究などの分野における実験素材として注目されている。たとえば、ゼブラフィッシュの受精卵に遺伝子材料を注入することにより、成魚からこの遺伝子材料由来の目的物質を回収するゼブラフィッシュ利用方法が提案されている。また、ゼブラフィッシュの受精卵に薬剤等を導入することにより、その生物学的影響を評価するゼブラフィッシュ利用方法も提案されている。 Zebrafish has the advantage that it lays eggs almost every day and has a very short growth period until it becomes an adult fish. Furthermore, since the zebrafish is small in size, it is easy to handle, and there is an advantage that a large number of data can be easily obtained with a relatively small device. For this reason, zebrafish are attracting attention as experimental materials in fields such as genetic research, pathological research, and pharmaceutical research. For example, a zebrafish utilization method has been proposed in which a genetic material is injected into a fertilized egg of a zebrafish to recover a target substance derived from the genetic material from an adult fish. Also, a zebrafish utilization method has been proposed in which a biological effect is evaluated by introducing a drug or the like into a fertilized egg of zebrafish.

従来より、生体組織の非侵襲的観察法として、可視光、赤外光、紫外光などを用いる光学的手法が使用されている。たとえば、特許文献1は、可視光スペクトル又は赤外光スペクトルを用いて受精卵の良否を判定することを提案している。特許文献2は生体組織からの蛍光スペクトルに基づいてその特性を検出することを提案している。特許文献3は、低蛍光性材料であるシクロオレフィンポリマーを用いて製作されたマルチウエルプレートに分散配置された多数の細胞を蛍光測定することを提案している。 Conventionally, optical methods using visible light, infrared light, ultraviolet light, and the like have been used as noninvasive observation methods for living tissue. For example, Patent Document 1 proposes determining the quality of a fertilized egg using a visible light spectrum or an infrared light spectrum. Patent Document 2 proposes to detect the characteristics based on a fluorescence spectrum from a living tissue. Patent Document 3 proposes to measure fluorescence of a large number of cells dispersedly arranged in a multiwell plate manufactured using a cycloolefin polymer which is a low fluorescent material.

特表2004-516475号公報Special table 2004-516475 gazette 特表2004ー518124号公報JP-T-2004-518124 特表2002ー515125号公報Special Table 2002-515125

現状のゼブラフィッシュ技術では、受精卵から正常に孵化するゼブラフィッシュの比率がかなり低いという問題があった。これは、得られたゼブラフィッシュの受精卵のうち、かなりの数が死卵、衰弱卵などの不良卵となるためである。 The current zebrafish technology has a problem that the ratio of zebrafish that normally hatch from fertilized eggs is considerably low. This is because a considerable number of the fertilized eggs of zebrafish obtained become defective eggs such as dead eggs and weak eggs.

これらの死卵や衰弱卵は早急に排除しないと水系を汚染させる可能性が生じる。その結果、この汚染水を介して他の正常卵が悪影響を受ける可能性が生じる。多数のゼブラフィッシュの受精卵が収容されている水系が病原菌、ウイルス、その他の物質で一度汚染されてしまうと、正常卵の表面などにそれらが付着するため、重大な結果を招いてしまう。 If these dead and weak eggs are not eliminated immediately, there is a possibility of contaminating the water system. As a result, other normal eggs may be adversely affected through this contaminated water. Once an aqueous system containing a large number of zebrafish fertilized eggs is once contaminated with pathogenic bacteria, viruses, or other substances, they attach to the surface of normal eggs, which has serious consequences.

また、孵化前の受精卵に薬剤などを注射する場合、高価なテスト材料を死卵又は衰弱卵などの不良卵や異常卵に消費するのは経済的でない。また、不良卵又は異常卵から孵化したゼブラフィッシュの異常が薬剤注射によるものか、元々のものかを判別することもできなかった。さらに、細菌やウイルスなどに感染した不良卵への注射は、注射針を通じた他の正常卵の感染を引き起こす可能性も考えられる。 In addition, when a drug or the like is injected into a fertilized egg before hatching, it is not economical to consume expensive test materials for defective or abnormal eggs such as dead eggs or weak eggs. In addition, it was impossible to determine whether the abnormality of zebrafish hatched from a defective egg or an abnormal egg was due to drug injection or the original one. Furthermore, injection into a defective egg infected with bacteria or viruses may cause infection of other normal eggs through the injection needle.

結局、ゼブラフィッシュの産業利用においては、多数のゼブラフィッシュの受精卵群から正常な受精卵だけを短時間に選別して利用する必要があることがわかった。しかし、ゼブラフィッシュ受精卵の細胞分裂速度が速く、かつ、検査すべき受精卵数が非常に多いことを考えると、受精卵一個あたりに許される検査時間は極めて短時間とする必要がある。 Eventually, it was found that in the industrial use of zebrafish, it is necessary to select and use only normal fertilized eggs in a short time from a large number of zebrafish fertilized eggs. However, considering that the cell division rate of a zebrafish fertilized egg is high and the number of fertilized eggs to be examined is very large, the examination time allowed per fertilized egg needs to be extremely short.

しかしながら、たとえば直径1mm程度と非常に小さいゼブラフィッシュの受精卵を高精度かつ短時間で選別する方法はまだ報告されていない。これらの観点から、発明者らは、ゼブラフィッシュの産業利用を実現するためには、高精度かつ高速の受精卵検査方法を確立することが、ゼブラフィッシュの産業利用において必須であることに気がついた。 However, for example, a method for selecting a fertilized egg of a very small zebrafish with a diameter of about 1 mm in a short time has not yet been reported. From these viewpoints, the inventors have realized that in order to realize the industrial use of zebrafish, it is essential for the industrial use of zebrafish to establish a highly accurate and high-speed fertilized egg inspection method. .

蛍光スペクトル分析技術はそれが非侵襲的検査方法であるためゼブラフィッシュの受精卵検査に有望である。しかし、公知の蛍光スペクトル分析技術を用いて高速かつ高精度のゼブラフィッシュの受精卵検査を実現できるか否かは不明であった。さらにもし可能であるとしても、高精度の判定を実現する具体的な手法は不明であった。特に、非常に多数のゼブラフィッシュの受精卵を短時間に完了する具体的な方法は不明であった。言い換えれば、要求される検査精度および検査速度を実現可能な蛍光スペクトル分析技術はまったく知られていなかった。 Fluorescence spectrum analysis technology is promising for testing fertilized eggs in zebrafish because it is a non-invasive testing method. However, it has been unclear whether a high-speed and high-precision zebrafish fertilized egg test can be realized using a known fluorescence spectrum analysis technique. Furthermore, even if possible, the specific method for realizing the determination with high accuracy was unknown. In particular, the specific method for completing a large number of fertilized eggs of zebrafish in a short time was unknown. In other words, no fluorescence spectrum analysis technique capable of realizing the required inspection accuracy and inspection speed has been known.

本発明はゼブラフィッシュの受精卵に要求される上記課題に鑑みなされたものであり、ゼブラフィッシュ受精卵の良不良を高精度かつ高速に判別可能な光学的検査方法を提供することである。 The present invention has been made in view of the above problems required for fertilized eggs of zebrafish, and is to provide an optical inspection method capable of discriminating between good and defective zebrafish fertilized eggs with high accuracy and high speed.

本発明によれば、ゼブラフィッシュの受精卵から得た蛍光スペクトルのうち励起光帯域もしくはそれに隣接する非常に狭帯域の分光スペクトルが、検査用分光スペクトルとして採用される。本発明者らの観測によれば、正常卵のこの検査用分光スペクトルは、死卵又は衰弱卵(以下、不良卵と呼ばれる)のそれに比べて相対的に狭帯域又は低強度であることがわかった。 According to the present invention, among the fluorescence spectra obtained from fertilized eggs of zebrafish, the spectrum of excitation light or a very narrow band adjacent thereto is adopted as the spectrum for inspection. According to the observations of the present inventors, it is found that the spectrum for examination of normal eggs is relatively narrow band or low intensity compared to that of dead eggs or weak eggs (hereinafter referred to as bad eggs). It was.

一例において、励起光スペクトルに隣接する狭帯域の検査用分光スペクトルは、正常卵において不良卵と比べて格段に低強度であった。他例において、ほぼ励起光スペクトルの帯域と重なる検査用分光スペクトルは、正常卵において不良卵と比べて格段に低強度であった。さらに、励起光の波長に応じて、励起光スペクトルの短波長側に隣接する狭帯域の検査用分光スペクトルが最適な場合、励起光スペクトルの長波長側に隣接する狭帯域の検査用分光スペクトルが最適な場合、励起光スペクトルと重なる狭帯域の検査用分光スペクトルが最適な場合があることがわかった。 In one example, the narrow spectrum inspection spectrum adjacent to the excitation light spectrum was much less intense in normal eggs than in bad eggs. In another example, the inspection spectrum that substantially overlaps the band of the excitation light spectrum was much lower in the normal egg than in the defective egg. Furthermore, when the narrow-band inspection spectrum adjacent to the short wavelength side of the excitation light spectrum is optimal according to the wavelength of the excitation light, the narrow-band inspection spectrum adjacent to the long wavelength side of the excitation light spectrum is In the optimal case, it was found that a narrow spectrum inspection spectrum that overlaps the excitation light spectrum may be optimal.

もう一つの例において、正常卵のピーク波長スペクトルに隣接する検査用分光スペクトルの判別において、ピーク波長スペクトルと検査用分光スペクトルとの合計ピーク波長スペクトルの帯域幅の広狭により、受精卵の良否を判定することもできる。すなわち、この合計ピーク波長スペクトルの帯域幅が所定しきい値を超えれば、不良卵と判定される。 In another example, in determining the inspection spectrum adjacent to the peak wavelength spectrum of a normal egg, the pass / fail of the fertilized egg is determined based on the bandwidth of the total peak wavelength spectrum of the peak wavelength spectrum and the inspection spectrum. You can also That is, if the bandwidth of the total peak wavelength spectrum exceeds a predetermined threshold value, it is determined as a defective egg.

もう一つの例において、受精卵の蛍光スペクトルのうち励起光の帯域から30nm未満離れた帯域の分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合にこの受精卵は不良であると決定することができる。 In another example, it is determined whether or not the intensity of the spectral spectrum in a band less than 30 nm away from the excitation light band in the fluorescence spectrum of the fertilized egg exceeds a predetermined threshold value, and if so, the fertilized egg is defective. Can be determined.

もう一つの例において、受精卵の蛍光スペクトルのうち励起光の帯域とほぼ重なる検査用分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合にこの受精卵は不良であると決定することができる。 In another example, it is determined whether or not the intensity of the spectral spectrum for examination that substantially overlaps the excitation light band in the fluorescence spectrum of the fertilized egg exceeds a predetermined threshold value, and if so, the fertilized egg is determined to be defective. can do.

さらに、本発明者らは、上記した正常卵と不良卵との間の検査用分光スペクトルの強度差が、受精時点から5-8時間、さらに好適には5.5-7.5時間経過した観測時点にて十分高精度となることを発見した。したがって、この観測時点にて選別を行うことにより、孵化により受精卵の卵殻が破壊される前に不良卵を排除することが可能となる。 Furthermore, the present inventors have found that the above-described difference in the intensity of the spectral spectrum for inspection between normal and bad eggs has passed 5-8 hours, more preferably 5.5-7.5 hours from the time of fertilization. It was discovered that the accuracy was sufficiently high at the time of observation. Therefore, by performing selection at this observation time, it becomes possible to eliminate defective eggs before the eggshells of fertilized eggs are destroyed by hatching.

好適態様によれば、ゼブラフィッシュの多数の受精卵を高速検査するために、受精卵収容のための多数のウエルが底板に形成されたマルチウエルプレートを水平駆動される。検査にて不良と判定された受精卵を収容するウエルの二次元アドレスが記憶される。検査完了後、不良アドレスの受精卵が順番に排除される。これにより、多数の受精卵の検査を短時間に完了することができる。上記ウエルの底板に形成されたマルチウエルプレートは、受精卵が安定に納まり、動かない状態が望ましく、できるだけ受精卵の直径に近い円筒状、または多角形筒状の底部部分を持つことが望ましい。 According to a preferred embodiment, in order to inspect a large number of fertilized eggs of zebrafish at high speed, a multi-well plate in which a large number of wells for accommodating fertilized eggs are formed on a bottom plate is driven horizontally. A two-dimensional address of a well containing a fertilized egg determined to be defective in the inspection is stored. After the inspection is completed, fertilized eggs with defective addresses are sequentially removed. Thereby, the test | inspection of many fertilized eggs can be completed in a short time. The multi-well plate formed on the bottom plate of the well preferably has a state in which the fertilized egg is stably accommodated and does not move, and preferably has a cylindrical or polygonal cylindrical bottom portion as close as possible to the diameter of the fertilized egg.

実施例のゼブラフィッシュの受精卵検査方法を実施する検査装置を示すブロック図である。It is a block diagram which shows the test | inspection apparatus which enforces the fertilized egg test | inspection method of the zebrafish of an Example. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg.

図1は、ゼブラフィッシュ受精卵の検査装置を示す模式ブロック図である。二次元移動可能なXYテーブル1上に魚卵トレイ2が載置されている。ただし、図1において、魚卵トレイ2は模式的に図示されている。 FIG. 1 is a schematic block diagram showing a zebrafish fertilized egg inspection apparatus. A fish egg tray 2 is placed on a two-dimensional movable XY table 1. However, in FIG. 1, the fish egg tray 2 is schematically illustrated.

魚卵トレイ2の斜め上方に励起光光源3が設けられている。魚卵トレイ2の直上に蛍光検出器4が設けられている。蛍光検出器4からでた信号電圧は、受精卵判定用の判定部5に入力される。 An excitation light source 3 is provided obliquely above the fish egg tray 2. A fluorescence detector 4 is provided immediately above the fish egg tray 2. The signal voltage output from the fluorescence detector 4 is input to the determination unit 5 for determining a fertilized egg.

XYテーブル1は、2つのステッピングモータ(図示せず)により水平なX方向およびそれと直角かつ水平なY方向へ移動可能となっている。魚卵トレイ2は、上面が開口された凹部により構成される多数のウエル20をもつ。各ウエル20は行列状に配置されている。各ウエル20はそれぞれ、ゼブラフィッシュの1つの受精卵10を水とともに収容している。魚卵トレイ2は低蛍光性の誘起樹脂材料を用いて形成されているが、それに限定されるものではない。 The XY table 1 is movable in a horizontal X direction and a right angle and a horizontal Y direction by two stepping motors (not shown). The fish egg tray 2 has a large number of wells 20 constituted by recesses whose upper surfaces are opened. Each well 20 is arranged in a matrix. Each well 20 contains one fertilized egg 10 of zebrafish with water. The fish egg tray 2 is formed using a low fluorescence induction resin material, but is not limited thereto.

励起光光源3は所定波長のレーザーにより構成されている。励起光光源3は、水平なX方向に対して約45度の方向へレーザー光30を放射する。励起光光源3は、検査位置のウエル20である検査ウエル20Aのほぼ全体にレーザー光を平行に放射するためのレンズ系を内蔵している。励起光光源3としてキセノンランプから回折格子で得られた所定波長の分光を採用してもよい。 The excitation light source 3 is constituted by a laser having a predetermined wavelength. The excitation light source 3 emits laser light 30 in a direction of about 45 degrees with respect to the horizontal X direction. The excitation light source 3 incorporates a lens system for emitting laser light in parallel to almost the entire inspection well 20A, which is the well 20 at the inspection position. You may employ | adopt the spectrum of the predetermined wavelength obtained with the diffraction grating from the xenon lamp as the excitation light source 3. FIG.

蛍光検出器4は、検査ウエル20Aから放射される蛍光スペクトルの所定方向成分40を検出して信号電圧に変換する。所定方向成分40と一致する蛍光検出器4の光軸は、水平なY方向に対して約45度の方向へ延在している。したがって、励起光光源3の光軸と蛍光検出器4の光軸との間の角度は90度とされている。これにより、励起光光源3から放射された励起光が蛍光検出器4へ入射する量が低減される。蛍光検出器4は、検査ウエル20Aを焦点とするレンズ系と、このレンズ系から出たほほ平行な蛍光ビームを分光するプリズム又は回折格子と、このプリズム又は回折格子から出た所定帯域の分光スペクトルを光電変換する光電センサとを少なくとも有している。ビーム幅を絞るスリットなどの光学要素の追加も可能である。 The fluorescence detector 4 detects a predetermined direction component 40 of the fluorescence spectrum emitted from the inspection well 20A and converts it into a signal voltage. The optical axis of the fluorescence detector 4 that coincides with the predetermined direction component 40 extends in a direction of about 45 degrees with respect to the horizontal Y direction. Therefore, the angle between the optical axis of the excitation light source 3 and the optical axis of the fluorescence detector 4 is 90 degrees. As a result, the amount of the excitation light emitted from the excitation light source 3 entering the fluorescence detector 4 is reduced. The fluorescence detector 4 includes a lens system having a focus on the inspection well 20A, a prism or diffraction grating that divides a substantially parallel fluorescence beam emitted from the lens system, and a spectral spectrum of a predetermined band emitted from the prism or diffraction grating. At least a photoelectric sensor for photoelectric conversion. Optical elements such as slits for narrowing the beam width can also be added.

言い換えると、この光電センサは、プリズム又は回折格子から出た蛍光分光スペクトルのうち、特定波長の分光スペクトルのみが入射する位置に配置されている。これにより、蛍光検出器4は、予め定められた所定の狭帯域の蛍光分光スペクトルだけを検出することができる。 In other words, this photoelectric sensor is disposed at a position where only a spectral spectrum of a specific wavelength is incident among fluorescent spectral spectra emitted from a prism or a diffraction grating. Thereby, the fluorescence detector 4 can detect only a predetermined narrow-band fluorescence spectrum.

光電センサから出力される信号電圧はA/Dコンバータによりデジタル信号に変換されてマイクロコンピュータ5に入力される。マイクロコンピュータ5は、入力されるデジタル信号に基づいて検査ウエル20A内のゼブラフィッシュの受精卵の良否を判別するとともに、励起光光源3の間欠発光およびXYテーブル1の間欠移動を制御する。これにより、各ウエル20内のゼブラフィッシュの受精卵の良否がシーケンシャルに判定される。図1は検査装置の基本構成を示すものであり、公知技術を用いて種々の変形が可能であることはもちろんである。 The signal voltage output from the photoelectric sensor is converted into a digital signal by an A / D converter and input to the microcomputer 5. The microcomputer 5 determines the quality of the zebrafish fertilized egg in the test well 20A based on the input digital signal, and controls intermittent light emission of the excitation light source 3 and intermittent movement of the XY table 1. Thereby, the quality of the fertilized egg of the zebrafish in each well 20 is determined sequentially. FIG. 1 shows a basic configuration of an inspection apparatus, and it is needless to say that various modifications can be made using a known technique.

次に、ゼブラフィッシュの正常な受精卵および異常な受精卵から得られた蛍光スペクトルの観測例が説明される。点線は正常卵の蛍光スペクトルを示し、実線は死卵である異常卵の蛍光スペクトルを示す。なお、正常卵と同じ時間帯に孵化が完了することができない衰弱卵からの蛍光スペクトルは、検査用分光スペクトルの帯域において死卵と正常卵との中間値をもつことがわかった。 Next, observation examples of fluorescence spectra obtained from normal and abnormal fertilized eggs of zebrafish will be described. The dotted line shows the fluorescence spectrum of a normal egg, and the solid line shows the fluorescence spectrum of an abnormal egg that is a dead egg. In addition, it turned out that the fluorescence spectrum from the weak egg which cannot complete hatching in the same time slot | zone as a normal egg has the intermediate value of a dead egg and a normal egg in the zone | band of the spectrum for a test | inspection.

第1例
図2は、受精後6時間経過した受精卵に波長が310-330nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長280-300nmの帯域に存在することがわかった。たとえば、波長280nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは2未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
First Example FIG. 2 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 310-330 nm. It was found that the intensity difference of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 280-300 nm. For example, at a wavelength of 280 nm, the fluorescence relative intensity value of dead eggs exceeded 10, whereas that of normal eggs was less than 2. Therefore, for example, if the classification threshold is the fluorescence relative intensity value 6, dead eggs including weak eggs can be discriminated with high accuracy.

第2例
図3は、受精後7時間経過した受精卵に波長が310-330nmである励起光を照射して得られた蛍光スペクトルを示す。結果は第1例とほぼ同じであった。
Second Example FIG. 3 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 310-330 nm. The result was almost the same as the first example.

第3例
図4は、受精後6時間経過した受精卵に波長が390-410nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長360-380nmの帯域に存在することがわかった。たとえば、波長370nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは2未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
Third Example FIG. 4 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 390-410 nm. It was found that the difference in the intensity of the fluorescence spectrum between the abnormal egg and the normal egg exists in the band of wavelength 360-380 nm. For example, at a wavelength of 370 nm, the fluorescence relative intensity value of dead eggs exceeded 10, whereas that of normal eggs was less than 2. Therefore, for example, if the classification threshold is the fluorescence relative intensity value 6, dead eggs including weak eggs can be discriminated with high accuracy.

第4例
図5は、受精後7時間経過した受精卵に波長が390-410nmである励起光を照射して得られた蛍光スペクトルを示す。結果は第3例とほぼ同じであった。
Fourth Example FIG. 5 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 390-410 nm. The result was almost the same as the third example.

第5例
図6は、受精後6時間経過した受精卵に波長が590-610nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長600-620nmの帯域に存在することがわかった。たとえば、波長610nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは2未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
FIG. 6 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 590-610 nm. It was found that the difference in the intensity of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 600-620 nm. For example, at a wavelength of 610 nm, the fluorescence relative intensity value of dead eggs exceeded 10, whereas that of normal eggs was less than 2. Therefore, for example, if the classification threshold is the fluorescence relative intensity value 6, dead eggs including weak eggs can be discriminated with high accuracy.

第6例
図7は、受精後7時間経過した受精卵に波長が590-610nmである励起光を照射して得られた蛍光スペクトルを示す。結果は第5例とほぼ同じであった。
FIG. 7 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 590-610 nm. The result was almost the same as the fifth example.

第7例
図8は、受精後6時間経過した受精卵に波長が790-810nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長780-820nmの帯域に存在することがわかった。たとえば、波長790nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれはほぼ2であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
FIG. 8 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 790-810 nm. It was found that the intensity difference of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 780-820 nm. For example, at a wavelength of 790 nm, the fluorescence relative intensity value of dead eggs exceeded 10, but that of normal eggs was almost 2. Therefore, for example, if the classification threshold is the fluorescence relative intensity value 6, dead eggs including weak eggs can be discriminated with high accuracy.

第8例
図9は、受精後7時間経過した受精卵に波長が790-810nmである励起光を照射して得られた蛍光スペクトルを示す。励起光と同じである波長780-820nmの帯域において、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは4未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値7をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
Eighth Example FIG. 9 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 790-810 nm. In the wavelength band of 780 to 820 nm, which is the same as the excitation light, the fluorescence relative intensity value of dead eggs exceeded 10, while that of normal eggs was less than 4. Therefore, for example, if the classification threshold is the fluorescence relative intensity value 7, dead eggs including weak eggs can be discriminated with high accuracy.

これらの観測結果などから次のことが判明した。まず、異常卵から放射される蛍光スペクトルのピーク波長は受精卵の個体差又は受精からの経過時間にかかわらずほぼ一定であることがわかった。したがって、励起光波長に依存する非常に狭い帯域の蛍光スペクトルだけ選択検出することにより、ゼブラフィッシュの受精卵の良否判別を最も高精度に実現できることがわかった。 These observations revealed the following. First, it was found that the peak wavelength of the fluorescence spectrum emitted from an abnormal egg was almost constant regardless of the individual difference of fertilized eggs or the elapsed time from fertilization. Therefore, it was found that the quality determination of fertilized eggs of zebrafish can be realized with the highest accuracy by selectively detecting only the fluorescence spectrum of a very narrow band depending on the excitation light wavelength.

次に、励起光波長が短い場合には、励起光波長の短波長側に隣接する狭い帯域において、異常卵の蛍光分光スペクトルの強度は正常卵のそれに比較して大幅に増加する。励起光波長が長くなると励起光波長の長波長側に隣接する狭い帯域において、異常卵の蛍光分光スペクトルの強度は正常卵のそれに比較して大幅に増加する。励起光波長がさらに長くなると励起光と同じ帯域において異常卵の蛍光分光スペクトルの強度は正常卵のそれに比較して大幅に増加する。さらに、正常卵と異常卵との間の蛍光スペクトルの上記強度差は、受精からの経過時間とともに増加するが、この経過時間が8時間を超えると、上記強度差はほぼ飽和するか乃至かえって低下することがわかった。またさらに、受精時点からの経過時間が5ー7時間さらに好ましくは5.5-6.5時間の範囲で十分な判別精度が得られることがわかった。
なお上記説明ではゼブラフィッシュを中心に説明してきたが、これに限定されず魚類であれば分光スペクトルの位置は多少異なるが応用可能である。また、蛍光の代わりに反射光を利用してもよいし、蛍光に含まれる反射光の割合を増やしてもよい。



Next, when the excitation light wavelength is short, in the narrow band adjacent to the short wavelength side of the excitation light wavelength, the intensity of the fluorescence spectrum of the abnormal egg is significantly increased compared to that of the normal egg. As the excitation light wavelength becomes longer, the intensity of the fluorescence spectrum of the abnormal egg is significantly increased compared to that of the normal egg in a narrow band adjacent to the longer wavelength side of the excitation light wavelength. As the excitation light wavelength becomes longer, the intensity of the fluorescence spectrum of the abnormal egg in the same band as that of the excitation light greatly increases compared to that of the normal egg. Furthermore, the intensity difference in the fluorescence spectrum between the normal egg and the abnormal egg increases with the elapsed time from fertilization, but when the elapsed time exceeds 8 hours, the intensity difference is almost saturated or decreased. I found out that Furthermore, it has been found that sufficient discrimination accuracy can be obtained when the elapsed time from the time of fertilization is in the range of 5-7 hours, more preferably 5.5-6.5 hours.
In the above description, the zebrafish has been mainly described. However, the present invention is not limited to this, and can be applied to fishes although the spectral spectrum position is slightly different. Moreover, reflected light may be used instead of fluorescence, and the ratio of reflected light included in fluorescence may be increased.



Claims (8)

魚類の受精卵を光学的に検査する受精卵検査方法であって、
前記受精卵から得た蛍光スペクトルのうち、励起光の帯域もしくはそれに隣接する狭帯域の分光スペクトルからなる検査用分光スペクトルに基づいて前記受精卵の良否を判定することを特徴とする魚類受精卵検査方法。
A fertilized egg inspection method for optically inspecting fish fertilized eggs,
A fertilized egg test for fish, wherein the quality of the fertilized egg is determined based on a spectral spectrum for inspection consisting of a spectrum of excitation light or a narrow-band spectral spectrum adjacent to the fluorescent spectrum obtained from the fertilized egg. Method.
前記受精卵から得た蛍光スペクトルのうち励起光の帯域から30nm未満離れた帯域の分光スペクトルを含む前記検査用分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合に前記受精卵は不良であると決定する請求項1記載の魚類受精卵の検査方法。   In the fluorescence spectrum obtained from the fertilized egg, it is determined whether or not the intensity of the spectral spectrum for inspection including a spectral spectrum in a band separated by less than 30 nm from the excitation light band exceeds a predetermined threshold value. The method for inspecting fish fertilized eggs according to claim 1, wherein it is determined that the fish is defective. 前記受精卵から得た蛍光スペクトルのうち励起光の帯域の分光スペクトルを含む前記検査用分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合に前記受精卵は不良であると決定する請求項1記載の魚類受精卵の検査方法。   It is determined whether or not the intensity of the inspection spectrum including the spectrum in the excitation light band out of the fluorescence spectrum obtained from the fertilized egg exceeds a predetermined threshold value, and if so, the fertilized egg is determined to be defective. The method for inspecting fish fertilized eggs according to claim 1. 前記検査用分光スペクトルは、受精時点から5-8時間経過した観測時点にて検出される請求項1記載の魚類受精卵検査方法。   2. The fish fertilized egg inspection method according to claim 1, wherein the spectroscopic spectrum for inspection is detected at an observation time when 5 to 8 hours have elapsed from the time of fertilization. 前記検査用分光スペクトルは、受精時点から5.5-7.5時間経過した観測時点にて検出される請求項4記載の魚類受精卵検査方法。   The fish fertilized egg inspection method according to claim 4, wherein the spectroscopic spectrum for inspection is detected at an observation time point 5.5 to 7.5 hours after the fertilization time point. マルチウエルプレートの底板上面に形成された各ウエルに魚類の受精卵を水とともに収容し、
前記ウエルの中心を励起光の光軸に一致させた後、前記ウエル内の受精卵に励起光を照射することにより、前記受精卵から得られた蛍光スペクトルの所定の分光スペクトルを検出し、
前記分光スペクトルに基づいて前記受精卵の良否を判別した後、前記マルチウエルプレートを水平移動することにより、隣接する前記ウエルの受精卵に対して同じ検出動作を順次繰り返し、
得られた前記各ウエル毎の判定結果と前記各ウエルの二次元アドレスとのペアを順次記憶する請求項1記載から4のいずれかに記載の魚類受精卵検査方法。
In each well formed on the upper surface of the bottom plate of the multiwell plate, fertilized eggs of fish are stored together with water,
After aligning the center of the well with the optical axis of the excitation light, by irradiating the fertilized egg in the well with the excitation light, a predetermined spectral spectrum of the fluorescence spectrum obtained from the fertilized egg is detected,
After determining the quality of the fertilized egg based on the spectral spectrum, by horizontally moving the multi-well plate, the same detection operation is sequentially repeated for the fertilized eggs of the adjacent wells,
The fish fertilized egg inspection method according to any one of claims 1 to 4, wherein pairs of the obtained determination result for each well and the two-dimensional address of each well are sequentially stored.
魚類の受精卵を水とともに収容するマルチウエルプレートの底板上面に形成された各ウエルと、
前記ウエルの中心を励起光の光軸に一致させて入射する光源と、前記ウエル内の受精卵に励起光を照射することにより、前記受精卵から得られた反射光を受光する受光器と、
前記光源の波長を変えて入射し前記受光器の蛍光スペクトルの波長と強度を測定する測定器と、測定したスペクトルを記録するメモリと、
前記メモリに記録した所定の分光スペクトルに基づいて前記受精卵の良否を判別する、判別器を有する事を特徴とする魚類受精卵検査装置
Each well formed on the upper surface of the bottom plate of a multi-well plate that contains fertilized eggs of fish together with water,
A light source that is incident with the center of the well aligned with the optical axis of the excitation light; and a light receiver that receives the reflected light obtained from the fertilized egg by irradiating the fertilized egg in the well with excitation light;
A measuring device that measures the wavelength and intensity of the fluorescence spectrum of the light receiver that is incident upon changing the wavelength of the light source, and a memory that records the measured spectrum;
A fish fertilized egg inspection apparatus comprising a discriminator for discriminating pass / fail of the fertilized egg based on a predetermined spectral spectrum recorded in the memory
前記マルチウエルプレートと光源および受光器の位置を相対的に水平移動する手段と、隣接する前記ウエルの受精卵に対して同じ検出動作を順次繰り返し測定し、得られた前記各ウエル毎の判定結果と前記各ウエルの二次元アドレスとのペアを順次記憶する第二のメモリを請求項7記載の魚類受精卵検査装置。


The means for relatively horizontally moving the positions of the multi-well plate, the light source and the light receiver, and the same detection operation are sequentially repeated for the fertilized eggs in the adjacent wells, and the determination results obtained for each well are obtained. The fish fertilized egg inspection apparatus according to claim 7, further comprising a second memory for sequentially storing a pair of the two-dimensional address of each well.


JP2016210039A 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish Active JP6729894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210039A JP6729894B2 (en) 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210039A JP6729894B2 (en) 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish

Publications (2)

Publication Number Publication Date
JP2018072094A true JP2018072094A (en) 2018-05-10
JP6729894B2 JP6729894B2 (en) 2020-07-29

Family

ID=62115100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210039A Active JP6729894B2 (en) 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish

Country Status (1)

Country Link
JP (1) JP6729894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020591A (en) * 2018-07-30 2020-02-06 国立大学法人三重大学 Structure for holding fertilized egg and fertilized egg examination method using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786230A (en) * 1980-11-19 1982-05-29 Masanori Matsuki Fish egg sorting apparatus
JPS60220849A (en) * 1985-03-26 1985-11-05 Q P Corp Detecting device for addled albumen
US5565187A (en) * 1993-06-01 1996-10-15 Zikria; Bashir Methods for studying capillary circulation using fish fry and tadpoles
JP2003533674A (en) * 2000-03-10 2003-11-11 バスカー・バナージー Method for detecting cancer using cell autofluorescence
JP2004516475A (en) * 2000-12-20 2004-06-03 エンブレクス,インコーポレイテッド Method and apparatus for non-invasively identifying egg condition by comparing multiple wavelength spectra
JP2015021894A (en) * 2013-07-22 2015-02-02 学校法人関西学院 Method for discriminating fish eggs and fish eggs selector
US20150138535A1 (en) * 2013-11-18 2015-05-21 Zoetis Llc Non-contact egg identification system for determining egg viability using transmission spectroscopy, and associated method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786230A (en) * 1980-11-19 1982-05-29 Masanori Matsuki Fish egg sorting apparatus
JPS60220849A (en) * 1985-03-26 1985-11-05 Q P Corp Detecting device for addled albumen
US5565187A (en) * 1993-06-01 1996-10-15 Zikria; Bashir Methods for studying capillary circulation using fish fry and tadpoles
JP2003533674A (en) * 2000-03-10 2003-11-11 バスカー・バナージー Method for detecting cancer using cell autofluorescence
JP2004516475A (en) * 2000-12-20 2004-06-03 エンブレクス,インコーポレイテッド Method and apparatus for non-invasively identifying egg condition by comparing multiple wavelength spectra
JP2015021894A (en) * 2013-07-22 2015-02-02 学校法人関西学院 Method for discriminating fish eggs and fish eggs selector
US20150138535A1 (en) * 2013-11-18 2015-05-21 Zoetis Llc Non-contact egg identification system for determining egg viability using transmission spectroscopy, and associated method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020591A (en) * 2018-07-30 2020-02-06 国立大学法人三重大学 Structure for holding fertilized egg and fertilized egg examination method using the same
JP7061740B2 (en) 2018-07-30 2022-05-02 国立大学法人三重大学 Fertilized egg retention structure and fertilized egg inspection method using it

Also Published As

Publication number Publication date
JP6729894B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US6970246B2 (en) Method and apparatus for detecting fluorescence of a sample
US7170605B2 (en) Active sensor and method for optical illumination and detection
JP6804445B2 (en) Integration of fluorescence detection function into absorbance measuring device
KR102161058B1 (en) Optical detection apparatus and method of compensating detection error
JP5445407B2 (en) Biological information measuring device
CN111366558A (en) Multi-wavelength polarization scattering measuring device
JP2015517671A (en) Biologically-derived physiologically active substance measuring device and measuring method
JP2019502125A (en) Luminescence lifetime measurement method and apparatus for measuring the average lifetime of an electronically excited state
KR20160020766A (en) Multi-measuring apparatus of absorbance for realtime molecular diagnosis
US10856391B2 (en) Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
JP6729894B2 (en) Fertilized egg test method and fertilized egg test device for fish
JP3776377B2 (en) Sample testing equipment
BR112016013866B1 (en) device for the representation by images of biological material
KR20220024561A (en) Biological Analysis Devices and Systems
JP7206570B2 (en) Analysis equipment
JP7050776B2 (en) Specimen detection device and sample detection method
US11674877B2 (en) Apparatus and method for cyclic flow cytometry using particularized cell identification
JP6797296B2 (en) Methods and apparatus for optically exciting a plurality of analytes in a plurality of aligned reaction vessels and detecting fluorescence from the analytes.
JPH0486546A (en) Specimen inspection device
JP6363991B2 (en) Evaluation method of optical analyzer
JPS59102139A (en) Blood corpuscle counter
CN102782477A (en) Optical examinations with controlled input light
CN113030055A (en) Portable biological body fluid detection fluorescence analysis system
KR20230023968A (en) Multi channel optical diagnostic device
KR20220018848A (en) Auto-fluorescence analysis device and method for microbial field inspection

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6729894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250