JPS60216458A - Regeneration method of negative electrode of high-temperature fuel cell - Google Patents

Regeneration method of negative electrode of high-temperature fuel cell

Info

Publication number
JPS60216458A
JPS60216458A JP59071970A JP7197084A JPS60216458A JP S60216458 A JPS60216458 A JP S60216458A JP 59071970 A JP59071970 A JP 59071970A JP 7197084 A JP7197084 A JP 7197084A JP S60216458 A JPS60216458 A JP S60216458A
Authority
JP
Japan
Prior art keywords
anode
gas
fuel cell
control valve
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59071970A
Other languages
Japanese (ja)
Other versions
JPH0521311B2 (en
Inventor
Junji Niikura
順二 新倉
Hisaaki Giyouten
久朗 行天
Akihiro Hosoi
昭宏 細井
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59071970A priority Critical patent/JPS60216458A/en
Publication of JPS60216458A publication Critical patent/JPS60216458A/en
Publication of JPH0521311B2 publication Critical patent/JPH0521311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To regenerate a progressively sintered anode without disassembling a cell by feeding the oxidizing gas to the anode of a fuel cell to oxidize the composing metal constituents then feeding the reducing gas to reduce it. CONSTITUTION:When a fused carbonate fuel cell 1 having an anode progressively sintered during an operation for a long time is to be regenerated, first a load is removed, a purge gas control valve 7 is opened and an anode gas control valve 4 is closed to purge the inner gas, then the control valve 7 is closed and an oxidizing gas control valve 8 is opened, and the cathode gas is fed to oxidize the nickel-sintered porous body of the anode. Next, the purge gas is fed, and it is again switched to the anode gas for reduction. Accordingly, the anode can be regenerated by scantily roughing the surface of the anode to increase the porosity and the specific surface area, and the cell performance can be recovered without disassembling the cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、動作温度が比較的高く、負極(アノード)材
料として金属を用いた高温燃料電池に関するもので、特
に溶融炭酸塩燃料電池のアノード再生法に関係するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to high-temperature fuel cells with relatively high operating temperatures and using metal as the negative electrode (anode) material, and in particular to an anode regeneration method for molten carbonate fuel cells. It is related to.

従来例の構成とその問題点 従来、高温燃料電池の代表的なものとして溶融炭酸塩燃
料電池や固体電解質燃料電池などが知られているが、高
温であることなど条件が厳しいた2 ぺ−1l めに材料面での制約が大きい。その中で溶融炭酸塩燃料
電池は動作温度が約660°Cと、金属材料が使用でき
る温度領域であるため、マウント関係およびアノードな
どには金属が用いられている。
Structures of conventional examples and their problems Conventionally, molten carbonate fuel cells and solid electrolyte fuel cells have been known as typical high-temperature fuel cells, but they have difficult conditions such as high temperatures. Therefore, there are major restrictions in terms of materials. Among these, molten carbonate fuel cells have an operating temperature of about 660° C., which is a temperature range in which metal materials can be used, so metal is used for the mounts, anodes, and the like.

溶融炭酸′塩燃刺電池のアノードとしてはニッケル微粉
末を焼結した多孔板などが用いられているが、水素を主
成分どする還元性のアノードガス雰囲気下で長時間65
0°Cの温度に保たれるため、ニッケル微粉末の焼結が
進行し、アノードの多孔度が低下するという問題が生じ
ていた。ニッケル多孔板の焼結が進行し、多孔度が減少
すると、反応に関与できる電極面積が減少し、アノード
の性能が低下するため、電池としての寿命が低下するこ
とになる。
A porous plate made of sintered fine nickel powder is used as the anode of a molten carbonate burning battery, but it is not possible to use it for a long time in an atmosphere of reducing anode gas containing hydrogen as the main component.
Since the temperature is maintained at 0°C, sintering of the fine nickel powder progresses, causing a problem that the porosity of the anode decreases. As the sintering of the nickel porous plate progresses and the porosity decreases, the area of the electrode that can participate in the reaction decreases, and the performance of the anode deteriorates, resulting in a shortened battery life.

このアノードの焼結進行を抑制するため、従来いくつか
の方法が考えられてきた。その1つにはアノード材料の
ニッケルに、高融点金属成分、たとえばクロム、ジルコ
ニウム々どを添加して焼結進行を抑える方法がある。そ
のほかニッケル粉末にアルミナなどのセラミックス微粉
末を混入する3ぺ−1 方法や、セラミクス粒子表面にニッケルメッキを施し、
このメタルコートセラミクス粒子でアノードを構成する
などの方法が考えられてきている。
Several methods have been considered in the past to suppress the progress of sintering of the anode. One method is to suppress the progress of sintering by adding high melting point metal components such as chromium and zirconium to the nickel of the anode material. In addition, there is a 3-P1 method in which fine ceramic powder such as alumina is mixed into nickel powder, and nickel plating is applied to the surface of ceramic particles.
Methods such as forming an anode using these metal-coated ceramic particles have been considered.

とれらの方法は一応の効果があり、アノードの焼結進行
がかなり抑えられる事がわがっている。
It is known that these methods are somewhat effective and can considerably suppress the progress of sintering of the anode.

しかし、それでもなお焼結の進行により、電池性能は数
千時間の運転中に徐々に低下していく。従って燃料電池
が寿命として要求されている致方時間の間、アノードが
前述のような方法だけでその性能を維持することは不可
能であった。
However, due to the progress of sintering, cell performance gradually deteriorates over thousands of hours of operation. Therefore, it has been impossible for the anode to maintain its performance only in the above-described manner during the required lifetime of the fuel cell.

発明の目的 そこで本発明は、長時間の運転期間中に焼結が進行し、
多孔度、比表面積などが低下したアノードを電池に組み
込まれた状態のまま再生処理し、その寿命を大きく伸ば
す事を目的とする。
Purpose of the Invention Therefore, the present invention aims to provide a method in which sintering progresses during a long period of operation.
The purpose is to recycle anodes with reduced porosity, specific surface area, etc. while still being incorporated into batteries, thereby greatly extending their lifespan.

発明の構成 本発明は、金属または金属とセラミクスからなる多孔質
アノードを構成要素とする高温燃料電池において、アノ
ードを酸化させ、ついで還元する工程を加えることを特
徴とするものである。その好捷しい手段としては一般に
は燃オ」電池を無負荷の状態にしてから、アノードガス
の供給を市め、不活性ガスによってアノードガスをパー
ジした後、カソードガスまたd他の酸化性ガスを供給し
アノードを構成する金属成分を酸化する。その後再び不
活性ガスによるパージに続くアノードガスまたは他の還
元性ガスを供給して、アノードを再生させる各工程から
成る高温燃料電池のアノード再生法である。
Structure of the Invention The present invention is a high-temperature fuel cell having a porous anode made of metal or metal and ceramics, which is characterized by adding a step of oxidizing the anode and then reducing it. A preferred method is generally to put the fuel cell in an unloaded state, then turn on the anode gas, purge the anode gas with an inert gas, and then remove the cathode gas or other oxidizing gas. oxidizes the metal components that make up the anode. This is an anode regeneration method for a high-temperature fuel cell, which consists of steps of purging with an inert gas and then supplying an anode gas or other reducing gas to regenerate the anode.

実施例の説明 第1図に本発明の実施例におけるガス系統の概略図を示
す。1d、燃料電池、2はアノードガス供給源、3はカ
ソードガス供給源であり、アノードガス及びカソードガ
スはそれぞれ調節弁4,5を介して電池のアノード室及
びカソード室へ供給されるようになっている。6はパー
ジガス供給源であり、アノードガス供給系統にはパージ
ガス調節弁7.酸化性ガス(ここではカソードガス)調
節弁8を介してパージガスおよび酸化性ガスが供給され
るようになっている。なお、本実施例におい6 〈 ;
゛ ては燃料電池として溶融炭酸塩燃料電池を用いており、
酸化性ガスとしてはカソードガス(空気と二酸化炭素の
混合物)をそのまま使用する形となっている。また還元
性ガスとしては、水素を主成分としているアノードガス
をそのまま用い、パージガスとしてはボンベ供給の窒素
ガスを用いている。−!、たここで用いた溶融炭酸塩燃
料電池は、約、20ffi角の大きさの単電池を4セル
積層したもので、アノードとしてはクロムを1d重量%
含有するニッケル焼結多孔体を用いた。!た電池は85
0°Cで運転させた。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a schematic diagram of a gas system in an embodiment of the present invention. 1d is a fuel cell; 2 is an anode gas supply source; 3 is a cathode gas supply source; anode gas and cathode gas are supplied to the anode chamber and cathode chamber of the cell through control valves 4 and 5, respectively; ing. 6 is a purge gas supply source, and the anode gas supply system includes a purge gas control valve 7. Purge gas and oxidizing gas are supplied through an oxidizing gas (cathode gas here) control valve 8 . Note that in this example 6 <;
One uses a molten carbonate fuel cell as a fuel cell,
The cathode gas (a mixture of air and carbon dioxide) is used as is as the oxidizing gas. Further, as the reducing gas, an anode gas containing hydrogen as a main component is used as is, and as the purge gas, nitrogen gas supplied from a cylinder is used. -! The molten carbonate fuel cell used here is a stack of four single cells with a size of approximately 20ffi square, and the anode contains 1dwt% chromium.
A sintered porous body containing nickel was used. ! The battery is 85
It was operated at 0°C.

電池の初期性能は100mム/dの負荷で1セル当りの
出力電圧が0.86 Vであった。これを同一負荷のも
とて連続運転したところ、第2図に示すように3000
時間を経過した時点で出力電圧は1セル当り0.82 
Vに低下していた。
The initial performance of the battery was an output voltage of 0.86 V per cell at a load of 100 mm/d. When this was operated continuously under the same load, as shown in Figure 2, 3000
As time passes, the output voltage is 0.82 per cell.
It had dropped to V.

そこで、アノードの再生を行なうため次の操作を行なっ
た。まず電池から負荷をはずし、パージガス調節弁7を
開けると同時にアノードガス調節弁4を閉じる。3分間
パージガス(窒素ガス)を6 く 。
Therefore, the following operation was performed to regenerate the anode. First, the load is removed from the battery, and at the same time the purge gas control valve 7 is opened, the anode gas control valve 4 is closed. Apply purge gas (nitrogen gas) for 3 minutes.

流し、内?T(5のアノードガスを追い出した後、パー
ジガス調節弁7を閉じると同時に酸化性ガス調節弁8を
開けて酸化性ガスであるカソードガスを供給した。この
時点で電池の出力電圧は0.2〜OVの電圧しか示さず
、アノードのニッケル焼結多孔体は酸化され、酸化ニッ
ケルと化す。約2時間酸化性ガスを流した後、前述と逆
の手順で酸化性ガスを止めてパージガスを流し、再びア
ノードガス調節弁4を開けて還元性ガスとしてのアノー
ドガスに切シ替える。還元性ガスを流すと同時に電池出
力電圧は上昇し始めるが、酸化されたアノードを完全に
還元するため、このまま無弁待状態で2時間保持した。
Inside the sink? After expelling the anode gas at T (5), the purge gas control valve 7 was closed, and at the same time the oxidizing gas control valve 8 was opened to supply cathode gas, which is an oxidizing gas.At this point, the output voltage of the battery was 0.2 The sintered nickel porous body of the anode is oxidized and turns into nickel oxide.The nickel sintered porous body of the anode shows only a voltage of ~OV.After flowing the oxidizing gas for about 2 hours, stop the oxidizing gas and flow the purge gas in the reverse order as described above. , open the anode gas control valve 4 again and switch to the anode gas as a reducing gas.At the same time as the reducing gas flows, the battery output voltage begins to rise, but in order to completely reduce the oxidized anode, it remains as it is. It was held for 2 hours without any warning.

その後、電池に負荷をつ々ぎ、徐々に負荷を増していっ
たところ、約3時間後には1domA/CJの負荷にお
いて1セル当りの出力電圧が0.85Vを示し、初期性
能に近い性能にまで回復したことが確認された。
After that, we gradually increased the load on the battery, and after about 3 hours, the output voltage per cell showed 0.85V at a load of 1domA/CJ, and the performance was close to the initial performance. It was confirmed that he had recovered.

このような性能の回復はアノードの再生によるものであ
って、その理由については以下のように考えられる。す
なわち、長時間の使用により焼結了(−゛ が進行し、多孔度と比表面積が減少したアノードを、一
度完全に酸化し、それを再び還元することによりアノー
ドの表面が微視的に荒らされ、また酸化過程での体積変
化によるクラック発生もあるため、多孔度と比表面積が
一部回復するだめと考えられる。
This recovery in performance is due to the regeneration of the anode, and the reason is considered as follows. In other words, the anode, which has undergone sintering (-) due to long-term use and reduced porosity and specific surface area, is completely oxidized and then reduced again, so that the surface of the anode becomes microscopically rough. In addition, cracks may occur due to volume changes during the oxidation process, so it is thought that the porosity and specific surface area cannot be partially recovered.

このことを検証するため、前記アノードを使用前(A)
、水素気流中650’Cで2000時間放置(B)。
In order to verify this, the anode was tested before use (A).
, left for 2000 hours at 650'C in a hydrogen stream (B).

Bのザンプルを前記実施例同様660°Cで空気酸化し
た後、再び水素還元(C)の3つの処理をし、それぞれ
について水銀圧入ポロシメータによる多孔度および平均
孔径の測定を行なった。次表にその結果を示す。
After the sample B was air oxidized at 660°C as in the previous example, it was again subjected to three treatments of hydrogen reduction (C), and the porosity and average pore diameter of each sample were measured using a mercury intrusion porosimeter. The results are shown in the table below.

この結果から、焼結が進んだアノードに酸化還元処理を
施すと多孔度などがかなり回復することが確認できる。
From this result, it can be confirmed that porosity etc. can be considerably recovered when the sintered anode is subjected to redox treatment.

なお、実施例においては、酸化性ガスとしてカソードガ
スを用い、還元性ガスとしてアノードガスを用いたが、
これらはもちろん他の純ガスまたは混合ガスであっても
良く、供給手段もたとえばボンベを用いても良い。また
再生操作における各ガスを供給する時間については電池
の規模、ガス流量により異なってくる。さらに実施例に
おいては高温燃料電池として溶融炭酸塩燃料電池を用い
ているが、焼結が進むことにより性能が低下し、これを
酸化、還元することにより抑制できる系においては他の
タイプのものであっても良い。
In addition, in the examples, cathode gas was used as the oxidizing gas and anode gas was used as the reducing gas, but
These may of course be other pure gases or mixed gases, and the supply means may also be, for example, cylinders. Further, the time for supplying each gas in the regeneration operation varies depending on the scale of the battery and the gas flow rate. Furthermore, although a molten carbonate fuel cell is used as a high-temperature fuel cell in the example, performance deteriorates as sintering progresses, and other types of fuel cells may be used in systems where this can be suppressed by oxidation or reduction. It's okay.

発明の効果 以上のように、本発明によれば、電池を分解することな
く簡単な操作で焼結が進行したアノードを再生すること
ができ、初期性能に近いところにまで電池性能を回復す
ることができる。従ってアノードの焼結進行により電池
性能が低下した際に本♀明の再生法を実施すれば、電池
の寿命を太き9 ページ く引き伸ばすことが可能となる。
Effects of the Invention As described above, according to the present invention, a sintered anode can be regenerated by a simple operation without disassembling the battery, and the battery performance can be restored to a level close to the initial performance. I can do it. Therefore, if the regeneration method of the present invention is implemented when the battery performance deteriorates due to the progress of sintering of the anode, the life of the battery can be extended by 9 pages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるアノード再生法を実施するだめの
1つのガス系統概略図、第2図は実施例における電池性
能の経時変化図である。 1・・・・・・燃料電池、2・・・・・・アノードガス
供給源、3・・・・・・カソードガス供給源、4,6.
了・・・・・・調節弁、6・・・1、・パージガス供給
源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名31
FIG. 1 is a schematic diagram of one gas system for carrying out the anode regeneration method according to the present invention, and FIG. 2 is a graph of changes in battery performance over time in an example. 1... Fuel cell, 2... Anode gas supply source, 3... Cathode gas supply source, 4, 6.
Completed...Control valve, 6...1, Purge gas supply source. Name of agent: Patent attorney Toshio Nakao and 1 other person31
3

Claims (1)

【特許請求の範囲】[Claims] 金属または金属とセラミクスからなる多孔質負極を構成
要素とする高温燃料電池の負極の再生法であって、前記
負極へ酸化性ガスを供給l〜て負極の構成金属成分を酸
化し、その後還元性ガスを供給することにより、負極を
還元再生させることを特徴とする高温燃料電池の負極の
再生法。
A method for regenerating a negative electrode of a high-temperature fuel cell comprising a porous negative electrode made of metal or metal and ceramics, the method comprises: supplying an oxidizing gas to the negative electrode to oxidize the constituent metal components of the negative electrode; A method for regenerating a negative electrode of a high-temperature fuel cell, characterized by reductively regenerating the negative electrode by supplying gas.
JP59071970A 1984-04-11 1984-04-11 Regeneration method of negative electrode of high-temperature fuel cell Granted JPS60216458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59071970A JPS60216458A (en) 1984-04-11 1984-04-11 Regeneration method of negative electrode of high-temperature fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59071970A JPS60216458A (en) 1984-04-11 1984-04-11 Regeneration method of negative electrode of high-temperature fuel cell

Publications (2)

Publication Number Publication Date
JPS60216458A true JPS60216458A (en) 1985-10-29
JPH0521311B2 JPH0521311B2 (en) 1993-03-24

Family

ID=13475832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59071970A Granted JPS60216458A (en) 1984-04-11 1984-04-11 Regeneration method of negative electrode of high-temperature fuel cell

Country Status (1)

Country Link
JP (1) JPS60216458A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801797A (en) * 1987-01-09 1990-02-01 New Energy And Ind Technology FUEL CELL WITH MELTED CARBONATE AND METHOD FOR CONTROLLING THEIR OPERATION
WO1995025588A1 (en) * 1994-03-21 1995-09-28 British Technology Group Limited Porous metal composite body
WO2011052283A1 (en) * 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 Fuel cell device
KR101894043B1 (en) * 2017-08-30 2018-08-31 고등기술연구원연구조합 Post-treatment apparatus of solid oxide fuel cell stack and post-treatment method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801797A (en) * 1987-01-09 1990-02-01 New Energy And Ind Technology FUEL CELL WITH MELTED CARBONATE AND METHOD FOR CONTROLLING THEIR OPERATION
WO1995025588A1 (en) * 1994-03-21 1995-09-28 British Technology Group Limited Porous metal composite body
US5798148A (en) * 1994-03-21 1998-08-25 British Technology Group Limited Porous metal composite body
WO2011052283A1 (en) * 2009-10-29 2011-05-05 コニカミノルタホールディングス株式会社 Fuel cell device
JP4821937B2 (en) * 2009-10-29 2011-11-24 コニカミノルタホールディングス株式会社 Fuel cell device
KR101894043B1 (en) * 2017-08-30 2018-08-31 고등기술연구원연구조합 Post-treatment apparatus of solid oxide fuel cell stack and post-treatment method thereof

Also Published As

Publication number Publication date
JPH0521311B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
JPS6010422B2 (en) fuel cell negative electrode
US8202670B2 (en) Preconditioning treatment to enhance redox tolerance of solid oxide fuel cells
JP2006138005A (en) Spongeous sintered compact superior in compressive strength made from titanium or titanium alloy
JPS60216458A (en) Regeneration method of negative electrode of high-temperature fuel cell
JP5957284B2 (en) Exhaust gas purification device
JPS62154465A (en) Anode of molten carbonate fuel battery and manufacture of the same
KR100195076B1 (en) Method manufactring anode for mcfc
US4643955A (en) Molten carbonate fuel cell reduction of nickel deposits
JP2514748B2 (en) Method for starting molten carbonate fuel cell
US4902587A (en) Fuel cell
JP2005085758A (en) High temperature type fuel cell
JP3852177B2 (en) Method for treating cathode for molten carbonate fuel cell
JP4490223B2 (en) Method for producing solid oxide fuel cell
JP2526284B2 (en) Method for operating molten carbonate fuel cell
JPH05335030A (en) Method for enhancing performance of fuel cell
CN113753854A (en) Hydrogen storage fuel with straight hole structure and preparation method thereof
Li et al. Studying the Sulfur Poisoning Mechanism of Solid Oxide Fuel Cells by Means of Patterned Nickel/Yttrium-Stabilized Zirconia Electrodes
KR20120132058A (en) Solid oxide fuel cell having the improved electrodes and its preparation
JPH03147264A (en) Solid electrolyte fuel cell
JPH04215257A (en) Molten carbonate fuel cell
JPH1097861A (en) Fused carbonate fuel cell
Hamamoto et al. Redox Reaction of Catalytic Layer in the Electrochemical Reactor for NOx Decomposition
RU2446514C1 (en) Method to manufacture base of electrode of alkaline fuel element of matrix type
JPH06290788A (en) Air electrode precursor green sheet and molten carbonate fuel cell using it
JPS61133566A (en) Molten carbonate fuel cell