JPS60218053A - Colorimetric method of colored transparent medium with turbidity - Google Patents

Colorimetric method of colored transparent medium with turbidity

Info

Publication number
JPS60218053A
JPS60218053A JP59075207A JP7520784A JPS60218053A JP S60218053 A JPS60218053 A JP S60218053A JP 59075207 A JP59075207 A JP 59075207A JP 7520784 A JP7520784 A JP 7520784A JP S60218053 A JPS60218053 A JP S60218053A
Authority
JP
Japan
Prior art keywords
light
light source
colored transparent
transmitted
transparent medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59075207A
Other languages
Japanese (ja)
Inventor
Izumi Fumoto
麓 泉
Susumu Ogino
荻野 進
Kunitoshi Hirata
平田 邦年
Hidenao Takagi
高木 秀尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI PANPU KAGAKU BOSUI KK
Original Assignee
KANSAI PANPU KAGAKU BOSUI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI PANPU KAGAKU BOSUI KK filed Critical KANSAI PANPU KAGAKU BOSUI KK
Priority to JP59075207A priority Critical patent/JPS60218053A/en
Publication of JPS60218053A publication Critical patent/JPS60218053A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the influence of the turbidity in a colored transparent medium which may causes an error in colorimetric numeral by irradiating the colored transparent medium by a light source within a visible region spectrum range and a light source for an invisible electromagnetic wave, and photodetecting respective transmitted light beams by two kinds of suitable sensors. CONSTITUTION:Two kinds light sources are used; light source A within the range of a visible spectrum for measuring transmitted light of the colored transparent medium 1 containing a turbid material 2 and light source B for, for example, infrared rays which are neither within the wavelength range of the visible spectrum nor transmitted through an opaque solid or colloidal material. The colored transparent medium 1 is irradiated and transmitted light beams 3a and 3b are photodetected by sensors 4a and 4b and their light intensity values are converted into currents or voltages. The quantities of electricity from the two sensors 4a and 4b are led to an arithmetic processing part 5 to extract only information on color.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は少なくとも濁りを有する着色透明媒体の測色方
法に関するもので、さらに詳しくは、着色透明媒体の透
過色測定などにおいて、該媒体を透過する真の透過光量
を正確に把握することにより、濁りによる吸光度の誤差
を排除し得る方法にかかるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for measuring the color of a colored transparent medium having at least turbidity, and more specifically, in measuring the transmitted color of a colored transparent medium, The present invention relates to a method that can eliminate errors in absorbance due to turbidity by accurately determining the amount of transmitted light.

従来の技術 従来、透明な着色媒体、たとえば染色浸染液、或いは着
色ガラス、合成樹脂素材成型品などの如く、透明で、か
つ着色された物質の透過色測定などにおいては、該媒体
を透過した透過光を光電管または光センサーのような光
感知体を用いて測色する方法が一般的に行なわれている
。しかしながら、この場合、該媒体中に存在する不透明
な固体の微粒子およびコロイド物質による遮光作用、い
わゆる濁りによって、透過光量が減少し、媒体自身の真
の透過率よりも低い数値として測定される難点がある。
2. Description of the Related Art Conventionally, in the measurement of the transmitted color of a transparent colored medium, such as a dye dipping liquid, colored glass, or a synthetic resin molded product, etc., it is necessary to measure the transmitted color through the medium. A commonly used method is to measure the color of light using a photosensitive body such as a phototube or a light sensor. However, in this case, the problem is that the amount of transmitted light is reduced due to the light-shielding effect of opaque solid particles and colloidal substances present in the medium, so-called turbidity, and the measured value is lower than the true transmittance of the medium itself. be.

発明が解決しようとする問題点 本発明は上記のような問題点を解決するため鋭意研究の
結果到達したもので、少なくとも濁りを有する着色透明
媒体の測色を行なう方法において、一方の光源には、前
記媒体の透過光を測定するための可視領域スペクトルの
範囲にある光源(A)を、また、他方には不透明な固体
或いは膠状物質を透過することのできな不可視の電磁波
である光源(B)のそれぞれをもって照射し、前記媒体
を透過した各透過光をそれぞれに適した二種の感知体で
受光し、次いで、これらを電気量に変換した後、光源(
A)による見掛けの透過光量と、光源(B)からの濁り
物質による遮光量とを加算することにより真の透過光ス
ペクトルを測定する濁りを有する着色透明媒体の測色方
法を提供するものであり、このように濁り物質の影響を
排除し、媒体を透過する真の透過光量を正確に把握し、
従来未解決であった難点を解消するとともに、着色状態
の各種透明物質の測色値精度を格段に向上し得る新規な
方法を提案するものである。
Problems to be Solved by the Invention The present invention was achieved as a result of intensive research in order to solve the above-mentioned problems. , a light source (A) in the range of the visible spectrum for measuring the transmitted light of said medium, and on the other hand a light source (A) which is an invisible electromagnetic wave that cannot penetrate opaque solids or glue-like substances. B), each transmitted light transmitted through the medium is received by two types of sensing bodies suitable for each, and then, after converting these into electric quantities, the light source (
This invention provides a method for measuring the color of a colored transparent medium having turbidity, in which the true transmitted light spectrum is measured by adding the amount of apparent transmitted light from A) and the amount of light shielded by the turbid substance from the light source (B). In this way, we can eliminate the influence of turbid substances and accurately grasp the true amount of light transmitted through the medium.
This paper proposes a new method that can solve the problems that have not been solved in the past and can significantly improve the accuracy of colorimetric values for various transparent materials in a colored state.

作用及び実施例 以下、本発明の方法の一例を図面に基づいて説明する。Effects and examples An example of the method of the present invention will be explained below based on the drawings.

第1図は本発明の方法を実施するための計測原理を示す
説明図である。
FIG. 1 is an explanatory diagram showing the measurement principle for carrying out the method of the present invention.

第1図において示す如く、本発明の方法においては測定
に用いる光源に2種類を用意する。(A)は少なくとも
濁り物質を含んだ着色透明媒体1の透過光を測定するた
めの光源で約400〜700nmの可視スペクトルの範
囲にある光である。
As shown in FIG. 1, in the method of the present invention, two types of light sources are prepared for use in measurement. (A) is a light source for measuring the transmitted light of the colored transparent medium 1 containing at least a turbid substance, and is light in the visible spectrum range of about 400 to 700 nm.

(B)は前記可視スペクトルの波長範囲を含まず、かつ
、可視の光を吸収する物質には吸収されず、さらに不透
明な固体或いは膠状物質を透過することのできない不可
視の電磁波、たとえば赤外線などである。
(B) is an invisible electromagnetic wave that does not include the wavelength range of the visible spectrum, is not absorbed by substances that absorb visible light, and cannot pass through opaque solid or glue-like substances, such as infrared rays. It is.

TI) まず、光源(A)ならびに光源(B)よりそれ
ぞれ照射された光は、着色透明媒体1を透過し、その透
過光3a、3bは、それぞれに適した受光感知体4a、
4bで受光し、その光強度を電流または電圧量へ別々に
交換する。
TI) First, the light irradiated from the light source (A) and the light source (B) is transmitted through the colored transparent medium 1, and the transmitted light 3a, 3b is transmitted to the light receiving and sensing body 4a, which is suitable for each.
4b and separately exchange the light intensity into an amount of current or voltage.

(2) 光源Aからの透過光3aを受光した電気量は、
着色透明媒体l自身の吸光による吸光量(X)と濁り物
質2の遮光による遮光量(Y)を差し引いた見掛けの透
過量(100−X−Y)となっている。また、(X)は
色に関する真の情報をもっており、(100−X)を4
00〜700nmの各波長毎の電気量として取り出せば
、透過光3aの色のスペクトルを再現し各波長毎の真の
透過量を測定できるが、一方、(Y)は媒体の色とは無
関係で、(100−Y)は各波長とも一定の水準である
。一方の光源(B)からの透過光3aを受光した感知体
4bからの電気量は、照射電磁波量を100とすれば(
100−Y)であり、(Y)のみの情報をもっている。
(2) The amount of electricity received by the transmitted light 3a from light source A is:
The apparent amount of transmission (100-X-Y) is obtained by subtracting the amount of light absorption (X) caused by the colored transparent medium 1 itself and the amount of light shielded (Y) caused by the light shielded by the turbid substance 2. Also, (X) has true information about color, and (100-X) is 4
If it is extracted as the amount of electricity for each wavelength from 00 to 700 nm, it is possible to reproduce the color spectrum of the transmitted light 3a and measure the true amount of transmission for each wavelength. On the other hand, (Y) is unrelated to the color of the medium. , (100-Y) are at a constant level for each wavelength. If the amount of irradiated electromagnetic waves is 100, the amount of electricity from the sensing body 4b that has received the transmitted light 3a from one light source (B) is (
100-Y) and has information only for (Y).

(3) 上記の2種の光感知体4a、4bからの電気量
は、計測器に接続した電算処理部5によって、(100
−X−Y) + (Y) = (l O0−X)として
、色に関する情報のみを取り出すことが可能である。第
1図では示していないが、得られたその情報は、必要に
応じてアナログ、デジタルの表示、或いは記憶素子、記
録紙などに移し、ディスプレイ画面上にも、真の透過色
のスペクトル曲線を描かせることができる。
(3) The amount of electricity from the above two types of photodetectors 4a and 4b is calculated by the computer processing unit 5 connected to the measuring instrument (100
-X-Y) + (Y) = (l O0-X), it is possible to extract only the information regarding the color. Although not shown in Figure 1, the obtained information is transferred to an analog or digital display, memory element, recording paper, etc. as necessary, and the true transmitted color spectrum curve is also displayed on the display screen. You can draw it.

また、第1図中、(イ)ならびに(ロ)は着色透明媒体
l自身の吸光による吸光量(X)と、濁り物質2の遮光
による遮光量(Y)の関係を示す概要説明図であり、光
源(A)からの透過光3aを受光した電気量は、着色透
明媒体l自身の吸光量(X)と濁り物質2による遮光量
(Y)を差し引いた見掛けの透過量(100−X−Y)
となっていることを図示したものである。
In addition, in FIG. 1, (a) and (b) are schematic explanatory diagrams showing the relationship between the amount of light absorption (X) due to light absorption by the colored transparent medium 1 itself and the amount of light shielding (Y) due to the light shielding of the turbid substance 2. , the amount of electricity received by the transmitted light 3a from the light source (A) is the apparent transmitted amount (100-X- Y)
This is a diagram illustrating that.

なお、(イ)及び(ロ)図中、縦軸は透過率、(イ)(
ロ)図の横軸は、400〜700nmの波長範囲を示す
In Figures (A) and (B), the vertical axis is the transmittance, and (A) (
b) The horizontal axis of the figure indicates the wavelength range of 400 to 700 nm.

なお、本発明においては、光源Aには400〜700n
mの可視スペクトルの範囲にある光を用いているが、一
方、光源Bは上記可視スペクトルの範囲を含まず、かつ
、不透明な固体や膠状物質を透過することの出来ない不
可視の電磁波、たとえば赤外線等のいずれでもよく特に
限定しない。
In addition, in the present invention, the light source A has a power of 400 to 700n.
On the other hand, light source B uses invisible electromagnetic waves that do not fall within the visible spectrum range and cannot penetrate opaque solids or glue-like substances, such as invisible electromagnetic waves. Any method such as infrared rays may be used, and there is no particular limitation.

さらに、本発明においては、二種類の光源を用いて光を
照射する構成としているが、このような計測原理は光だ
けに限定されるものではなく、光以外の他の電磁波など
の手段を適用することも可能である。また、このような
計測原理は、少なくとも濁りを含んだ着色透明媒体、た
とえば、染色浸染染浴、工場廃水、さらに着色ガラス、
合成樹脂素材及び成型品はじめ、大気または排ガス中の
塵埃、浮遊物などに至るまで、これを適用することがで
きる。
Furthermore, although the present invention is configured to irradiate light using two types of light sources, this measurement principle is not limited to light only, and other means other than light such as electromagnetic waves can also be applied. It is also possible to do so. In addition, such a measurement principle can be applied to colored transparent media containing at least turbidity, such as dyeing and dyeing baths, factory wastewater, colored glass,
This can be applied to everything from synthetic resin materials and molded products to dust and floating objects in the atmosphere or exhaust gas.

発明の効果 上記の如く、本発明は従来着色状態の透明物質の透過色
測定において、該透明物質は実質的には濁りを含んでい
ることが多く、かつ、それによって透過光量が減少し、
媒体固有の真の透過率よりも低い値が得られていた難点
を解消し得るものであって、測色数値に誤差をもたらす
濁りの影響を排除することができ、しかも、連続して安
定な測色数値が得られるため、各種の着色透明物質の透
過色の直接測定のみならず、連続測色、連続記録を常に
高精度で実施することができる利点を具備している。こ
のため種々の生産工程における条件管理、制御用、或い
は広く公害関連を含めた監視用としても適しており、そ
の効果は顕著である。
Effects of the Invention As described above, the present invention conventionally measures the transmitted color of transparent materials in a colored state, since the transparent materials often substantially contain turbidity, and as a result, the amount of transmitted light decreases.
This solves the problem of obtaining a value lower than the true transmittance inherent to the medium, eliminates the influence of turbidity that causes errors in colorimetric values, and provides continuous and stable transmittance. Since colorimetric values can be obtained, it has the advantage of not only being able to directly measure the transmitted color of various colored transparent materials, but also being able to perform continuous colorimetry and continuous recording with high precision. For this reason, it is suitable for condition management and control in various production processes, or for monitoring a wide range of pollution-related matters, and its effects are remarkable.

特許出願人 関西帆布化学防水株式会社第1図 手続補正書(自発) 昭和59年5月14日 2、発明の名称 濁りを有する着色透明媒体の測色方法 3、補正をする者 事件との関係 特許出願人 住 所 大阪市東区安土町1丁目3番地名 称 関西帆
布化学防水株式会社 代表者 岩 堀 嘉 明 4、代 理 人 郵便番号 530 住所 大阪市北区末広町3番21号 星和地所扇町ビル 6、補正の対象 ill 明細書の第4、図面の簡単な説明」の欄。
Patent Applicant: Kansai Hanpu Chemical Waterproofing Co., Ltd. Figure 1 Procedural Amendment (Voluntary) May 14, 1981 2. Title of Invention: Method for measuring color of colored transparent media with turbidity 3. Relationship with the amended person case Patent Applicant Address 1-3 Azuchi-cho, Higashi-ku, Osaka Name Kansai Hanpu Chemical Waterproofing Co., Ltd. Representative Yoshiaki Iwahori 4, Agent Postal code 530 Address Seiwachi, 3-21 Suehiro-cho, Kita-ku, Osaka Tokoro-Ogimachi Building 6, subject of amendment ill No. 4 of the specification, "Brief explanation of drawings" column.

7、補正の内容 11) 明細書の第4、図面の簡単な説明」の項を下記
の通り補正する。
7. Contents of amendment 11) Section 4, "Brief explanation of drawings" of the specification is amended as follows.

記 4、図面の簡単な説明 図面は本発明の方法を実施するための計測原理を示す説
明図である。
Note 4: Brief description of the drawings The drawings are explanatory diagrams showing the measurement principle for implementing the method of the present invention.

1・・・着色透明媒体、2・・・濁り物質、3a、3b
・−−透過光、4a、4b−・・受光感知体、5・・電
算処理部、
1... Colored transparent medium, 2... Turbid substance, 3a, 3b
・--Transmitted light, 4a, 4b--light receiving sensing body, 5... computer processing unit,

Claims (1)

【特許請求の範囲】 1)少な(とも濁りを有する着色透明媒体の測色を行な
う方法において、一方の光源には前記媒体の透過光を測
定するための可視領域スペクトルの範囲にある光源(A
)を、また、他方には不透明な固体或いは膠状物質を透
過することのできない不可視の電磁波である光源(B)
のそれぞれをもって照射し、前記媒体を透過した各透過
光をそれぞれに通した二種の感知体で受光し、次いで、
これらを電気量に変換した後、光源(A)による見掛け
の透過光量と、光源(B)からの濁り物質による遮光量
とを加算することにより真の透過光スペクトルを測定す
ることを特徴とする濁りを有する着色透明媒体の測色方
法。 2)上記着色透明媒体が染色染液又は着色廃液である特
許請求の範囲第1項記載の測色方法。 3)上記着色透明媒体が着色ガラス又は合成樹脂素材成
型品である特許請求の範囲第1項記載の測色方法。
[Scope of Claims] 1) In a method for measuring the color of a colored transparent medium having a small amount of turbidity, one light source includes a light source (A) in the visible spectrum for measuring the transmitted light of the medium.
), and on the other hand, a light source (B) which is an invisible electromagnetic wave that cannot penetrate opaque solid or glue-like substances.
The transmitted light transmitted through the medium is received by two types of sensing bodies, and then,
After converting these into electrical quantities, the true transmitted light spectrum is measured by adding the apparent amount of transmitted light from the light source (A) and the amount of light blocked by the turbidity from the light source (B). Color measurement method for colored transparent media with turbidity. 2) The color measurement method according to claim 1, wherein the colored transparent medium is a dyeing liquid or a colored waste liquid. 3) The color measurement method according to claim 1, wherein the colored transparent medium is a colored glass or a synthetic resin molded product.
JP59075207A 1984-04-13 1984-04-13 Colorimetric method of colored transparent medium with turbidity Pending JPS60218053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075207A JPS60218053A (en) 1984-04-13 1984-04-13 Colorimetric method of colored transparent medium with turbidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075207A JPS60218053A (en) 1984-04-13 1984-04-13 Colorimetric method of colored transparent medium with turbidity

Publications (1)

Publication Number Publication Date
JPS60218053A true JPS60218053A (en) 1985-10-31

Family

ID=13569515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075207A Pending JPS60218053A (en) 1984-04-13 1984-04-13 Colorimetric method of colored transparent medium with turbidity

Country Status (1)

Country Link
JP (1) JPS60218053A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101728A (en) * 1979-01-29 1980-08-04 Nissan Motor Co Ltd Structure of vane disposed at downstream side of waste gate valve in turbocharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101728A (en) * 1979-01-29 1980-08-04 Nissan Motor Co Ltd Structure of vane disposed at downstream side of waste gate valve in turbocharger

Similar Documents

Publication Publication Date Title
Johansen et al. Surface plasmon resonance: instrumental resolution using photo diode arrays
JPS55154439A (en) Method and apparatus for measuring moisture content of paper
ATE65605T1 (en) ARRANGEMENT FOR THE OPTICAL MEASUREMENT OF SUBSTANCE CONCENTRATIONS.
DE69522028T2 (en) Testing transparent containers
CA2132271A1 (en) Improved data collection method for use with chemical sensors
US4201472A (en) Apparatus for converting light signals into digital electrical signals
JP4487197B2 (en) Turbidity / colorimeter
JP2008286659A (en) Turbidity/color meter
JPS60218053A (en) Colorimetric method of colored transparent medium with turbidity
KR940007526A (en) Pollutant Analysis Method
JPS61105432A (en) Colorimetric method of turbid dyeing bath for dyeing using optical fiber
US3441349A (en) Optical apparatus for measuring the light transmission of a sample body
US3706497A (en) Method and apparatus for determining colorimetric concentrations
JPS6129450B2 (en)
Timperley Dissolved coloured compounds and suspended matter in the waters of the middle Waikato River
Kontturi et al. Robust sensor for turbidity measurement from light scattering and absorbing liquids
JPS63106541A (en) Integral absorbancy measuring apparatus
JP2000019119A (en) Method for diffraction optical analysis and sensor therefor
CN211505168U (en) Multi-light source device for COD measurement
JPS59105543A (en) Detector for antigen-antibody reaction
JPH02115750A (en) Infrared moisture meter less affected by basis weight
RU11895U1 (en) DEVICE FOR DETERMINING WATER POLLUTION
Besar et al. Simple fibre optic spectrophotometric cell for pH determination
JPS5629116A (en) Measurement unit for moving distance
RU2059227C1 (en) Humidity meter