JPS60218866A - Complementary mos semiconductor device - Google Patents

Complementary mos semiconductor device

Info

Publication number
JPS60218866A
JPS60218866A JP59075211A JP7521184A JPS60218866A JP S60218866 A JPS60218866 A JP S60218866A JP 59075211 A JP59075211 A JP 59075211A JP 7521184 A JP7521184 A JP 7521184A JP S60218866 A JPS60218866 A JP S60218866A
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor layer
impurity concentration
semiconductor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075211A
Other languages
Japanese (ja)
Inventor
Shigeo Nagao
長尾 繁雄
Yoichi Akasaka
洋一 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59075211A priority Critical patent/JPS60218866A/en
Publication of JPS60218866A publication Critical patent/JPS60218866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the occurrence of a latch-up phenomenon without reducing the integration degree, by providing the thickness of a semiconductor layer having low impurity concentration, in which MOS transistors are formed, so that the impurities of a substrate do not reach the surface of the semiconductor layer. CONSTITUTION:Ions are implanted in a P type silicon substrate 6 having high impurity concentration, and an embedded layer 7 having high inpurity concentration is formed. A P type silicon part is epitaxially grown. A semiconductor layer 8 having low impurity concentration is formed to a width so that the impurities of the substrate 6 do not reach the surface. Phosphorus ions are implanted, and an island region 9 including the embedded layer 7 is formed. A field oxide film 12 is formed. An N-channel MOS transistor is formed in a region 8a. A P-channel MOS transistor is formed in the island region 9 including the embedded layer 7. The resistance of the semiconductor substrate is made low and the island region is made deep. Thus a latch-up phenomenon can be made hard to occur to a large extent.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は相補型MO8半導体装置の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in complementary MO8 semiconductor devices.

〔従来技術) 第1図は従来の相補型MO5半導体装置の要部断面図を
示すものであり1図において(1)は抵抗率10〜80
Ω・cmの低不純物濃度のP型シリコン基。
[Prior Art] Figure 1 shows a cross-sectional view of the main parts of a conventional complementary MO5 semiconductor device.
P-type silicon base with low impurity concentration of Ωcm.

板、但はこのP型シリコン基板(1)の−主面に形成さ
れたnチャネルのMOS )ランジスタであり。
The plate is an n-channel MOS transistor formed on the main surface of this P-type silicon substrate (1).

(2a)は仁のMOS )ランジスタのn型ドレイン領
域。
(2a) is the n-type drain region of a solid MOS transistor.

(2b〕はn型ソース領域でみる。(3)は前記P型シ
リコン基板(1)の−主面に選択的に形成された低不純
物濃度のn型島領域(以下ウェルと称す)、団はこのn
型ウェル(3)の−主面に形成されたPチャネルのMO
S )ランジスタであり、 (4a)はこのMOSトラ
ンジスタのP型ドレイン領域、(4b月よP型ソース領
域でみる。(5)はこれらのMOS )ランジスタ辺朔
を分離する埋込み酸化層である。
(2b) is seen in the n-type source region. (3) is the n-type island region (hereinafter referred to as well) with a low impurity concentration selectively formed on the main surface of the P-type silicon substrate (1), and is this n
P-channel MO formed on the main surface of the type well (3)
(4a) is a P-type drain region of this MOS transistor, (4b) is a P-type source region. (5) is a buried oxide layer separating the sides of these MOS transistors.

ところで、このように構成されたものにおいては第2図
に示すようにPチャネルMO5)ランジスタ皆のドレイ
ン領域(4a)、 n型ウェル(3)及びP型シリコン
基板(1)をそれぞれエミッタ、ベース及びコレクタと
する縦形pnpの第1のトランジスタQ1と、n型ウェ
ル(3)、P型シリコン基板(1]及びnチャネルMO
S )ランジスタのソース領域(2b)をそれツレコレ
クタ、ベース及びエミッタとする横形npnの第2のト
ランジスタQ2とによるpnpnm造の寄生サイリスタ
が存在するものであり、かつn型ウェル(3)の抵抗成
分・及びP型シリコン基板(1)の抵抗成分がそれぞれ
第1のトランジスタQ1及び第2のトランジスタQ2の
ベース抵抗Rwelll(8a)、Rsub(la)と
なるものである。そして、この様な寄生サイリスタはP
チャネルMO3)ランジスタWのドレイン領域(4a)
が高電位に、P型シリコン基板(1)及びnチャネルM
OS )ランジスタりのソース領域(2a)が低電位(
例えばGND )に設定されているとき〜、外来雑音電
圧等によって動作される可能性があるものであり、例え
ば外来雑音電圧により、第2のトランジスタQ2のベー
ス抵抗Rsub(la)に瞬間的に雑音電流が流れ、そ
の結果トランジスタQ2が導通状態になると、第1のト
ランジスタQIのベース抵抗Rweee(8a)を通っ
てトランジスタQ2のコレクタ(3)に電流が流れ込み
、その結果、トランジスタQ1が導通状態になる。そし
て、トランジスタQ+のコレクタ(1)から流れ出た電
流がトランジスタQ2のベース抵抗Rsub(la) 
に流れ、トランジスタQ2のベースが再びバイアスされ
、結局トランジスタQ+、Q2とからなる閉ループ回路
に正帰環がかかり。
By the way, in the structure constructed in this way, as shown in FIG. and a vertical pnp first transistor Q1 serving as a collector, an n-type well (3), a p-type silicon substrate (1), and an n-channel MO
S) There is a parasitic thyristor of pnpnm construction with a horizontal npn second transistor Q2 whose collector, base and emitter are the source region (2b) of the transistor, and the resistance component of the n-type well (3) - and the resistance components of the P-type silicon substrate (1) become base resistances Rwell (8a) and Rsub (la) of the first transistor Q1 and the second transistor Q2, respectively. And, such a parasitic thyristor is P
Channel MO3) Drain region (4a) of transistor W
is at a high potential, the P-type silicon substrate (1) and the n-channel M
The source region (2a) of the transistor (OS) is at a low potential (
For example, when it is set to GND), it may be activated by an external noise voltage. When a current flows, resulting in transistor Q2 becoming conductive, current flows through the base resistor Rweee (8a) of the first transistor QI to the collector (3) of transistor Q2, resulting in transistor Q1 becoming conductive. Become. Then, the current flowing from the collector (1) of transistor Q+ is connected to the base resistance Rsub (la) of transistor Q2.
The base of transistor Q2 is biased again, and a positive feedback circuit is eventually applied to the closed loop circuit consisting of transistors Q+ and Q2.

外来雑音によるトリガ電流がなくなっても、寄生サイリ
スタは動作し続け、すなわち、PチャネルMO5)ラン
ジスタWのドレイン領域(4a)とnチャネルMOSト
ランジスタのソース領域(2b)との間には定常的に電
流が流れることになるものである。
Even if the trigger current due to external noise disappears, the parasitic thyristor continues to operate, that is, there is a steady state between the drain region (4a) of the P-channel MOS transistor W and the source region (2b) of the n-channel MOS transistor. This is something through which current will flow.

この様な現象は一般にラッチアップ現象と呼ばれ。This kind of phenomenon is generally called latch-up phenomenon.

このラッチアップ現象は、相補型MOS半導体装置の正
常な動作を妨げるばかりでなく、時には素子の永久破壊
をも引き起こすという問題を生じるものでめった。
This latch-up phenomenon not only impedes the normal operation of the complementary MOS semiconductor device, but also rarely causes permanent damage to the device.

この様なラッチアップ現象を防ぐ方法として第1に第2
図に示すベース抵抗Rsub(la) 、 Rwe44
t(8a)を小さくしてトランジスタQ+及びQ2を動
作させないようにする方法が考えら□れ、第2にトラン
ジスタQ】及びトランジスタQ2のベース幅及びベース
の不純物濃度を毘<シてトランジスタの電流増幅率β〔
β鄭□(ここでWはベース幅、Nはベース不純物濃度)
〕を下げる方法も考えられる。
The first and second methods to prevent this kind of latch-up phenomenon are
Base resistance Rsub (la) shown in the figure, Rwe44
A method has been considered to reduce t(8a) so that transistors Q+ and Q2 do not operate.The second method is to reduce the transistor current by changing the base width and base impurity concentration of transistor Q and transistor Q2. Amplification factor β [
β Zheng□ (where W is the base width and N is the base impurity concentration)
] can also be considered.

しかしながら、第1の方法のようにベース抵抗Rsub
 (la) 、 Rweg6 (8a) を下げるため
にはP型シリコン基板(1)及びn型ウェル(3)の不
純物濃度を高くする必要があり、この様にした場合には
MOSトランジスタのしきい値電圧vthの制御が困難
になる等の問題が生じるものであり、また、第2の方性
の)へ2γ皆儒慟幅電nち玉t(スナーめ!rベースT
純物濃度Nを高くすると、やはりMOS I−ランジス
タのしきい値電圧vthの制御が困難になる等の問題が
生じ、またウニJl/ (3)を深くすることが考えら
れるが、この場合にはシリコン基板(1)の表面に沿っ
た横方向への拡散も大きくなって集積度が低1”し、ト
ランジスタQ2のベース幅W2を広くするにはPチャネ
ルMO5l−ランジスタとnチャネルMOS )ランジ
スタの間隔を広げることが考えられるがこの場合にも集
積度が低下するという問題を生じるものでめった。
However, as in the first method, the base resistance Rsub
(la), Rweg6 (8a), it is necessary to increase the impurity concentration of the P-type silicon substrate (1) and the n-type well (3), and in this case, the threshold value of the MOS transistor This causes problems such as difficulty in controlling the voltage vth, and also causes problems such as difficulty in controlling the voltage vth.
If the purity concentration N is increased, there will still be problems such as difficulty in controlling the threshold voltage vth of the MOS I-transistor, and it is conceivable to increase the depth of Jl/ (3), but in this case, The diffusion in the lateral direction along the surface of the silicon substrate (1) also increases, resulting in a low integration density of 1", and in order to widen the base width W2 of the transistor Q2, a P-channel MO transistor and an n-channel MOS transistor are used. It is conceivable to widen the interval between the two, but this also rarely causes the problem of lowering the degree of integration.

〔発明の概要〕[Summary of the invention]

この発明は上記した点に鑑みてなされた゛ものであり、
相補型MOS半導体装置に於て第1導電型の高不純物濃
度の半導体基板の一生面上にMOS )う゛ンジスタが
形成される低不純物濃度の半導体層を設け、第1導電型
のMOSトランジスタが形成される島領域を半導体基板
の一生面上に形成された両不純物濃度の埋込み層を含む
ものとし、かつ半導体層の厚さを半導体基板の不純物が
半導体層の表面に到達しない厚さとしてラッチアップ現
象が非常に起こりにくく集積度の低下もなく、シかも第
2導電型のMOS )ランジスタの動作が妨げられない
とともに設計裕度が向上できる相補型MOS半導体装置
を提案するものである。
This invention was made in view of the above points,
In a complementary MOS semiconductor device, a low impurity concentration semiconductor layer in which a MOS transistor is formed is provided on the entire surface of a first conductivity type high impurity concentration semiconductor substrate, and a first conductivity type MOS transistor is formed. The latch-up phenomenon is determined by assuming that the island region containing the buried layer of both impurity concentrations is formed on the entire surface of the semiconductor substrate, and that the thickness of the semiconductor layer is such that the impurities of the semiconductor substrate do not reach the surface of the semiconductor layer. The present invention proposes a complementary MOS semiconductor device that is extremely unlikely to occur, does not reduce the degree of integration, does not impede the operation of the second conductivity type MOS transistor, and can improve design latitude.

〔発明の実施例〕 。[Embodiments of the invention].

以下のこの発明の一実施例を図に基づいて説明する。第
8図(a)は相補型MOS半導体装置の要部断面図であ
り2図において(6)は第1導電型の高不純物濃度の半
導体基板でこの実施例のものにおいては抵抗率0.01
〜1.0Ω・C11l 、不純物濃度5XIO”〜5X
IO”Cm””’、結晶方向400>のP型シリコンで
ある。(7)はこの半導体基板(6)の−主面に選択的
に形成された第2導電型の高不純物濃度の埋込み層で、
この実施例のものにおいてはP形不純物であるリンイオ
ンを注入fi lXl0”cm−’程度注入して形成し
たものである。(8)は前記半導体基板(6)の−主面
上に前記半導体基板(6)内の不純物が表面に到達しな
い厚さにエピタキシャル成長して形成された第1導電型
の低不純物濃度の半導体層でこの実施例のものにおいて
は層厚lOμmであり1表面付近抵抗率lO〜80Ω・
cm のP型シリコンからなるものである。(9)は前
記埋込み層(7)から前記半導体層(8)の−主面に露
出しで形成された埋込み層(7)を含む第2導電型の島
領域、 (xoaJ(lob)は各々前記半導体層(8
)の第1導電型領域(8a)の−主面に形成された第2
導電型のMOSトランジスタのドレイン領域及びソース
領域、 C11a)(llb)は各々前記島領域(9)
の−主面に形成された第1導電型のMOSトランジスタ
のドレイン領域及びソース領域、(2)は否MO8l−
ランジスタを分離するフィールド酸化膜でゐる〇 次にこの様に構成された相補型MOS半導体装置の製造
方法を述べると、まず第8図(b)に示すように半導体
基板(6)の−上面にマスク□□□を用いて選択的にリ
ンイオンをイオン注入して半導体基板(6)の−主面に
高不純物濃度の埋込み層(7)を形成する。
An embodiment of the present invention will be described below based on the drawings. FIG. 8(a) is a sectional view of a main part of a complementary MOS semiconductor device, and in FIG. 2, (6) is a semiconductor substrate of a first conductivity type with a high impurity concentration, and in this example, the resistivity is 0.01.
~1.0Ω・C11l, impurity concentration 5XIO"~5X
IO"Cm""', P-type silicon with crystal direction 400>. (7) is a buried layer with a high impurity concentration of the second conductivity type selectively formed on the - main surface of this semiconductor substrate (6). in,
In this example, phosphorus ions, which are P-type impurities, are implanted to a depth of about 10 cm.sup.(8) is formed on the main surface of the semiconductor substrate (6). (6) A low impurity concentration semiconductor layer of the first conductivity type formed by epitaxial growth to a thickness that does not allow the impurities to reach the surface. In this example, the layer thickness is lOμm and the resistivity near the surface is lO ~80Ω・
cm 2 of P-type silicon. (9) is an island region of a second conductivity type including a buried layer (7) formed by being exposed from the buried layer (7) to the main surface of the semiconductor layer (8), (xoaJ (lob) is each The semiconductor layer (8
) formed on the -main surface of the first conductivity type region (8a).
The drain region and source region of the conductivity type MOS transistor, C11a) (llb), are each the island region (9).
The drain region and source region of the first conductivity type MOS transistor formed on the main surface of (2) are non-MO8l-
A field oxide film is used to separate the transistors.Next, to describe a method for manufacturing a complementary MOS semiconductor device configured in this way, first, as shown in FIG. A buried layer (7) with a high impurity concentration is formed on the -main surface of the semiconductor substrate (6) by selectively implanting phosphorus ions using a mask □□□.

その後マスク四を除去し1次いで第8図(C)に示すよ
うに、この半導体基板(6)上にMOS )ランジスタ
が形成される通常の抵抗率10〜80Ω・cm を有し
たP型シリコンを1050℃程度の高温中で80分程度
エピタキシャル成長し、半導体層(8)を形成する。
Thereafter, the mask 4 is removed, and as shown in FIG. 8(C), P-type silicon having a normal resistivity of 10 to 80 Ω·cm is deposited on the semiconductor substrate (6) on which a MOS transistor will be formed. Epitaxial growth is performed for about 80 minutes at a high temperature of about 1050° C. to form a semiconductor layer (8).

その際半導体基板(6)及び埋込み層(7)中の不純物
はオートドープによって半導体層(8)中に拡散するも
のでみる。従って、この実施例のものにおいては。
At this time, impurities in the semiconductor substrate (6) and buried layer (7) are assumed to be diffused into the semiconductor layer (8) by autodoping. Therefore, in this example.

半導体基板(6)の不純物が表面に到達しない厚さまで
半導体層(8)を形成しているものであり、この様にす
ることにより、半導体層(8)の表面部分はMOSトラ
ンジスタが通常動作できる抵抗率10〜80Ω・cmに
半導体基板(6)の不純物による影IWなしに維持でき
るものである。次いで第8図(d)に示すように前記埋
込み層(7)形成の除用いたマスクと同じマスク(至)
を用いて半導体層(8)表面側から前記埋込み層(7)
と同じ位置にリンイオンを注入した後マスク斡を除去し
1次いで長時間のアニールをして5μ。
The semiconductor layer (8) is formed to a thickness that does not allow impurities of the semiconductor substrate (6) to reach the surface, and by doing so, a MOS transistor can normally operate on the surface of the semiconductor layer (8). The resistivity can be maintained at 10 to 80 Ω·cm without any shadow IW caused by impurities in the semiconductor substrate (6). Next, as shown in FIG. 8(d), the same mask (to) as that used for forming the buried layer (7) is used.
the buried layer (7) from the surface side of the semiconductor layer (8) using
After implanting phosphorus ions in the same position as above, the mask was removed and then annealing was performed for a long time to 5μ.

程度の深さに拡散するが、その時埋込み層(7〕からの
不純物の拡散も同時に行われるため、これらが合流し第
2導電型の島領域帝が形成されるものである。従って島
領域(2)は埋込み層(7)を含んで形成−され、しか
も後工程の不純物拡散はそれ程深く形成する必要もない
ため、横方向への拡がりが少なく、かつ縦方向における
深さが深く形成できるものである。
However, at this time, the impurities from the buried layer (7) are also diffused at the same time, so they merge to form an island region of the second conductivity type.Therefore, the island region ( 2) is formed including a buried layer (7), and since the impurity diffusion in the subsequent process does not need to be formed so deeply, it can be formed with less horizontal spread and a deep vertical depth. It is.

そして、それ以後は、従来のポリシリコノゲート型相補
型MOS半導体装置の製造工程と同様にしてフィールド
酸化膜@を形成し、その後半導体層(8)の第1導電型
領域(gap、つまり島領域(りが形成されていない部
分でフィールド酸化膜(ロ)に囲まれた部分の表面側に
はNチャネルすなわち、第2導電型のMOS )ランジ
スタを、また第2導電型高不純物濃度埋込み層(7)を
含む第2導電型の島領域帝の表面側にはPチャネルすな
わち第1導電型のMOS )ランジスタを形成し、第8
図(a)に示すような相補型MO5+導体装置を得ろも
のである。
After that, a field oxide film @ is formed in the same manner as in the manufacturing process of a conventional polysilicon gate type complementary MOS semiconductor device, and then a first conductivity type region (gap, that is, an island) of the semiconductor layer (8) is formed. On the surface side of the area surrounded by the field oxide film (b) where no ri is formed, there is an N-channel, ie, second conductivity type MOS transistor, and a second conductivity type high impurity concentration buried layer. On the surface side of the second conductivity type island region including (7), a P channel, that is, a first conductivity type MOS) transistor is formed;
A complementary MO5+ conductor device as shown in Figure (a) is obtained.

上記の様に構成された相補型MOS半導体装置に於ても
第2図に示すような寄生トランジスタQ、+Q2等が存
在するものの、島領域(隻の深さが埋込み層(7)を含
み可成法いため、寄生トランジスタの電流増幅率が低く
、従って寄生トランジスタQ1のコレクタ電流も少なく
なり、また、抵抗Rsub (la)に相当する半導体
基板(6)の抵抗が0.O1〜1.0Ω・cmと低抵抗
であるため、上記コレクタ電流の減少と相伴って寄生ト
ランジスタQ2のベースにかかる電圧は可成小さくなり
、寄生トランジスタQ2が導通動作する可能性が非常に
少なくなり、その結果。
Even in the complementary MOS semiconductor device configured as described above, there are parasitic transistors Q, +Q2, etc. as shown in FIG. Because of this method, the current amplification factor of the parasitic transistor is low, so the collector current of the parasitic transistor Q1 is also small, and the resistance of the semiconductor substrate (6) corresponding to the resistor Rsub (la) is 0.01 to 1.0Ω. Since the resistance is as low as cm, the voltage applied to the base of the parasitic transistor Q2 becomes considerably smaller as the collector current decreases, and the possibility that the parasitic transistor Q2 becomes conductive becomes extremely small.

ラッチアップ現象が非常に起こりにくくなるものである
。しかも、これらのラッチアップ対策を施したにもかか
わらず第2導電型の島領域りの横方向への広がりが埋込
み層(7)を利用しているため。
This makes the latch-up phenomenon extremely unlikely to occur. Moreover, despite these measures against latch-up, the second conductivity type island region expands in the lateral direction due to the use of the buried layer (7).

第1図に示したもののような通常の相補型MOS半導体
装置のものと変わらず、場合によっては狭くなるため、
集積度は決して損われるものではない。
It is no different from a normal complementary MOS semiconductor device like the one shown in Fig. 1, but in some cases it is narrower.
The degree of integration is never compromised.

また、半導体層(8)の第1導電型領域(8a)の表面
は半導体基板(6)の不純物の影響を受けず、高抵抗を
保たれるから第2導電型のMOS )ランジスタの動作
が妨げられることは全くないものである。このことは半
導体基板(6)の抵抗率が0.01Ω°cm半導体層(
8)の抵抗率が形成時20Ω・cmの場合における第8
図(d)の八−に断面のP型不純物濃度を示す第4図か
らも明確である。つまり、このものにおいては上記第8
図(b)〜(d)に至る相補型MOS半導体装置の形成
条件の下での半導体基板(6)から半導体層(8)への
オートドープによる不純物の拡散は約8μmであり、従
って半導体層(8)の厚さが8μmより薄いとMOS 
)ランジスタの動作が妨げられる怖れがあるが本実施例
の様に半導体層(8)の厚さが10μmであれば半導体
基板(6)の不純物を含まない領域は表面から約2μm
の深さまであり、この2μmという深さは通常のMOS
 )ランジスタのソース・ドレイン不純物拡散深さより
充分深いものとなるのでMOSトランジスタの動作が妨
げられることは全くないものである。
In addition, the surface of the first conductivity type region (8a) of the semiconductor layer (8) is not affected by impurities in the semiconductor substrate (6) and maintains a high resistance, so that the operation of the second conductivity type MOS transistor is improved. There is no hindrance at all. This means that the resistivity of the semiconductor substrate (6) is 0.01Ω°cm and the semiconductor layer (
8) when the resistivity is 20 Ω cm at the time of formation.
This is also clear from FIG. 4, which shows the P-type impurity concentration in the cross section at 8- in FIG. 4(d). In other words, in this case, the above 8th
Under the conditions for forming the complementary MOS semiconductor device shown in Figures (b) to (d), the diffusion of impurities from the semiconductor substrate (6) into the semiconductor layer (8) by autodoping is approximately 8 μm, and therefore the semiconductor layer If the thickness of (8) is thinner than 8 μm, MOS
) The operation of the transistor may be hindered, but if the thickness of the semiconductor layer (8) is 10 μm as in this example, the impurity-free region of the semiconductor substrate (6) is about 2 μm from the surface.
This depth of 2 μm is the depth of normal MOS
) Since the depth is sufficiently deeper than the source/drain impurity diffusion depth of the transistor, the operation of the MOS transistor is not hindered at all.

ところで、上記実施例に於ては半導体層(8)の厚さを
1011mとしたが、半導体層(8)の厚さとラッチア
ップ現象の関係について本発明者らがさらに検。
By the way, in the above embodiment, the thickness of the semiconductor layer (8) was set to 1011 m, but the inventors further investigated the relationship between the thickness of the semiconductor layer (8) and the latch-up phenomenon.

討を加えた結果を第5図に示す。図に於て縦軸はサイリ
スタがオン状態を保つための尚極電流すなわち保持電流
、横軸は第1及び第2導電型MO5トランジスタの隣接
するN型拡散層とP型拡散層との距離であり、「半導体
層なし」の半導体基板の抵抗率はlO〜80Ω・cm、
r半導体層厚さ10μm。
Figure 5 shows the results of the analysis. In the figure, the vertical axis is the current to keep the thyristor on, that is, the holding current, and the horizontal axis is the distance between the adjacent N-type diffusion layer and P-type diffusion layer of the first and second conductivity type MO5 transistors. Yes, the resistivity of the semiconductor substrate “without semiconductor layer” is lO~80Ω・cm,
r semiconductor layer thickness 10 μm.

15μm、20xmJのものは半導体基板の抵抗率が0
.01〜1.0Ω・cmである。
The resistivity of the semiconductor substrate is 0 for 15μm and 20xmJ.
.. 01 to 1.0 Ω·cm.

この第5図から明らかなように、半導体層(8)を設け
たものは第1図に示すような従来のものの半導体層を設
けず、直接高抵抗の半導体基板にMOSトランジスタを
形成したものに対してラッチアップ現象は非常に起り難
いものになっているものである。しかも、ラッチアップ
現象を同等、つまり保持電流が等しいものとした場合に
はこの実施例のものはP −N 拡散間距離を狭くでき
るので集積度を向上できるという利点を有していること
も判るものでゐる〇 一万、半導体層(8)の厚さを8μmより小さいものと
した場合には、半導体基板の不純物の影響が半導体層(
8)表面にも現われるため、この半導体層(8)にMO
Sトランジスタを形成した場合、 MOS )ランジス
タの動作特性が一律なものができず、さらに薄くした場
合には半導体層(8)の表面層が低抵抗になり、 MO
S トランジスタが動作しなくなるものであった。従っ
て、半導体層(8)の厚さは8μm以上にすることが良
好な相補型MOS半導体装置をつくる上で好ましいもの
である。
As is clear from FIG. 5, the one provided with the semiconductor layer (8) is different from the conventional one shown in FIG. On the other hand, the latch-up phenomenon is extremely unlikely to occur. Furthermore, it can be seen that if the latch-up phenomenon is the same, that is, the holding current is the same, then this example has the advantage that the distance between the P-N diffusions can be narrowed and the degree of integration can be improved. Yes, if the thickness of the semiconductor layer (8) is less than 8 μm, the influence of impurities in the semiconductor substrate will affect the semiconductor layer (8).
8) Since it also appears on the surface, MO is present in this semiconductor layer (8).
If an S transistor is formed, the operating characteristics of the transistor (MOS) cannot be uniform, and if it is made even thinner, the surface layer of the semiconductor layer (8) will have a low resistance, and the MOS transistor will not have uniform operating characteristics.
The S transistor would stop working. Therefore, it is preferable for the thickness of the semiconductor layer (8) to be 8 μm or more in order to produce a good complementary MOS semiconductor device.

また、半導体層(8)の厚さを20μmより厚いものと
すると、半導体層(8)を形成したことによるラッチア
ップ対策が従来のものに比しそれ程向上しないので、2
0μm以下とすることが好ましいものである・ なお、上記実施例ではP型を第1導電型とし。
Furthermore, if the thickness of the semiconductor layer (8) is made thicker than 20 μm, the latch-up countermeasures due to the formation of the semiconductor layer (8) will not be much improved compared to the conventional one.
It is preferable to set it to 0 μm or less. In the above embodiment, P type is used as the first conductivity type.

N型を第2導電型としたが、P型とN型の全てを入れ換
えても同様の効果が得られるものでゐる口また。上記実
施例では第2導電型の低不純物濃度の島領域(ツを形成
する際、一部を半導体層a9表面からのイオン注入によ
って頼ったが、島領域りの形成を全てを埋込み層(7)
からのオートドープによって形成しても良い。
Although N-type is used as the second conductivity type, the same effect can be obtained even if all P-type and N-type are replaced. In the above embodiment, when forming the second conductivity type island region with a low impurity concentration, part of it was relied on by ion implantation from the surface of the semiconductor layer a9. )
It may also be formed by autodoping from.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に相補型MOS半導体装置に
於て第1導電型の高不純物濃度の半導体基板の一主面上
にMOS )ランジスタが形成される第1導電型の低不
純物濃度の半導体層を設け、第1導電型のMOS )ラ
ンジスタが形成される島領域を半導体基板の一主面に形
成された毘不純物濃度の埋込み層を含むものとし、かつ
半導体層の厚さを半導体基板の不純物が半導体層の表面
に到達しない厚さとしたので半導体基板の低抵抗化及び
島領域を深くできた相乗効果によりラッチアップ現象を
非常に起こりにくくできるという効果を有し。
As explained above, the present invention provides a complementary MOS semiconductor device in which a MOS transistor is formed on one main surface of a first conductivity type high impurity concentration semiconductor substrate. The island region in which the first conductivity type MOS transistor is formed includes a buried layer formed on one main surface of the semiconductor substrate and has an impurity concentration equal to the thickness of the semiconductor layer. Since the thickness is such that it does not reach the surface of the semiconductor layer, the synergistic effect of lowering the resistance of the semiconductor substrate and making the island region deeper has the effect of making latch-up extremely difficult to occur.

しかも島領域を深く形成しても横方向の拡がりが少ない
ため集積度は損なわれず、さらに第2導電型のMOS 
)ランジスタが形成される半導体層表面の不純物濃度は
半導体基板の不純物の影響を受けないため、第2導電型
のMOS トランジスタの動作が妨げられないとともに
、設計裕度が向上するという効果をも有しているもので
ある。
Moreover, even if the island region is formed deeply, the lateral expansion is small, so the degree of integration is not impaired, and the second conductivity type MOS
) Since the impurity concentration on the surface of the semiconductor layer on which the transistor is formed is not affected by impurities in the semiconductor substrate, the operation of the second conductivity type MOS transistor is not hindered, and the design margin is improved. This is what we are doing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の相補型MO5半導体装置を示す要部断面
図、第2図は相補型MO8半導体装置に寄生するサイリ
スタの等価回路図、第8図(a)〜(Wはこの発明の一
実施例を示し、第8図(a)は要部断面図。 第8図(b)〜(d) ’1.tl工程順に示す要部断
面図、第4図は第8図(ωの一点鎖線部分A−にのP型
不純物濃度を示す図、第6図は寄生サイリスタ保持電流
と半導体層の膜厚の関係を示す図である。 図において、(6)は第1導電型の4不純物層度の半導
体基板、(7月よ第2導wt型の嶋不純物濃度の埋込み
層、(8)は第1導電型の低不純物濃度の半導体Jfi
r 、(2)は埋込み層(1)を含む第2導電型の低不
純物濃度の島領域、(10a)(lob)は各々第2導
電型のMOS )ランジスタのドレイン領域及びソース
領域。 (lla)(llb)は各々第1導電型のMOS )ラ
ンジスタのドレイン領域及びソース領域である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。 代理人 大岩増雄 第1図 (α) (b。 第2図 (C− (j 第3図 11↓ 第4図 表面力゛うの51ご 〔p−夙〕 第5図 P”−N’拡Kb’I tE A’i (un)1、事
件の表示 特願昭59−75211号3、補正をする者 代表者片山仁へ部 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (υ明細書中第7頁第14行に「P形不純物」とあるの
を「N型不純物」に訂正する。 (2)同M?頁第15行に「I X 10sOcIR−
+1 J ト6ル(Dをrixxo16a Jに訂正す
る。 以上
FIG. 1 is a sectional view of a main part of a conventional complementary MO5 semiconductor device, FIG. 2 is an equivalent circuit diagram of a thyristor parasitic to a complementary MO8 semiconductor device, and FIGS. Fig. 8(a) is a sectional view of the main part. Fig. 8(b) to (d) is a sectional view of the main part shown in the order of '1.tl process. Figure 6 shows the relationship between the parasitic thyristor holding current and the film thickness of the semiconductor layer. (8) is a semiconductor substrate with a low impurity concentration of the first conductivity type, (in July, a buried layer with a Shima impurity concentration of the second conductivity type, and a semiconductor substrate with low impurity concentration of the first conductivity type.
r, (2) is a second conductivity type low impurity concentration island region including the buried layer (1), (10a) and (lob) are the second conductivity type MOS transistor drain region and source region, respectively. (lla) and (llb) are the drain region and source region of a first conductivity type MOS transistor, respectively. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Fig. 1 (α) (b. Fig. 2 (C- (j Fig. 3 11 ↓ Kb'I tE A'i (un)1, Indication of the case Japanese Patent Application No. 59-752113, Part 5 to Hitoshi Katayama, representative of the person making the amendment, Column 6 for detailed explanation of the invention in the specification subject to amendment , Contents of the amendment (υIn the 7th page, line 14 of the specification, "P-type impurity" is corrected to "N-type impurity". (2) In the same M? page, 15th line, "I X 10sOcIR-
+1 J toru (correct D to rixxo16a J.

Claims (1)

【特許請求の範囲】 (1)第1導電型の高不純物濃度の半導体基板、この半
導体基板の一生面に選択的に形成されたm2導電型の高
不純物濃度の埋込み層、前記半導体基板の一生面上に前
記半導体基板内の不純物が表面に到達しない厚さにエピ
タキシャル成長して形成された第1導電型の低不純物濃
度の半導体層、前記埋込み層から前記半導体層の一生面
に露出して形成された第2導電型の島領域、前記半導体
層の第1導電型領域の一生面に形成された第2導電型の
MOS )ランジスタのソース領域及びドレイン領域&
前記島領域の一生面に形成された第1導電型のMOS 
)ランジスタのソース領域及びドレイン領域とを備えた
ことを特徴とする相補型MO5半導体装置。 傭)第1導電型の半導体基板の抵抗率をIQ−c+B以
下とし、半導体層の厚さは8μmより厚いものであるこ
とを特徴とする特許請求の範囲第1項記載の相補型MO
8半導体装置。 (3)半導体基板内の不純物が到達しない領域の半導体
層の抵抗率は1(1〜80Ω・cmであることを特徴と
する特許請求の範囲第1項または第2項記載の相補型M
O8半導体装置。
[Scope of Claims] (1) A semiconductor substrate of a first conductivity type with a high impurity concentration, a buried layer with a high impurity concentration of an m2 conductivity type selectively formed on the entire surface of the semiconductor substrate, a semiconductor substrate with a high impurity concentration of the m2 conductivity type; a first conductivity type low impurity concentration semiconductor layer formed by epitaxial growth on a surface to a thickness such that impurities in the semiconductor substrate do not reach the surface, and a semiconductor layer of a first conductivity type with a low impurity concentration exposed from the buried layer to the entire surface of the semiconductor layer; a second conductivity type island region formed on the entire surface of the first conductivity type region of the semiconductor layer;) a source region and a drain region of the transistor;
a first conductivity type MOS formed on the entire surface of the island region;
) A complementary MO5 semiconductor device comprising a source region and a drain region of a transistor. 1) Complementary MO according to claim 1, characterized in that the resistivity of the semiconductor substrate of the first conductivity type is IQ-c+B or less, and the thickness of the semiconductor layer is thicker than 8 μm.
8 semiconductor devices. (3) The complementary type M according to claim 1 or 2, characterized in that the resistivity of the semiconductor layer in the region where impurities in the semiconductor substrate do not reach is 1 (1 to 80 Ω·cm).
O8 semiconductor device.
JP59075211A 1984-04-13 1984-04-13 Complementary mos semiconductor device Pending JPS60218866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075211A JPS60218866A (en) 1984-04-13 1984-04-13 Complementary mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075211A JPS60218866A (en) 1984-04-13 1984-04-13 Complementary mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS60218866A true JPS60218866A (en) 1985-11-01

Family

ID=13569635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075211A Pending JPS60218866A (en) 1984-04-13 1984-04-13 Complementary mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS60218866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273314A (en) * 1987-04-30 1988-11-10 Nec Corp Formation of diffused well
JP2003197908A (en) * 2001-09-12 2003-07-11 Seiko Instruments Inc Semiconductor element and its fabricating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169359A (en) * 1980-05-30 1981-12-26 Ricoh Co Ltd Semiconductor integrated circuit device
JPS58170048A (en) * 1982-03-31 1983-10-06 Fujitsu Ltd Semiconductor device
JPS58182863A (en) * 1982-04-21 1983-10-25 Hitachi Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169359A (en) * 1980-05-30 1981-12-26 Ricoh Co Ltd Semiconductor integrated circuit device
JPS58170048A (en) * 1982-03-31 1983-10-06 Fujitsu Ltd Semiconductor device
JPS58182863A (en) * 1982-04-21 1983-10-25 Hitachi Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273314A (en) * 1987-04-30 1988-11-10 Nec Corp Formation of diffused well
JP2003197908A (en) * 2001-09-12 2003-07-11 Seiko Instruments Inc Semiconductor element and its fabricating method

Similar Documents

Publication Publication Date Title
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
KR950006479B1 (en) Laieral transistor
JPH0315346B2 (en)
JPS632370A (en) Semiconductor device
JPH0499384A (en) Thyristor and manufacture thereof
US4754314A (en) Split-level CMOS
US4603471A (en) Method for making a CMOS circuit having a reduced tendency to latch by controlling the band-gap of source and drain regions
JPH0652792B2 (en) Semiconductor device
JP2001284540A (en) Semiconductor device and its manufacturing method
US4728998A (en) CMOS circuit having a reduced tendency to latch
EP0308612A2 (en) Field effect transistor and manufacturing method thereof
JP3469664B2 (en) High voltage semiconductor device
JPS60218866A (en) Complementary mos semiconductor device
JPH0783113B2 (en) Semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
US5604359A (en) Parasitic PNP transistor with crystal defect layer in the emitter region
KR930008022B1 (en) Semiconductor device
JP3446698B2 (en) Semiconductor device and manufacturing method thereof
JPS6241427B2 (en)
EP0138162A2 (en) CMOS structure
JPH01300569A (en) Semiconductor device
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JPH05206153A (en) Semiconductor integrated circuit device
JPS627710B2 (en)
JPS62179758A (en) Complementary semiconductor device