JPH06290788A - Air electrode precursor green sheet and molten carbonate fuel cell using it - Google Patents

Air electrode precursor green sheet and molten carbonate fuel cell using it

Info

Publication number
JPH06290788A
JPH06290788A JP5094855A JP9485593A JPH06290788A JP H06290788 A JPH06290788 A JP H06290788A JP 5094855 A JP5094855 A JP 5094855A JP 9485593 A JP9485593 A JP 9485593A JP H06290788 A JPH06290788 A JP H06290788A
Authority
JP
Japan
Prior art keywords
air electrode
green sheet
iron
nickel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5094855A
Other languages
Japanese (ja)
Other versions
JP3219220B2 (en
Inventor
Hiroshi Kawakami
上 博 史 川
Atsushi Yamanaka
中 厚 志 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP09485593A priority Critical patent/JP3219220B2/en
Publication of JPH06290788A publication Critical patent/JPH06290788A/en
Application granted granted Critical
Publication of JP3219220B2 publication Critical patent/JP3219220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a precursor green sheet for an air electrode capable of obtaining a low cost, long life, molten salt fuel cell and obtain a molten salt fuel cell using it in a molten carbonate fuel cell having an air pole comprising a metal oxide material. CONSTITUTION:A precursor green sheet for an air electrode is prepared from a composite oxide powder comprising two or more metals of nickel, iron and cobalt, lithium and oxygen, its particle sizes up to 0.5mum according for over 10vol.%, or a complex oxide powder comprising at least two or more metals of nickel, iron, and cobalt, and oxide, its particles sizes up to 0.5mum according for over 10vol.%, an organic binder and an organic additive. Using it unbaked for an air electrode, a cell is assembled. Accordingly, by using this air electrode green sheet, a large-sized cell can be constituted. And moreover, because the green sheet does not require preliminary baking, low manufacturing cost of the cell becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属酸化物材料よりなる
空気極を設けた溶融炭酸塩型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell provided with an air electrode made of a metal oxide material.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料単電池は、概略、陽極
(燃料極)と陰極(空気極)と溶融状態の電解質とこの
電解質を保持する電解質板とから構成され、電解質とし
ては通常、炭酸リチウムと炭酸カリウムとの高温共融物
が用いられている。そして、実用装置では、これらの単
電池を、ガス通路を兼ねたセパレーターを挟んで、直列
に積み重ねることにより発電電位を高くしている。
2. Description of the Related Art A molten carbonate fuel cell is generally composed of an anode (fuel electrode), a cathode (air electrode), a molten electrolyte and an electrolyte plate holding this electrolyte. A high temperature eutectic of lithium carbonate and potassium carbonate is used. In a practical device, these cells are stacked in series with a separator that also serves as a gas passage interposed therebetween to raise the power generation potential.

【0003】この単電池の発電機構は以下のようなもの
となっている。即ち、空気と二酸化炭素との混合気体が
空気極に供給され、空気極から電子を受け取り炭酸イオ
ンが形成され、該炭酸イオンは電解質中に拡散し、燃料
極に至り、燃料極に供給された水素ガスと反応し水と炭
酸ガスとを生成し、電子を燃料極に放出する。
The power generation mechanism of this unit cell is as follows. That is, a mixed gas of air and carbon dioxide is supplied to the air electrode, receives electrons from the air electrode to form carbonate ions, the carbonate ions diffuse into the electrolyte, reach the fuel electrode, and are supplied to the fuel electrode. It reacts with hydrogen gas to generate water and carbon dioxide, and emits electrons to the fuel electrode.

【0004】このように燃料電池は化学エネルギーを直
接電気エネルギーに変換できるため、高発電効率、無公
害という利点があり、とりわけ溶融炭酸塩型燃料電池は
高価な貴金属を必要としないことから次世代の電源とし
て有望視されている。
As described above, since the fuel cell can directly convert chemical energy into electric energy, it has the advantages of high power generation efficiency and no pollution. Particularly, the molten carbonate fuel cell does not require expensive precious metal, so that it can be used in the next generation. Is seen as a promising power source.

【0005】ところで、この溶融炭酸塩型燃料電池を実
用化するためには4万時間にわたって高性能を維持する
ことが必要とされる。そのためには用いる材料に関して
解決しなければならない問題が未だ多い。とりわけ、従
来の空気極材料である NiOの溶融塩中での腐食による空
気極の細孔構造変化や厚みの減少により電池性能が劣化
すること、又燃料極表面で形成される Ni 析出物による
ショートの可能性が高いこととが問題視されている。
By the way, in order to put this molten carbonate fuel cell into practical use, it is necessary to maintain high performance for 40,000 hours. For that purpose, there are still many problems that need to be solved regarding the materials used. In particular, the cell performance deteriorates due to the change in the pore structure of the air electrode due to corrosion of NiO, which is the conventional air electrode material, in the molten salt, and the decrease in thickness, and the short circuit due to the Ni precipitate formed on the fuel electrode surface. Is likely to be a problem.

【0006】この点を解決すべく空気極の表面処理や代
替材料の開発等の検討がなされてきている。例えば、特
開平3-184267号公報である。該公報において、本発明者
らは電気伝導性と対溶融炭酸塩耐食性に優れた空気極用
新規材料としてリチウム、鉄、ニッケル及び酸素を主成
分とする複合酸化物を開示した。これらの素材より実際
の空気極を製造するに際しては、金属酸化物原料の粉末
と、有機結合剤と、有機添加物と、溶媒とを混合して泥
しょう物を得、得た泥しょう物を用いて公知のドクター
ブレード法により成型してシートを得、このシートを乾
燥して得らたグリーンシートを安価なアルミナ系セッタ
ーやマグネシア系セッターを用いて空気中で焼結する。
しかし、この方法では通常1000℃以上の高温で焼結を行
うため、グリーンシート中の金属成分とセッターとが反
応し、そりやひび割れやセッターへの付着等といった新
たな問題を生じている。
[0006] In order to solve this point, studies such as surface treatment of the air electrode and development of alternative materials have been made. For example, it is Japanese Patent Laid-Open No. 3-184267. In this publication, the present inventors have disclosed a composite oxide containing lithium, iron, nickel and oxygen as main components as a new material for an air electrode having excellent electric conductivity and corrosion resistance against molten carbonate. When manufacturing an actual air electrode from these materials, powder of metal oxide raw material, organic binder, organic additive, and solvent are mixed to obtain sludge, and the obtained sludge is obtained. A sheet is formed by using a known doctor blade method, and a green sheet obtained by drying this sheet is sintered in air using an inexpensive alumina-based setter or magnesia-based setter.
However, in this method, since the sintering is usually performed at a high temperature of 1000 ° C. or higher, the metal components in the green sheet react with the setter, which causes new problems such as warpage, cracking, and adhesion to the setter.

【0007】本発明者らはこれらの問題を解決する一手
段として、ジルコニア製のセッターを用いることを特願
平4-105465に開示した。この方法によれば、確かに上記
セッターに係わる問題点は解消できるものの、ジルコニ
ア製のセッターは高価であり、電池の製造コストを大き
く押し上げるという別の問題点を生じている。また、作
成した空気極は多孔体であり、極めて脆く、燃料電池と
して組み込む際に割れ易く、これを防止するためには補
強材が必要とされるが、それでも大型化には限界があ
り、電極面積が1m2級の大型燃料電池には不向きであ
るという従来よりの欠点も依然として解消できていな
い。
The present inventors have disclosed in Japanese Patent Application No. 4-105465 that a setter made of zirconia is used as one means for solving these problems. According to this method, although the problems related to the setter can be solved, the setter made of zirconia is expensive, which causes another problem that the manufacturing cost of the battery is greatly increased. Further, the prepared air electrode is a porous body, which is extremely fragile and easily broken when it is incorporated into a fuel cell, and a reinforcing material is required to prevent this, but there is a limit to the size increase, and the electrode The conventional defect that it is not suitable for a large-scale fuel cell having an area of 1 m 2 has not been solved yet.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記状況に鑑
みなされたものであり、低コストで長寿命の溶融塩型燃
料電池の作成を可能とする空気極前駆グリーンシート
と、これを用いた溶融塩型燃料電池の提供を目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and uses an air electrode precursor green sheet that enables the production of a molten salt fuel cell with low cost and long life, and the same. An object is to provide a molten salt fuel cell.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の溶融塩型燃料電池用空気極前駆グリーンシートは、
粒経が0.5μm以下の部分が全体の10体積%以上である
ニッケル、鉄、コバルトからなる群より選ばれた2種以
上の金属とリチウムと酸素とを主成分とする複合酸化物
粉、あるいは粒経が0.5μm以下の部分が全体の10体積
%以上であるニッケル、鉄、コバルトからなる群より選
ばれた少なくとも2種以上の金属と酸素とを主成分とす
る複合酸化物粉と、有機結合材と、有機添加物とからな
る空気極前駆グリーンシートであり、該空気極前駆グリ
ーンシートを構成する複合酸化物粉がニッケル、鉄、リ
チウムを主金属成分とするものである場合には、該複合
酸化物中のリチウム:鉄が原子数比で1:1〜2:1で
あり、かつ鉄:ニッケルが原子数比で0.1:1〜0.5:1
であるように構成されたものであり、該複合酸化物がニ
ッケルと鉄とを主金属成分とする場合には、該複合酸化
物中の鉄:ニッケルが原子数比で0.1:1〜2.5:1とな
るように構成されたものである。そして、本発明の溶融
塩型燃料電池はこのようにして構成された空気極前駆グ
リーンシートを空気極として構成したものである。本発
明の空気極前駆グリーンシートは、使用時に、電池運転
温度までの昇温により電池内で焼結され、電池として機
能するときには焼結は完了し高性能の空気極として作用
する。
Means for Solving the Problems An air electrode precursor green sheet for a molten salt fuel cell according to the present invention, which solves the above problems, comprises:
A composite oxide powder containing, as main components, two or more metals selected from the group consisting of nickel, iron, and cobalt in which a portion having a grain size of 0.5 μm or less is 10 vol% or more of the whole, or A composite oxide powder containing, as main components, at least two metals selected from the group consisting of nickel, iron, and cobalt, in which a portion having a particle diameter of 0.5 μm or less is 10% by volume or more of the whole, and an organic material. A binder, an air electrode precursor green sheet comprising an organic additive, in the case where the composite oxide powder constituting the air electrode precursor green sheet is nickel, iron, lithium as a main metal component, The lithium: iron in the composite oxide has an atomic ratio of 1: 1 to 2: 1, and the iron: nickel has an atomic ratio of 0.1: 1 to 0.5: 1.
In the case where the composite oxide contains nickel and iron as main metal components, iron: nickel in the composite oxide is 0.1: 1 to 2.5 in atomic ratio. It is configured to be 1. The molten salt fuel cell of the present invention comprises the air electrode precursor green sheet thus constructed as an air electrode. When used, the air electrode precursor green sheet of the present invention is sintered in the battery by raising the temperature to the battery operating temperature, and when it functions as a battery, the sintering is completed and acts as a high performance air electrode.

【0010】[0010]

【作用】本発明は、空気極前駆グリーンシートを作成す
るに際し、特定組成の複合酸化物を用い、かつ用いる複
合酸化物の粒度を調整することにより空気極前駆グリー
ンシートの焼結温度の低下を図り、使用時の昇温過程を
通して電池内で焼結させることを可能とし、もって電池
の大型化にも対応可能とし、電池製造コストの低下を可
能とするものである。
The present invention reduces the sintering temperature of an air electrode precursor green sheet by using a compound oxide having a specific composition and adjusting the particle size of the compound oxide to be used in producing the air electrode precursor green sheet. As a result, it is possible to sinter in the battery through the temperature rising process during use, which makes it possible to cope with an increase in the size of the battery and reduce the manufacturing cost of the battery.

【0011】ところで、なぜ焼結温度を低下させること
が必要かは以下の理由による。すなわち、金属酸化物を
原料として空気極を作成する場合、もし焼結されておら
ず粉体の集合体という状態で有れば、粉体間の接触抵抗
が性能に悪影響を与えるからである。
The reason why it is necessary to lower the sintering temperature is as follows. That is, when an air electrode is prepared from a metal oxide as a raw material, if the powder is not sintered and is in the state of an aggregate of powders, the contact resistance between the powders adversely affects the performance.

【0012】空気極前駆グリーンシートの焼結温度の低
下は、用いる複合酸化物の10体積%以上を粒経0.5μm
以下好ましくは0.1μm以下とすることにより可能とさ
れる。用いる複合酸化物粉としてはニッケル、鉄、コバ
ルトからなる群より選ばれた2種以上の金属とリチウム
と酸素とを主成分とする複合酸化物粉、あるいはニッケ
ル、鉄、コバルトから選ばれた少なくとも2種以上の金
属と酸素とを主成分とする複合酸化物粉である。後者を
用いた場合、昇温時に空気極前駆グリーンシートの焼結
の進行に追随し電池内のリチウムによる複合酸化物粉の
リチウム化が進行し、前者を用いた場合と同様に空気極
として使用可能となる。
The lowering of the sintering temperature of the air electrode precursor green sheet is caused by 0.5 μm of the grain size of 10% by volume or more of the composite oxide used.
It is possible to make it possible to be 0.1 μm or less, preferably. The composite oxide powder used is a composite oxide powder containing two or more metals selected from the group consisting of nickel, iron and cobalt, lithium and oxygen as main components, or at least selected from nickel, iron and cobalt. A composite oxide powder containing two or more metals and oxygen as main components. When the latter is used, it is used as an air electrode in the same way as when the former is used, as the lithium oxide in the battery progresses to lithiation, following the progress of sintering of the air electrode precursor green sheet when the temperature rises. It will be possible.

【0013】本発明の空気極前駆グリーンシートを構成
する複合酸化物がニッケル、鉄、リチウムを主成分とす
るものである場合には、該複合酸化物中のリチウム:鉄
の原子数比は1:1〜2:1であり、かつ鉄:ニッケル
の原子数比が0.1:1〜0.5:1となるようにする。これ
はリチウムが少なすぎると導電率が低く、リチウム:鉄
の原子数比が2:1を越えてリチウムを増加させること
は困難であるからである。また、鉄:ニッケルの原子数
比が0.1:1より鉄を少なくすると耐溶融炭酸塩性が酸
化ニッケル並に低くなり、鉄:ニッケルの原子数比を0.
5:1より鉄を多くすると導電率が低下するからであ
る。
When the composite oxide constituting the air electrode precursor green sheet of the present invention is mainly composed of nickel, iron and lithium, the atomic ratio of lithium: iron in the composite oxide is 1. : 1 to 2: 1 and the iron: nickel atomic ratio is 0.1: 1 to 0.5: 1. This is because if the amount of lithium is too small, the electric conductivity is low, and it is difficult to increase the amount of lithium by exceeding the lithium: iron atomic ratio of 2: 1. Further, when the iron: nickel atomic ratio is less than 0.1: 1, the resistance to molten carbonate becomes as low as that of nickel oxide, and the iron: nickel atomic ratio is 0.
This is because if the amount of iron is more than 5: 1, the conductivity will decrease.

【0014】また、該複合酸化物がニッケルと鉄とを主
成分とする場合には、該複合酸化物中の鉄/ニッケルの
原子数比が0.1〜2.5となるようにするのは、ニッケルが
少なすぎると導電率が低下し、多すぎるとニッケルの溶
融炭酸塩中への溶出量が多くなるからである。
When the composite oxide contains nickel and iron as the main components, it is necessary that the atomic ratio of iron / nickel in the composite oxide is 0.1 to 2.5. This is because if the amount is too small, the electrical conductivity will decrease, and if it is too large, the amount of nickel eluted into the molten carbonate will increase.

【0015】[0015]

【実施例】次に本発明の実施例について述べる (実施例1)炭酸リチウムと酸化第二鉄と酸化ニッケル
とを原子数比がリチウム:鉄:ニッケル=2:1:9と
なるように擂潰機に装入し、約40分間低速で混合し、得
た混合物を1000Kgf/cm2で加圧してかため、空気中で690
℃、6時間か焼した。得た焼成物を擂潰機で粉砕して複
合酸化物粉Aを得た。この複合酸化物粉Aをレーザース
キャン方式の粒度分布アナライザーで測定したところ、
体積粒度分布では粒経2μm以下と粒経2〜7μmの各
領域に分布しており、それぞれ約1μmと約4μmとに
ピークを示した。
EXAMPLES Next, examples of the present invention will be described. (Example 1) Lithium carbonate, ferric oxide, and nickel oxide were mixed so that the atomic ratio was lithium: iron: nickel = 2: 1: 9. Charge into a crusher, mix at low speed for about 40 minutes, pressurize the resulting mixture with 1000 Kgf / cm 2 and 690 in air for curing.
It was calcined at ℃ for 6 hours. The obtained fired product was crushed by a crusher to obtain a composite oxide powder A. When this composite oxide powder A was measured with a laser scanning type particle size distribution analyzer,
In the volume particle size distribution, the particles are distributed in each region of grain diameter 2 μm or less and grain diameter 2 to 7 μm, and peaks are shown at about 1 μm and about 4 μm, respectively.

【0016】次に、複合酸化物粉Aの1部にエタノール
を加え、直径5mmのジルコニアボールミルで粉砕した
後、さらに乾燥した。得られた複合酸化物粉Bの粒度分
布を上記と同様にして調べたところ、その大部分が0.5
μm以下の領域に分布していた。
Next, ethanol was added to 1 part of the composite oxide powder A, pulverized with a zirconia ball mill having a diameter of 5 mm, and further dried. When the particle size distribution of the obtained composite oxide powder B was examined in the same manner as above, most of it was 0.5
It was distributed in the region of μm or less.

【0017】次に、複合酸化物粉A200gとB60gと、
気孔生成用の有機添加物(造孔材)としての小麦粉40g
とを500mlのポリエチレン製広口びんに採取した。さら
に、体積比で1:1のエタノールとトルエンとの混合溶
媒にその濃度が10%となるようにポリビニルブチラール
を溶解して得た溶液約 50 gと、フタル酸ジブチル7g
と、界面活性剤としてニッサンノニオン(日本油脂株式
会社製)を約3gと、エタノールとトルエンとの体積比
が1:1の上記溶媒約100ccとを上記広口びんに加え、
さらに直径15mmのナイロンボールを入れ、低速回転で 1
日混合した。得られた泥しょう物(スリップ)を用
い、公知のドクターブレード法により厚み1mmのグリー
ンシートを作成した。
Next, 200 g of complex oxide powder A and 60 g of B,
40 g of wheat flour as an organic additive for pore formation (pore forming material)
And were collected in a 500 ml polyethylene jar. Furthermore, about 50 g of a solution obtained by dissolving polyvinyl butyral in a mixed solvent of ethanol and toluene at a volume ratio of 1: 1 so as to have a concentration of 10%, and 7 g of dibutyl phthalate.
And about 3 g of Nissan Nonion (manufactured by NOF CORPORATION) as a surfactant and about 100 cc of the solvent having a volume ratio of ethanol to toluene of 1: 1 were added to the wide-mouth bottle,
In addition, insert a nylon ball with a diameter of 15 mm and rotate at low speed 1
Mixed day. Using the obtained sludge (slip), a green sheet having a thickness of 1 mm was prepared by a known doctor blade method.

【0018】このグリーンシートを用いて以下のように
電池を構成した。片面に32mm角の電極を埋め込むべきく
ぼみを持ち、相対する2側面にガス供給管を設けた50mm
角、厚み15mmのステンレス製角型平板の2枚を、それぞ
れくぼみが対向するように保持し、下方のステンレス製
角型平板のくぼみの内部に、32mm角のニッケル集電板を
設け、その上に32mm角のニッケル多孔質板を燃料極とし
て設け、その上に50mm角のリチウムアルミネート粉体よ
り造孔剤を使用することなく上記方法と同様にして作成
したグリーンシートを設け、その上に炭酸リチウム62部
と炭酸カリウム38部とからなる共晶塩の粉体を用いて造
孔剤を使用することなく上記方法と同様にして作成した
50mm角のグリーンシートを設け、その上に50mm角のリチ
ウムアルミネート粉体より作成したグリーンシートを設
け、その上に32mm角に裁断した上記グリーンシートを空
気極前駆体として設け、その上にAu−Pd合金多孔板
を集電板として設けた。
A battery was constructed as follows using this green sheet. 50mm with a recess for embedding a 32mm square electrode on one side and gas supply pipes on two opposite sides
Holds two square rectangular stainless steel plates with a thickness of 15 mm so that the dents face each other, and a nickel current collector plate of 32 mm square is provided inside the dent of the stainless square flat plate below. A 32 mm square nickel porous plate is provided as a fuel electrode on the green sheet, and a green sheet prepared by the same method as above without using a pore-forming agent from a 50 mm square lithium aluminate powder is provided on it. A eutectic salt powder consisting of 62 parts of lithium carbonate and 38 parts of potassium carbonate was prepared in the same manner as above without using a pore-forming agent.
A 50 mm square green sheet is provided, a green sheet made of 50 mm square lithium aluminate powder is provided thereon, and the above green sheet cut into 32 mm square is provided as an air electrode precursor on the green sheet. A Pd alloy porous plate was provided as a current collector.

【0019】このように構成した電池の空気極側に空気
を、燃料極側に窒素と水蒸気とを導入しながら徐々に電
池全体を昇温し、約400℃で20時間保持し、その後700℃
まで再び徐々に昇温した。なお、この過程で上記リチウ
ムアルミネートの粉体の隙間に溶融した炭酸塩が染み込
むことにより電解質板が生成した。その後700℃で6時
間保持した後、温度を650℃に下げ、650℃で保持しつつ
空気極に体積比で7:3の割合で空気と炭酸ガスとを混
合して得た混合ガスを供給した。そして、燃料極に体積
比で8:2の割合で水素ガスと炭酸ガスとを混合して得
た混合ガスを供給した。
While introducing air into the air electrode side of the cell thus constructed and introducing nitrogen and water vapor into the fuel electrode side, the temperature of the entire cell is gradually raised and maintained at about 400 ° C. for 20 hours, and then 700 ° C.
The temperature was gradually raised again until. In this process, the molten carbonate permeated into the gaps between the lithium aluminate powder particles to form an electrolyte plate. Then, after maintaining at 700 ° C for 6 hours, the temperature is lowered to 650 ° C, and while maintaining at 650 ° C, a mixed gas obtained by mixing air and carbon dioxide gas at a volume ratio of 7: 3 is supplied to the air electrode. did. Then, a mixed gas obtained by mixing hydrogen gas and carbon dioxide gas was supplied to the fuel electrode in a volume ratio of 8: 2.

【0020】このようにしつつ一定電流を流すための制
御機能を有する抵抗負荷器をこの電池に接続し、各電流
値における発電電圧を測定した。本実施例では、電流密
度150mA/cm2の時の発電電圧は0.85Vであった。
In this way, a resistance loader having a control function for flowing a constant current was connected to this battery, and the generated voltage at each current value was measured. In this example, the generated voltage was 0.85 V when the current density was 150 mA / cm 2 .

【0021】(実施例2)実施例1と同様に構成した電
池を400℃で保持した後、徐々に650℃まで昇温し、650
℃に維持しつつガスを供給した以外は実施例1と同様に
して電流−電圧特性を測定した。本実施例では、電流密
度150mA/cm2の時の発電電圧は0.84Vであった。
(Example 2) A battery having the same structure as in Example 1 was held at 400 ° C and then gradually heated to 650 ° C to obtain 650 ° C.
The current-voltage characteristics were measured in the same manner as in Example 1 except that the gas was supplied while maintaining the temperature at ℃. In this example, the generated voltage was 0.84 V when the current density was 150 mA / cm 2 .

【0022】(実施例3)リチウム:鉄:ニッケルの原
子数比を2:1:2とした以外は実施例1と同様に電池
を構成し、実施例1と同様にして電流−電圧特性を測定
した。本実施例では、電流密度150mA/cm2の時の発電電
圧は0.80Vであった。
Example 3 A battery was constructed in the same manner as in Example 1 except that the atomic ratio of lithium: iron: nickel was 2: 1: 2. It was measured. In this example, the generated voltage was 0.80 V when the current density was 150 mA / cm 2 .

【0023】(実施例4)リチウム:鉄:ニッケルの原
子数比を1:1:9とした以外は実施例1と同様に電池
を構成し、実施例1と同様にして電流−電圧特性を測定
した。本実施例では、電流密度150mA/cm2の時の発電電
圧は0.81Vであった。
Example 4 A battery was constructed in the same manner as in Example 1 except that the atomic ratio of lithium: iron: nickel was 1: 1: 9. It was measured. In this example, the power generation voltage at a current density of 150 mA / cm 2 was 0.81V.

【0024】(実施例3)リチウム:鉄:ニッケルの原
子数比を1:1:2とした以外は実施例1と同様に電池
を構成し、実施例1と同様にして電流−電圧特性を測定
した。本実施例では、電流密度150mA/cm2の時の発電電
圧は0.78Vであった。
Example 3 A battery was constructed in the same manner as in Example 1 except that the atomic ratio of lithium: iron: nickel was 1: 1: 2. It was measured. In this example, the generated voltage was 0.78 V when the current density was 150 mA / cm 2 .

【0025】(比較例1)実施例1の複合酸化物粉Aの
みを用いた以外は実施例1と同様にして電流−電圧特性
を測定した。本比較例では、電流密度150mA/cm2の時の
発電電圧は0.71Vであった。
Comparative Example 1 Current-voltage characteristics were measured in the same manner as in Example 1 except that only the composite oxide powder A of Example 1 was used. In this comparative example, the generated voltage was 0.71 V when the current density was 150 mA / cm 2 .

【0026】(比較例2)リチウム:鉄:ニッケルの原
子数比を1.5:1:1とした以外は実施例1と同様に電
池を構成し、実施例1と同様にして電流−電圧特性を測
定した。本実施例では、電流密度150mA/cm2の時の発電
電圧は0.60Vであった。
Comparative Example 2 A battery was constructed in the same manner as in Example 1 except that the atomic ratio of lithium: iron: nickel was set to 1.5: 1: 1. It was measured. In this example, the generated voltage was 0.60 V when the current density was 150 mA / cm 2 .

【0027】(比較例3)リチウム:鉄:ニッケルの原
子数比を0.9:1:9とした以外は実施例1と同様に電
池を構成し、実施例1と同様にして電流−電圧特性を測
定した。本実施例では、電流密度150mA/cm2の時の発電
電圧は0.70Vであった。
Comparative Example 3 A battery was constructed in the same manner as in Example 1 except that the atomic ratio of lithium: iron: nickel was set to 0.9: 1: 9. It was measured. In this example, the generated voltage was 0.70 V when the current density was 150 mA / cm 2 .

【0028】[0028]

【発明の効果】本発明の空気極グリーンシートを用いれ
ば大型の電池を構成でき、かつ該グリーンシートは予備
焼結工程を必要としないため電池の製造コストの低化が
可能である。
By using the air electrode green sheet of the present invention, a large battery can be constructed, and since the green sheet does not require a pre-sintering step, the manufacturing cost of the battery can be reduced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒経が0.5μm以下の部分が全体の1
0体積%以上であるニッケル、鉄、コバルトからなる群
より選ばれた2種以上の金属とリチウムと酸素とを主成
分とする複合酸化物粉と、有機結合材と、有機添加物と
からなることを特徴とする空気極前駆グリーンシート。
1. A portion with a grain diameter of 0.5 μm or less is 1
Consists of a composite oxide powder containing 0 or more% by volume of two or more metals selected from the group consisting of nickel, iron and cobalt, lithium and oxygen as main components, an organic binder and an organic additive. An air electrode precursor green sheet characterized in that
【請求項2】 複合酸化物粉中のリチウム:鉄が原
子数比で1:1〜2:1であり鉄:ニッケルが原子数比
で0.1:1〜0.5:1となるように構成されたことを特徴
とする請求項1記載の空気極前駆グリーンシート。
2. The composite oxide powder is constituted such that lithium: iron is in an atomic ratio of 1: 1 to 2: 1, and iron: nickel is in an atomic ratio of 0.1: 1 to 0.5: 1. The air electrode precursor green sheet according to claim 1, wherein
【請求項3】 粒経が0.5μm以下の部分が全体の1
0体積%以上であるニッケル、鉄、コバルトからなる群
より選ばれた少なくとも2種以上の金属と酸素とを主成
分とする複合酸化物粉と、有機結合材と、有機添加物と
からなることを特徴とする空気極前駆グリーンシート。
3. A portion having a grain diameter of 0.5 μm or less is 1
A composite oxide powder containing 0% by volume or more of at least two metals selected from the group consisting of nickel, iron, and cobalt and oxygen as main components, an organic binder, and an organic additive. Air electrode precursor green sheet characterized by.
【請求項4】 複合酸化物粉中の鉄:ニッケルが原
子数比で0.1:1〜2.5:1となるように構成されたこと
を特徴とする請求項3記載の空気極前駆グリーンシー
ト。
4. The air electrode precursor green sheet according to claim 3, wherein iron: nickel in the composite oxide powder is constituted so that the atomic ratio is 0.1: 1 to 2.5: 1.
【請求項5】 昇温前の溶融炭酸塩型燃料電池の空
気極として請求項1〜4記載の空気極前駆グリーンシー
トのいずれかを用いたことを特徴とする溶融炭酸塩型燃
料電池。
5. A molten carbonate fuel cell, wherein any one of the air electrode precursor green sheets according to claim 1 is used as an air electrode of the molten carbonate fuel cell before temperature rise.
JP09485593A 1993-03-31 1993-03-31 Air electrode precursor green sheet and molten carbonate fuel cell using the same Expired - Fee Related JP3219220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09485593A JP3219220B2 (en) 1993-03-31 1993-03-31 Air electrode precursor green sheet and molten carbonate fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09485593A JP3219220B2 (en) 1993-03-31 1993-03-31 Air electrode precursor green sheet and molten carbonate fuel cell using the same

Publications (2)

Publication Number Publication Date
JPH06290788A true JPH06290788A (en) 1994-10-18
JP3219220B2 JP3219220B2 (en) 2001-10-15

Family

ID=14121652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09485593A Expired - Fee Related JP3219220B2 (en) 1993-03-31 1993-03-31 Air electrode precursor green sheet and molten carbonate fuel cell using the same

Country Status (1)

Country Link
JP (1) JP3219220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723159B1 (en) * 2005-05-03 2007-05-30 주식회사 포스코 Cold rolled steel sheet having good formability and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723159B1 (en) * 2005-05-03 2007-05-30 주식회사 포스코 Cold rolled steel sheet having good formability and process for producing the same
KR100742819B1 (en) * 2005-05-03 2007-07-25 주식회사 포스코 Cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR100742818B1 (en) * 2005-05-03 2007-07-25 주식회사 포스코 Cold rolled steel sheet having good formability and process for producing the same
KR100742926B1 (en) * 2005-05-03 2007-07-25 주식회사 포스코 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same

Also Published As

Publication number Publication date
JP3219220B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP5642197B2 (en) Composite ceramic material and method for producing the same
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
CN110112375B (en) Double-transition metal manganese-based layered positive electrode material of sodium ion battery
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
JP2002216807A (en) Air electrode collector for solid electrolyte type fuel cell
Huang et al. Study of NiO cathode modified by ZnO additive for MCFC
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP2018116776A (en) All-solid battery and manufacturing method of all-solid battery
JPH0869804A (en) Anode for fused carbonate fuel cell and its preparation
JP3219220B2 (en) Air electrode precursor green sheet and molten carbonate fuel cell using the same
CN1165091C (en) LiCoO2 type cathode material and its preparation method
US6585931B1 (en) Molten carbonate fuel cell anode and method for manufacturing the same
KR101218602B1 (en) The Manufacturing method of Low Temperature Operating Solid Oxide Fuel Cell composed Silver Nano Particles and Solid Oxide Fuel Cell manufactured thereby
JP5093741B2 (en) Power generation cell for solid oxide fuel cell and manufacturing method thereof
JP3208935B2 (en) Method for producing electrode for molten carbonate fuel cell
CN1172389C (en) LiCoO2 type cathode with multiple-structure and its preparation method
JPH05170528A (en) Method for sintering lanthanum chromite
CN115548356B (en) Preparation method and application of perovskite type solid oxide battery electrode catalyst
JPH06290787A (en) Precursor green sheet for air electrode in molten carbonate fuel cell
JPH06290786A (en) Precursor green sheet for air electrode in molten carbonate fuel cell
JP4462013B2 (en) Solid electrolyte for use in solid oxide fuel cells
JPH0520866B2 (en)
CN116864651A (en) O3-type nickel-iron-manganese-based low-nickel monocrystal positive electrode material and preparation method and application thereof
JPH05283085A (en) Manufacture of cathode for molten carbonate fuel cell
CN114843569A (en) Preparation method of proton-oxygen ion mixed conductor electrolyte, product and battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees