JP6729894B2 - Fertilized egg test method and fertilized egg test device for fish - Google Patents

Fertilized egg test method and fertilized egg test device for fish Download PDF

Info

Publication number
JP6729894B2
JP6729894B2 JP2016210039A JP2016210039A JP6729894B2 JP 6729894 B2 JP6729894 B2 JP 6729894B2 JP 2016210039 A JP2016210039 A JP 2016210039A JP 2016210039 A JP2016210039 A JP 2016210039A JP 6729894 B2 JP6729894 B2 JP 6729894B2
Authority
JP
Japan
Prior art keywords
fertilized
egg
spectrum
fish
fertilized egg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016210039A
Other languages
Japanese (ja)
Other versions
JP2018072094A (en
Inventor
利男 田中
利男 田中
橋本 正敏
正敏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIMOTO ELECTRONIC INDUSTRY CO., LTD.
Mie University NUC
Original Assignee
HASHIMOTO ELECTRONIC INDUSTRY CO., LTD.
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIMOTO ELECTRONIC INDUSTRY CO., LTD., Mie University NUC filed Critical HASHIMOTO ELECTRONIC INDUSTRY CO., LTD.
Priority to JP2016210039A priority Critical patent/JP6729894B2/en
Publication of JP2018072094A publication Critical patent/JP2018072094A/en
Application granted granted Critical
Publication of JP6729894B2 publication Critical patent/JP6729894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、ゼブラフィッシュ等の魚類の受精卵の良否判別を高精度かつ短時間に実施可能な検査方法に関する。 TECHNICAL FIELD The present invention relates to an inspection method capable of highly accurately and quickly determining whether a fertilized egg of a fish such as a zebrafish is good or bad.

ゼブラフィッシュは、ほぼ毎日産卵し、かつ、成魚となるまでの生育日数が非常に短いという利点をもつ。さらに、ゼブラフィッシュの体格が小さいため取り扱いが簡単であり、かつ、比較的小型の装置で容易に多数のデータが得られるという利点もある。このため、ゼブラフィッシュは遺伝子研究、病理研究及び薬剤研究などの分野における実験素材として注目されている。たとえば、ゼブラフィッシュの受精卵に遺伝子材料を注入することにより、成魚からこの遺伝子材料由来の目的物質を回収するゼブラフィッシュ利用方法が提案されている。また、ゼブラフィッシュの受精卵に薬剤等を導入することにより、その生物学的影響を評価するゼブラフィッシュ利用方法も提案されている。 Zebrafish have the advantage that they lay eggs almost every day, and that the number of days until they reach adulthood is very short. Further, since the zebrafish is small in size, it is easy to handle, and a large amount of data can be easily obtained with a relatively small device. Therefore, zebrafish are attracting attention as an experimental material in fields such as gene research, pathology research, and drug research. For example, a zebrafish utilization method has been proposed in which a target substance derived from this genetic material is recovered from an adult fish by injecting the genetic material into a fertilized egg of the zebrafish. In addition, a method for utilizing zebrafish has also been proposed in which a drug or the like is introduced into a fertilized egg of zebrafish to evaluate its biological effect.

従来より、生体組織の非侵襲的観察法として、可視光、赤外光、紫外光などを用いる光学的手法が使用されている。たとえば、特許文献1は、可視光スペクトル又は赤外光スペクトルを用いて受精卵の良否を判定することを提案している。特許文献2は生体組織からの蛍光スペクトルに基づいてその特性を検出することを提案している。特許文献3は、低蛍光性材料であるシクロオレフィンポリマーを用いて製作されたマルチウエルプレートに分散配置された多数の細胞を蛍光測定することを提案している。 Conventionally, an optical method using visible light, infrared light, ultraviolet light, or the like has been used as a non-invasive observation method for living tissues. For example, Patent Document 1 proposes to determine the quality of a fertilized egg by using a visible light spectrum or an infrared light spectrum. Patent Document 2 proposes to detect the characteristic based on the fluorescence spectrum from the living tissue. Patent Document 3 proposes to perform fluorescence measurement of a large number of cells dispersedly arranged in a multi-well plate manufactured using a cycloolefin polymer which is a low fluorescence material.

特表2004-516475号公報Special table 2004-516475 gazette 特表2004ー518124号公報Japanese Patent Publication No. 2004-518124 特表2002ー515125号公報Japanese Patent Publication No. 2002-515125

現状のゼブラフィッシュ技術では、受精卵から正常に孵化するゼブラフィッシュの比率がかなり低いという問題があった。これは、得られたゼブラフィッシュの受精卵のうち、かなりの数が死卵、衰弱卵などの不良卵となるためである。 The current zebrafish technology has a problem that the ratio of zebrafish that normally hatch from a fertilized egg is considerably low. This is because a large number of fertilized eggs of the zebrafish obtained become defective eggs such as dead eggs and weakened eggs.

これらの死卵や衰弱卵は早急に排除しないと水系を汚染させる可能性が生じる。その結果、この汚染水を介して他の正常卵が悪影響を受ける可能性が生じる。多数のゼブラフィッシュの受精卵が収容されている水系が病原菌、ウイルス、その他の物質で一度汚染されてしまうと、正常卵の表面などにそれらが付着するため、重大な結果を招いてしまう。 These dead and debilitated eggs can contaminate the water system if not eliminated immediately. As a result, other normal eggs may be adversely affected via this contaminated water. Once the water system containing a large number of fertilized zebrafish eggs is contaminated with pathogenic bacteria, viruses, and other substances, they attach to the surface of normal eggs and the like, resulting in serious consequences.

また、孵化前の受精卵に薬剤などを注射する場合、高価なテスト材料を死卵又は衰弱卵などの不良卵や異常卵に消費するのは経済的でない。また、不良卵又は異常卵から孵化したゼブラフィッシュの異常が薬剤注射によるものか、元々のものかを判別することもできなかった。さらに、細菌やウイルスなどに感染した不良卵への注射は、注射針を通じた他の正常卵の感染を引き起こす可能性も考えられる。 Further, when injecting a drug or the like into a fertilized egg before hatching, it is not economical to consume expensive test material for a defective egg or an abnormal egg such as a dead or weak egg. Further, it was not possible to determine whether the abnormality of the zebrafish hatched from the defective egg or the abnormal egg was caused by the drug injection or the original one. Furthermore, injection into a bad egg infected with bacteria or virus may cause infection of other normal eggs through the needle.

結局、ゼブラフィッシュの産業利用においては、多数のゼブラフィッシュの受精卵群から正常な受精卵だけを短時間に選別して利用する必要があることがわかった。しかし、ゼブラフィッシュ受精卵の細胞分裂速度が速く、かつ、検査すべき受精卵数が非常に多いことを考えると、受精卵一個あたりに許される検査時間は極めて短時間とする必要がある。 After all, it was found that in the industrial use of zebrafish, it is necessary to select and use only normal fertilized eggs from a large number of fertilized egg groups of zebrafish in a short time. However, considering that the zebrafish fertilized egg has a high cell division rate and the number of fertilized eggs to be inspected is very large, the inspection time allowed per fertilized egg needs to be extremely short.

しかしながら、たとえば直径1mm程度と非常に小さいゼブラフィッシュの受精卵を高精度かつ短時間で選別する方法はまだ報告されていない。これらの観点から、発明者らは、ゼブラフィッシュの産業利用を実現するためには、高精度かつ高速の受精卵検査方法を確立することが、ゼブラフィッシュの産業利用において必須であることに気がついた。 However, a method for selecting fertilized eggs of zebrafish having a very small diameter of, for example, about 1 mm with high accuracy in a short time has not been reported yet. From these viewpoints, the inventors have realized that in order to realize industrial use of zebrafish, it is essential to establish a highly accurate and high-speed fertilized egg test method in industrial use of zebrafish. ..

蛍光スペクトル分析技術はそれが非侵襲的検査方法であるためゼブラフィッシュの受精卵検査に有望である。しかし、公知の蛍光スペクトル分析技術を用いて高速かつ高精度のゼブラフィッシュの受精卵検査を実現できるか否かは不明であった。さらにもし可能であるとしても、高精度の判定を実現する具体的な手法は不明であった。特に、非常に多数のゼブラフィッシュの受精卵を短時間に完了する具体的な方法は不明であった。言い換えれば、要求される検査精度および検査速度を実現可能な蛍光スペクトル分析技術はまったく知られていなかった。 Fluorescence spectrum analysis technology is promising for zybrafish fertilized egg test because it is a non-invasive test method. However, it has been unclear whether a known fast and highly accurate fertilized egg test of zebrafish can be realized using a fluorescence spectrum analysis technique. Furthermore, even if possible, the specific method for realizing highly accurate determination was unclear. In particular, a specific method for completing a large number of zebrafish fertilized eggs in a short time was unknown. In other words, no fluorescence spectrum analysis technique has been known that can realize the required inspection accuracy and inspection speed.

本発明はゼブラフィッシュの受精卵に要求される上記課題に鑑みなされたものであり、ゼブラフィッシュ受精卵の良不良を高精度かつ高速に判別可能な光学的検査方法を提供することである。 The present invention has been made in view of the above problems required for a fertilized zebrafish egg, and an object thereof is to provide an optical inspection method capable of accurately and rapidly determining whether a fertilized zebrafish egg is good or defective.

本発明によれば、ゼブラフィッシュの受精卵から得た蛍光スペクトルのうち励起光帯域もしくはそれに隣接する非常に狭帯域の分光スペクトルが、検査用分光スペクトルとして採用される。本発明者らの観測によれば、正常卵のこの検査用分光スペクトルは、死卵又は衰弱卵(以下、不良卵と呼ばれる)のそれに比べて相対的に狭帯域又は低強度であることがわかった。 According to the present invention, of the fluorescence spectra obtained from fertilized eggs of zebrafish, the spectrum of the excitation light band or a very narrow band adjacent thereto is adopted as the inspection spectrum. According to the observations of the present inventors, it was found that this inspection spectral spectrum of normal eggs has a relatively narrow band or low intensity as compared with that of dead or weak eggs (hereinafter referred to as bad eggs). It was

一例において、励起光スペクトルに隣接する狭帯域の検査用分光スペクトルは、正常卵において不良卵と比べて格段に低強度であった。他例において、ほぼ励起光スペクトルの帯域と重なる検査用分光スペクトルは、正常卵において不良卵と比べて格段に低強度であった。さらに、励起光の波長に応じて、励起光スペクトルの短波長側に隣接する狭帯域の検査用分光スペクトルが最適な場合、励起光スペクトルの長波長側に隣接する狭帯域の検査用分光スペクトルが最適な場合、励起光スペクトルと重なる狭帯域の検査用分光スペクトルが最適な場合があることがわかった。 In one example, the narrow band test spectrum adjacent to the excitation light spectrum was significantly less intense in normal eggs as compared to defective eggs. In another example, the inspection spectrum, which substantially overlaps with the band of the excitation light spectrum, had a significantly lower intensity in the normal egg than in the defective egg. Further, depending on the wavelength of the excitation light, if the narrow-band inspection spectrum adjacent to the short wavelength side of the excitation light spectrum is optimal, the narrow-band inspection spectrum adjacent to the long wavelength side of the excitation light spectrum is It has been found that, in the optimum case, the narrow-band inspection spectrum that overlaps with the excitation light spectrum is optimum.

もう一つの例において、正常卵のピーク波長スペクトルに隣接する検査用分光スペクトルの判別において、ピーク波長スペクトルと検査用分光スペクトルとの合計ピーク波長スペクトルの帯域幅の広狭により、受精卵の良否を判定することもできる。すなわち、この合計ピーク波長スペクトルの帯域幅が所定しきい値を超えれば、不良卵と判定される。 In another example, in the determination of the inspection spectrum adjacent to the peak wavelength spectrum of a normal egg, the quality of the fertilized egg is determined by the width of the total peak wavelength spectrum of the peak wavelength spectrum and the inspection spectrum. You can also do it. That is, if the bandwidth of this total peak wavelength spectrum exceeds a predetermined threshold value, it is determined as a defective egg.

もう一つの例において、受精卵の蛍光スペクトルのうち励起光の帯域から30nm未満離れた帯域の分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合にこの受精卵は不良であると決定することができる。 In another example, in the fluorescence spectrum of the fertilized egg, it is determined whether or not the intensity of the spectral spectrum in a band less than 30 nm away from the band of the excitation light exceeds a predetermined threshold value, and if it exceeds, the fertilized egg is defective. Can be determined.

もう一つの例において、受精卵の蛍光スペクトルのうち励起光の帯域とほぼ重なる検査用分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合にこの受精卵は不良であると決定することができる。 In another example, in the fluorescence spectrum of the fertilized egg, it is determined whether or not the intensity of the inspection spectral spectrum that substantially overlaps with the excitation light band exceeds a predetermined threshold value, and if it exceeds, it is determined that the fertilized egg is defective. can do.

さらに、本発明者らは、上記した正常卵と不良卵との間の検査用分光スペクトルの強度差が、受精時点から5-8時間、さらに好適には5.5-7.5時間経過した観測時点にて十分高精度となることを発見した。したがって、この観測時点にて選別を行うことにより、孵化により受精卵の卵殻が破壊される前に不良卵を排除することが可能となる。 Furthermore, the present inventors have found that the intensity difference of the above-mentioned spectroscopic spectrum for inspection between a normal egg and a defective egg is 5-8 hours, more preferably 5.5-7.5 hours after fertilization. It was discovered that the accuracy was sufficiently high at the time of observation. Therefore, by performing selection at this observation time point, it becomes possible to eliminate defective eggs before the eggshells of fertilized eggs are destroyed by hatching.

好適態様によれば、ゼブラフィッシュの多数の受精卵を高速検査するために、受精卵収容のための多数のウエルが底板に形成されたマルチウエルプレートを水平駆動される。検査にて不良と判定された受精卵を収容するウエルの二次元アドレスが記憶される。検査完了後、不良アドレスの受精卵が順番に排除される。これにより、多数の受精卵の検査を短時間に完了することができる。上記ウエルの底板に形成されたマルチウエルプレートは、受精卵が安定に納まり、動かない状態が望ましく、できるだけ受精卵の直径に近い円筒状、または多角形筒状の底部部分を持つことが望ましい。 According to a preferred embodiment, in order to rapidly test a large number of fertilized eggs of a zebrafish, a multi-well plate formed on the bottom plate is horizontally driven with a large number of wells for receiving the fertilized eggs. The two-dimensional address of the well containing the fertilized egg determined to be defective in the inspection is stored. After the inspection is completed, the fertilized eggs with the defective addresses are sequentially eliminated. As a result, the inspection of a large number of fertilized eggs can be completed in a short time. The multi-well plate formed on the bottom plate of the well is preferably in a state where the fertilized egg is stably accommodated and does not move, and preferably has a cylindrical or polygonal cylindrical bottom portion as close to the diameter of the fertilized egg as possible.

実施例のゼブラフィッシュの受精卵検査方法を実施する検査装置を示すブロック図である。It is a block diagram which shows the test|inspection apparatus which implements the fertilized egg test|inspection method of the zebrafish of an Example. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg. 正常卵および異常卵の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of a normal egg and an abnormal egg.

図1は、ゼブラフィッシュ受精卵の検査装置を示す模式ブロック図である。二次元移動可能なXYテーブル1上に魚卵トレイ2が載置されている。ただし、図1において、魚卵トレイ2は模式的に図示されている。 FIG. 1 is a schematic block diagram showing an inspection apparatus for a zebrafish fertilized egg. A fish egg tray 2 is placed on an XY table 1 that can be moved two-dimensionally. However, in FIG. 1, the fish egg tray 2 is schematically illustrated.

魚卵トレイ2の斜め上方に励起光光源3が設けられている。魚卵トレイ2の直上に蛍光検出器4が設けられている。蛍光検出器4からでた信号電圧は、受精卵判定用の判定部5に入力される。 An excitation light source 3 is provided diagonally above the fish egg tray 2. A fluorescence detector 4 is provided directly above the fish egg tray 2. The signal voltage from the fluorescence detector 4 is input to the determination unit 5 for determining a fertilized egg.

XYテーブル1は、2つのステッピングモータ(図示せず)により水平なX方向およびそれと直角かつ水平なY方向へ移動可能となっている。魚卵トレイ2は、上面が開口された凹部により構成される多数のウエル20をもつ。各ウエル20は行列状に配置されている。各ウエル20はそれぞれ、ゼブラフィッシュの1つの受精卵10を水とともに収容している。魚卵トレイ2は低蛍光性の誘起樹脂材料を用いて形成されているが、それに限定されるものではない。 The XY table 1 is movable by two stepping motors (not shown) in the horizontal X direction and the Y direction which is perpendicular to the horizontal X direction. The fish egg tray 2 has a large number of wells 20 each of which is composed of a recess whose upper surface is opened. The wells 20 are arranged in a matrix. Each well 20 contains one fertilized egg 10 of zebrafish together with water. The fish egg tray 2 is formed by using a low fluorescent induction resin material, but the invention is not limited thereto.

励起光光源3は所定波長のレーザーにより構成されている。励起光光源3は、水平なX方向に対して約45度の方向へレーザー光30を放射する。励起光光源3は、検査位置のウエル20である検査ウエル20Aのほぼ全体にレーザー光を平行に放射するためのレンズ系を内蔵している。励起光光源3としてキセノンランプから回折格子で得られた所定波長の分光を採用してもよい。 The excitation light source 3 is composed of a laser having a predetermined wavelength. The excitation light source 3 emits the laser light 30 in a direction of about 45 degrees with respect to the horizontal X direction. The excitation light source 3 has a built-in lens system for emitting laser light in parallel to almost the entire inspection well 20A which is the well 20 at the inspection position. As the excitation light source 3, a spectrum of a predetermined wavelength obtained by a diffraction grating from a xenon lamp may be adopted.

蛍光検出器4は、検査ウエル20Aから放射される蛍光スペクトルの所定方向成分40を検出して信号電圧に変換する。所定方向成分40と一致する蛍光検出器4の光軸は、水平なY方向に対して約45度の方向へ延在している。したがって、励起光光源3の光軸と蛍光検出器4の光軸との間の角度は90度とされている。これにより、励起光光源3から放射された励起光が蛍光検出器4へ入射する量が低減される。蛍光検出器4は、検査ウエル20Aを焦点とするレンズ系と、このレンズ系から出たほほ平行な蛍光ビームを分光するプリズム又は回折格子と、このプリズム又は回折格子から出た所定帯域の分光スペクトルを光電変換する光電センサとを少なくとも有している。ビーム幅を絞るスリットなどの光学要素の追加も可能である。 The fluorescence detector 4 detects the predetermined direction component 40 of the fluorescence spectrum emitted from the inspection well 20A and converts it into a signal voltage. The optical axis of the fluorescence detector 4 coinciding with the predetermined direction component 40 extends in a direction of about 45 degrees with respect to the horizontal Y direction. Therefore, the angle between the optical axis of the excitation light source 3 and the optical axis of the fluorescence detector 4 is 90 degrees. Thereby, the amount of the excitation light emitted from the excitation light source 3 entering the fluorescence detector 4 is reduced. The fluorescence detector 4 includes a lens system having the inspection well 20A as a focal point, a prism or a diffraction grating that disperses a substantially parallel fluorescence beam emitted from the lens system, and a spectrum of a predetermined band emitted from the prism or the diffraction grating. At least. It is also possible to add an optical element such as a slit for narrowing the beam width.

言い換えると、この光電センサは、プリズム又は回折格子から出た蛍光分光スペクトルのうち、特定波長の分光スペクトルのみが入射する位置に配置されている。これにより、蛍光検出器4は、予め定められた所定の狭帯域の蛍光分光スペクトルだけを検出することができる。 In other words, this photoelectric sensor is arranged at a position where only the spectral spectrum of a specific wavelength of the fluorescent spectrum emitted from the prism or the diffraction grating is incident. Accordingly, the fluorescence detector 4 can detect only the fluorescence spectrum of a predetermined narrow band determined in advance.

光電センサから出力される信号電圧はA/Dコンバータによりデジタル信号に変換されてマイクロコンピュータ5に入力される。マイクロコンピュータ5は、入力されるデジタル信号に基づいて検査ウエル20A内のゼブラフィッシュの受精卵の良否を判別するとともに、励起光光源3の間欠発光およびXYテーブル1の間欠移動を制御する。これにより、各ウエル20内のゼブラフィッシュの受精卵の良否がシーケンシャルに判定される。図1は検査装置の基本構成を示すものであり、公知技術を用いて種々の変形が可能であることはもちろんである。 The signal voltage output from the photoelectric sensor is converted into a digital signal by the A/D converter and input to the microcomputer 5. The microcomputer 5 determines the quality of the fertilized egg of the zebrafish in the inspection well 20A based on the input digital signal, and controls the intermittent light emission of the excitation light source 3 and the intermittent movement of the XY table 1. As a result, the quality of the fertilized zebrafish egg in each well 20 is sequentially determined. FIG. 1 shows the basic configuration of the inspection apparatus, and it is needless to say that various modifications can be made by using known techniques.

次に、ゼブラフィッシュの正常な受精卵および異常な受精卵から得られた蛍光スペクトルの観測例が説明される。点線は正常卵の蛍光スペクトルを示し、実線は死卵である異常卵の蛍光スペクトルを示す。なお、正常卵と同じ時間帯に孵化が完了することができない衰弱卵からの蛍光スペクトルは、検査用分光スペクトルの帯域において死卵と正常卵との中間値をもつことがわかった。 Next, examples of observation of fluorescence spectra obtained from normal and abnormal fertilized zebrafish eggs will be described. The dotted line shows the fluorescence spectrum of a normal egg, and the solid line shows the fluorescence spectrum of an abnormal egg which is a dead egg. In addition, it was found that the fluorescence spectrum from the debilitated egg that could not be hatched at the same time as the normal egg had an intermediate value between the dead egg and the normal egg in the band of the spectroscopic spectrum for inspection.

第1例
図2は、受精後6時間経過した受精卵に波長が310-330nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長280-300nmの帯域に存在することがわかった。たとえば、波長280nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは2未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
First Example FIG. 2 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 310 to 330 nm. It was found that the intensity difference of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 280-300 nm. For example, at a wavelength of 280 nm, the relative fluorescence intensity value of dead eggs exceeded 10, but that of normal eggs was less than 2. Therefore, for example, if the fluorescence relative intensity value 6 is set as the classification threshold value, dead eggs including debilitated eggs can be discriminated with high accuracy.

第2例
図3は、受精後7時間経過した受精卵に波長が310-330nmである励起光を照射して得られた蛍光スペクトルを示す。結果は第1例とほぼ同じであった。
Second Example FIG. 3 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 310 to 330 nm. The results were almost the same as in the first example.

第3例
図4は、受精後6時間経過した受精卵に波長が390-410nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長360-380nmの帯域に存在することがわかった。たとえば、波長370nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは2未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
Third Example FIG. 4 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 390-410 nm. It was found that the intensity difference of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 360-380 nm. For example, at a wavelength of 370 nm, the relative fluorescence intensity value of dead eggs exceeded 10, but that of normal eggs was less than 2. Therefore, for example, if the fluorescence relative intensity value 6 is set as the classification threshold value, dead eggs including debilitated eggs can be discriminated with high accuracy.

第4例
図5は、受精後7時間経過した受精卵に波長が390-410nmである励起光を照射して得られた蛍光スペクトルを示す。結果は第3例とほぼ同じであった。
Fourth Example FIG. 5 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 390-410 nm. The results were almost the same as in the third example.

第5例
図6は、受精後6時間経過した受精卵に波長が590-610nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長600-620nmの帯域に存在することがわかった。たとえば、波長610nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは2未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
Fifth Example FIG. 6 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 590-610 nm. It was found that the intensity difference of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 600 to 620 nm. For example, at a wavelength of 610 nm, the relative fluorescence intensity value of dead eggs exceeded 10, but that of normal eggs was less than 2. Therefore, for example, if the fluorescence relative intensity value 6 is set as the classification threshold value, dead eggs including debilitated eggs can be discriminated with high accuracy.

第6例
図7は、受精後7時間経過した受精卵に波長が590-610nmである励起光を照射して得られた蛍光スペクトルを示す。結果は第5例とほぼ同じであった。
Sixth Example FIG. 7 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 590-610 nm. The results were almost the same as in Example 5.

第7例
図8は、受精後6時間経過した受精卵に波長が790-810nmである励起光を照射して得られた蛍光スペクトルを示す。異常卵と正常卵との間の蛍光スペクトルの強度差が波長780-820nmの帯域に存在することがわかった。たとえば、波長790nmにおいて、死卵の蛍光相対強度値は10を超えているが、正常卵のそれはほぼ2であった。したがって、たとえば、分別しきい値を蛍光相対強度値6をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
Seventh Example FIG. 8 shows a fluorescence spectrum obtained by irradiating a fertilized egg 6 hours after fertilization with excitation light having a wavelength of 790-810 nm. It was found that the intensity difference of the fluorescence spectrum between the abnormal egg and the normal egg exists in the wavelength band of 780-820 nm. For example, at a wavelength of 790 nm, the relative fluorescence intensity value of dead eggs exceeded 10, while that of normal eggs was approximately 2. Therefore, for example, if the fluorescence relative intensity value 6 is set as the classification threshold value, dead eggs including debilitated eggs can be discriminated with high accuracy.

第8例
図9は、受精後7時間経過した受精卵に波長が790-810nmである励起光を照射して得られた蛍光スペクトルを示す。励起光と同じである波長780-820nmの帯域において、死卵の蛍光相対強度値は10を超えているが、正常卵のそれは4未満であった。したがって、たとえば、分別しきい値を蛍光相対強度値7をとすれば、衰弱卵を含む死卵を高精度に判別することができる。
Eighth Example FIG. 9 shows a fluorescence spectrum obtained by irradiating a fertilized egg 7 hours after fertilization with excitation light having a wavelength of 790-810 nm. In the wavelength band of 780 to 820 nm, which is the same as the excitation light, the relative fluorescence intensity value of dead eggs exceeded 10, but that of normal eggs was less than 4. Therefore, for example, if the fluorescence relative intensity value 7 is used as the classification threshold value, dead eggs including debilitated eggs can be discriminated with high accuracy.

これらの観測結果などから次のことが判明した。まず、異常卵から放射される蛍光スペクトルのピーク波長は受精卵の個体差又は受精からの経過時間にかかわらずほぼ一定であることがわかった。したがって、励起光波長に依存する非常に狭い帯域の蛍光スペクトルだけ選択検出することにより、ゼブラフィッシュの受精卵の良否判別を最も高精度に実現できることがわかった。 From these observations, the following facts were found. First, it was found that the peak wavelength of the fluorescence spectrum emitted from the abnormal egg is almost constant regardless of the individual difference of the fertilized egg or the elapsed time from fertilization. Therefore, it was found that the quality of the fertilized eggs of the zebrafish can be determined with the highest accuracy by selectively detecting only the fluorescence spectrum in a very narrow band depending on the wavelength of the excitation light.

次に、励起光波長が短い場合には、励起光波長の短波長側に隣接する狭い帯域において、異常卵の蛍光分光スペクトルの強度は正常卵のそれに比較して大幅に増加する。励起光波長が長くなると励起光波長の長波長側に隣接する狭い帯域において、異常卵の蛍光分光スペクトルの強度は正常卵のそれに比較して大幅に増加する。励起光波長がさらに長くなると励起光と同じ帯域において異常卵の蛍光分光スペクトルの強度は正常卵のそれに比較して大幅に増加する。さらに、正常卵と異常卵との間の蛍光スペクトルの上記強度差は、受精からの経過時間とともに増加するが、この経過時間が8時間を超えると、上記強度差はほぼ飽和するか乃至かえって低下することがわかった。またさらに、受精時点からの経過時間が5ー7時間さらに好ましくは5.5-6.5時間の範囲で十分な判別精度が得られることがわかった。
なお上記説明ではゼブラフィッシュを中心に説明してきたが、これに限定されず魚類であれば分光スペクトルの位置は多少異なるが応用可能である。また、蛍光の代わりに反射光を利用してもよいし、蛍光に含まれる反射光の割合を増やしてもよい。



Next, when the excitation light wavelength is short, the intensity of the fluorescence spectrum of the abnormal egg is significantly increased in comparison with that of the normal egg in a narrow band adjacent to the short wavelength side of the excitation light wavelength. When the excitation light wavelength becomes longer, the intensity of the fluorescence spectrum of the abnormal egg increases significantly in a narrow band adjacent to the long wavelength side of the excitation light wavelength as compared with that of the normal egg. When the wavelength of the excitation light is further increased, the intensity of the fluorescence spectroscopic spectrum of the abnormal egg increases significantly in the same band as the excitation light as compared with that of the normal egg. Furthermore, the intensity difference between the fluorescence spectra of normal eggs and abnormal eggs increases with the elapsed time from fertilization, but when the elapsed time exceeds 8 hours, the intensity difference is almost saturated or rather decreases. I found out that Furthermore, it was found that sufficient discrimination accuracy was obtained when the elapsed time from the time of fertilization was 5 to 7 hours, more preferably 5.5 to 6.5 hours.
In the above description, the description has been centered on the zebrafish, but the present invention is not limited to this and can be applied to fishes although the position of the spectrum is slightly different. Further, the reflected light may be used instead of the fluorescent light, or the ratio of the reflected light contained in the fluorescent light may be increased.



Claims (8)

魚類の受精卵を光学的に検査する受精卵検査方法であって、
前記受精卵から得た蛍光スペクトルのうち、励起光の帯域もしくはそれに隣接する狭帯域の分光スペクトルからなる検査用分光スペクトルに基づいて前記受精卵の良否を判定することを特徴とする魚類受精卵検査方法。
A fertilized egg inspection method for optically inspecting fertilized eggs of fish,
Of the fluorescence spectrum obtained from the fertilized egg, a fish fertilized egg test characterized in that the quality of the fertilized egg is determined based on an inspection spectrum composed of a spectrum of an excitation light band or a narrow band adjacent thereto. Method.
前記受精卵から得た蛍光スペクトルのうち励起光の帯域から30nm未満離れた帯域の分光スペクトルを含む前記検査用分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合に前記受精卵は不良であると決定する請求項1記載の魚類受精卵の検査方法。 Of the fluorescence spectra obtained from the fertilized eggs, it is determined whether or not the intensity of the inspection spectrum including the spectrum of a band less than 30 nm away from the band of the excitation light exceeds a predetermined threshold value. The method for inspecting a fertilized fish egg according to claim 1, wherein is determined to be defective. 前記受精卵から得た蛍光スペクトルのうち励起光の帯域の分光スペクトルを含む前記検査用分光スペクトルの強度が所定しきい値を超えるかどうか判別し、超える場合に前記受精卵は不良であると決定する請求項1記載の魚類受精卵の検査方法。 Of the fluorescence spectrum obtained from the fertilized egg, it is determined whether or not the intensity of the inspection spectrum including the spectrum of the excitation light band exceeds a predetermined threshold value, and if it exceeds, it is determined that the fertilized egg is defective. The method for inspecting a fertilized fish egg according to claim 1. 前記検査用分光スペクトルは、受精時点から5-8時間経過した観測時点にて検出される請求項1記載の魚類受精卵検査方法。 The method for inspecting a fertilized fish egg according to claim 1, wherein the inspection spectrum is detected at an observation time point 5 to 8 hours after the fertilization time point. 前記検査用分光スペクトルは、受精時点から5.5-7.5時間経過した観測時点にて検出される請求項4記載の魚類受精卵検査方法。 The method for inspecting a fertilized fish egg according to claim 4, wherein the inspection spectrum is detected at an observation time point after 5.5-7.5 hours from the time of fertilization. マルチウエルプレートの底板上面に形成された各ウエルに魚類の受精卵を水とともに収容し、
前記ウエルの中心を励起光の光軸に一致させた後、前記ウエル内の受精卵に励起光を照射することにより、前記受精卵から得られた蛍光スペクトルの所定の分光スペクトルを検出し、
前記分光スペクトルに基づいて前記受精卵の良否を判別した後、前記マルチウエルプレートを水平移動することにより、隣接する前記ウエルの受精卵に対して同じ検出動作を順次繰り返し、
得られた前記各ウエル毎の判定結果と前記各ウエルの二次元アドレスとのペアを順次記憶する請求項1から4のいずれか一項に記載の魚類受精卵検査方法。
Fertilized fish eggs are stored with water in each well formed on the upper surface of the bottom plate of the multi-well plate,
After matching the center of the well with the optical axis of the excitation light, by irradiating the fertilized egg in the well with the excitation light, a predetermined spectral spectrum of the fluorescence spectrum obtained from the fertilized egg is detected,
After determining the quality of the fertilized egg based on the spectral spectrum, by horizontally moving the multi-well plate, the same detection operation is sequentially repeated for the fertilized eggs of the adjacent wells,
The obtained result of judgment and fish fertilized egg inspection method according to any one of claims 1 or et 4, wherein sequentially stores pairs of two-dimensional addresses of each well of each well.
魚類の受精卵を水とともに収容するマルチウエルプレートの底板上面に形成された各ウエルと、
前記ウエルの中心を励起光の光軸に一致させて入射する光源と、前記ウエル内の受精卵に励起光を照射することにより、前記受精卵から得られた反射光を受光する受光器と、
前記光源の波長を変えて入射し前記受光器の蛍光スペクトルの波長と強度を測定する測定器と、測定したスペクトルを記録するメモリと、
前記メモリに記録した所定の分光スペクトルに基づいて前記受精卵の良否を判別する、判別器を有する事を特徴とする魚類受精卵検査装置
Each well formed on the upper surface of the bottom plate of the multi-well plate that contains fertilized eggs of fish together with water,
A light source that is incident with the center of the well aligned with the optical axis of excitation light, and by irradiating the fertilized egg in the well with excitation light, a light receiver that receives the reflected light obtained from the fertilized egg,
A measuring device for measuring the wavelength and intensity of the fluorescence spectrum of the light receiver which is incident while changing the wavelength of the light source, and a memory for recording the measured spectrum,
A fish fertilized egg inspection device having a discriminator for discriminating the quality of the fertilized egg based on a predetermined spectral spectrum recorded in the memory
前記マルチウエルプレートと光源および受光器の位置を相対的に水平移動する手段と、隣接する前記ウエルの受精卵に対して同じ検出動作を順次繰り返し測定し得られた前記各ウエル毎の判定結果と前記各ウエルの二次元アドレスとのペアを順次記憶する第二のメモリとを備える請求項7記載の魚類受精卵検査装置。
Said multiwell plate and a light source and means for relatively horizontally moving the position of the light receiver, for each of the wells obtained by measuring the same detection operation is sequentially repeated with respect to embryo of the well adjacent the determination result the fish embryo inspection apparatus according to claim 7, further comprising a second memory for the sequentially stores pairs of two-dimensional addresses of each well.
JP2016210039A 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish Active JP6729894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210039A JP6729894B2 (en) 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210039A JP6729894B2 (en) 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish

Publications (2)

Publication Number Publication Date
JP2018072094A JP2018072094A (en) 2018-05-10
JP6729894B2 true JP6729894B2 (en) 2020-07-29

Family

ID=62115100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210039A Active JP6729894B2 (en) 2016-10-26 2016-10-26 Fertilized egg test method and fertilized egg test device for fish

Country Status (1)

Country Link
JP (1) JP6729894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061740B2 (en) * 2018-07-30 2022-05-02 国立大学法人三重大学 Fertilized egg retention structure and fertilized egg inspection method using it

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786230A (en) * 1980-11-19 1982-05-29 Masanori Matsuki Fish egg sorting apparatus
JPS60220849A (en) * 1985-03-26 1985-11-05 Q P Corp Detecting device for addled albumen
US5565187A (en) * 1993-06-01 1996-10-15 Zikria; Bashir Methods for studying capillary circulation using fish fry and tadpoles
US6405070B1 (en) * 1998-06-16 2002-06-11 Bhaskar Banerjee Detection of cancer using cellular autofluorescence
US6535277B2 (en) * 2000-12-20 2003-03-18 Embrex, Inc. Methods and apparatus for non-invasively identifying conditions of eggs via multi-wavelength spectral comparison
JP6207276B2 (en) * 2013-07-22 2017-10-04 学校法人関西学院 Fish egg discrimination method and fish egg sorting apparatus
US9513270B2 (en) * 2013-11-18 2016-12-06 Zoetis Services Llc Non-contact egg identification system for determining egg viability using transmission spectroscopy, and associated method

Also Published As

Publication number Publication date
JP2018072094A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US7170605B2 (en) Active sensor and method for optical illumination and detection
Lapp et al. A new luminescence detection and stimulation head for the Risø TL/OSL reader
AU2001250287B2 (en) Method and apparatus for detecting fluorescence of a sample
JP6804445B2 (en) Integration of fluorescence detection function into absorbance measuring device
US10473591B2 (en) High throughput method and apparatus for measuring multiple optical properties of a liquid sample
Shin et al. A portable fluorescent sensor for on-site detection of microalgae
US11041756B2 (en) Method and apparatus of filtering light using a spectrometer enhanced with additional spectral filters with optical analysis of fluorescence and scattered light from particles suspended in a liquid medium using confocal and non confocal illumination and imaging
CN107003239A (en) From triggering flow cytometry
JP2015517671A (en) Biologically-derived physiologically active substance measuring device and measuring method
JP2019502125A (en) Luminescence lifetime measurement method and apparatus for measuring the average lifetime of an electronically excited state
KR20150074624A (en) Optical detection apparatus and method of compensating detection error
US20140291550A1 (en) Flow cytometer systems and associated methods
CN111366558A (en) Multi-wavelength polarization scattering measuring device
CN108700520B (en) Method and apparatus for high throughput imaging
JP6729894B2 (en) Fertilized egg test method and fertilized egg test device for fish
AU2005279041A1 (en) A method of analysing a sample and apparatus therefor
US11035794B2 (en) Scalable, large-area optical sensing platform with compact light delivery and imaging system
US20080253409A1 (en) Multi-Channel Bio-Chip Scanner
US20230221178A1 (en) Apparatus and a method for fluorescence imaging
US11674877B2 (en) Apparatus and method for cyclic flow cytometry using particularized cell identification
JP6797296B2 (en) Methods and apparatus for optically exciting a plurality of analytes in a plurality of aligned reaction vessels and detecting fluorescence from the analytes.
CN102782477A (en) Optical examinations with controlled input light
JP2005006553A (en) Apparatus for cell culture detection
KR102441156B1 (en) multiplexing analyzing apparatus using muiti-wavelength light
JP2001249077A (en) Apparatus for detecting fluorescence from a plurality of specimen points

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200625

R150 Certificate of patent or registration of utility model

Ref document number: 6729894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250