JPS60215768A - Device for forming amorphous film - Google Patents

Device for forming amorphous film

Info

Publication number
JPS60215768A
JPS60215768A JP6947484A JP6947484A JPS60215768A JP S60215768 A JPS60215768 A JP S60215768A JP 6947484 A JP6947484 A JP 6947484A JP 6947484 A JP6947484 A JP 6947484A JP S60215768 A JPS60215768 A JP S60215768A
Authority
JP
Japan
Prior art keywords
substrate
discharge
wall
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6947484A
Other languages
Japanese (ja)
Inventor
Yuji Marukawa
丸川 雄二
Toshiki Yamazaki
山崎 敏規
Akira Nishiwaki
彰 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP6947484A priority Critical patent/JPS60215768A/en
Publication of JPS60215768A publication Critical patent/JPS60215768A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Abstract

PURPOSE:To prevent generation of leak discharge and to obtain a film having good quality by constituting the wall part which constitutes a vacuum vessel for contg. a base body as an electrode for impressing discharge voltage in the stage of glow discharge. CONSTITUTION:A glow discharge device is so constituted that a supply gas is introduced through gas leading-out holes 5 via a space 4 between an introducing port 7 and a circumferential wall 1 into the annular spacing between an inside wall 3 and a substrate 41 and is discharged to the outside of the devicd through a butterfly valve 50 from a discharge port 9 provided to a supporting cylinder 8a of a lower cap 8. The Al substrate 41 subjected to surface cleaning is disposed in the vacuum vessel and glow discharge is executed by evacuating the gaseous pressure in the vacuum vessel to about 10<-6>Torr, heating and holding the substrate 41 to and at about 100-350 deg.C, introducing a reactive gas into the vacuum vessel and impressing high-frequency voltage by a high- frequency power source 56 under the prescribed reactive pressure. There are no objects to be subjected to electric discharge except the substrate 41 and the generation of leak discharge is obviated if the inside wall 3 of the vacuum vessel is made as an electrode and if the film is deposited on the substrate 41 by decomposing the reactive gas by the glow discharge between said wall and the substrate 41.

Description

【発明の詳細な説明】 1、産業上の利用分野 本発明はアモルファス半導体膜の形成装置に関する。[Detailed description of the invention] 1. Industrial application field The present invention relates to an apparatus for forming an amorphous semiconductor film.

2、従来技術 例えばアモルファスシリコン(以下、a−8tと称す。2. Conventional technology For example, amorphous silicon (hereinafter referred to as a-8t).

)膜は感光体の感光層に広く使用されておシ、その形成
は5iHiのグロー放電分解による所謂プラズマCVD
法によっている。
) film is widely used as the photosensitive layer of photoreceptors, and its formation is by so-called plasma CVD using glow discharge decomposition of 5iHi.
It's according to the law.

プラズマCVD法によって円筒状の基体表面にa−8t
膜を形成する方法としては、次のような方法が考えられ
る。 即ち、第1図に示すように、容量結合型グロー放
電装置51の真空槽52(通常ステンレス鋼製のものが
使用される。)内では、ドラム状の基板41が垂直に回
転可能にセットされ、ヒータ55で基板41を内側から
所定温度に加熱し得るようになっている。 基板41に
対向してその周囲にガス導出口53付きの円筒状高周波
電極57が配され、基板41との間に高周波電源間によ
ジグロー放電が生せしめられる。 なお、図中の62は
水素化シリコンガスであるSiH4の供給源、65はに
等のキャリアガス供給源、弱は不純物ガス(例えばBA
H・またはPH5)供給源、67は各流量計である。
a-8t on the surface of a cylindrical substrate by plasma CVD method.
The following methods can be considered as methods for forming the film. That is, as shown in FIG. 1, a drum-shaped substrate 41 is vertically and rotatably set in a vacuum chamber 52 (usually made of stainless steel) of a capacitively coupled glow discharge device 51. , the substrate 41 can be heated from the inside to a predetermined temperature by a heater 55. A cylindrical high frequency electrode 57 with a gas outlet 53 is disposed around the substrate 41, facing the substrate 41, and generates a jiglow discharge between the substrate 41 and the high frequency power source. In addition, 62 in the figure is a supply source of SiH4 which is hydrogenated silicon gas, 65 is a carrier gas supply source such as nitrogen, and weak is an impurity gas (for example, BA
H. or PH5) supply source, 67 is each flow meter.

このグロー放電装置に於いて、先ず支持体である例えば
M基板41の表面を清浄化した後に真空槽52内に配置
し、真空槽52内のガス圧が10−@Torrとなるよ
うに調節して排気し、かつ基板41を所定温度、特に1
00〜350°C(望ましくは150〜300°C)に
加熱保持する。 次いで高純度の不活性ガスをキャリア
ガスとして水素化シリコンであるSiH4ガス及び必要
とあればBdL等を適宜真空槽52内に導入し、例えば
0.01〜10Torrの反応圧下で高周波電源間によ
シ高周波電圧(例えば13.56 MHz )を印加す
る。 これKよって上記各反応ガスを電極57と基板4
1との間でグロー放電分解し、a−8i:Htたは不純
物ドープドa−8t:Hとして基板41上に堆積させる
In this glow discharge device, first, the surface of a support, for example, an M substrate 41, is cleaned, and then placed in a vacuum chamber 52, and the gas pressure in the vacuum chamber 52 is adjusted to 10-@Torr. and evacuate the substrate 41 to a predetermined temperature, especially 1
The temperature is maintained at 00 to 350°C (preferably 150 to 300°C). Next, using a high-purity inert gas as a carrier gas, SiH4 gas, which is silicon hydride, and BdL, if necessary, are appropriately introduced into the vacuum chamber 52, and the air is heated between the high-frequency power source under a reaction pressure of, for example, 0.01 to 10 Torr. A high frequency voltage (for example, 13.56 MHz) is applied. Accordingly, each of the above reaction gases is transferred between the electrode 57 and the substrate 4.
1, and is deposited on the substrate 41 as a-8i:Ht or impurity-doped a-8t:H.

また、プラズマCVD法によって平板状の基体表面にa
−8t膜を形成する方法としては、次のよへな方法が考
えられる。 即ち、第2図に示すように、グロー放電装
置71の真空槽72内では、平板状の基板61が基板保
持具ωにセットされ、基板保持具ωに内蔵されたヒータ
(図示せず。)によって所定温度に加熱し得るようにな
っている。 基板61に対向して平板状高周波電極77
が配され、基板61との間に高周波電源56によジグロ
ー放電が生ぜしめられる。 なお、真空槽72内への各
ガスの供給については、第1図に於けると同様であるの
で、図示省略する。 また、基板61上のa−8i膜形
成については、前記円筒状基板上のa−8t膜形成と同
様の機構によっているので、その説明を省略する。
In addition, by plasma CVD method, a
The following methods can be considered as methods for forming the -8t film. That is, as shown in FIG. 2, in the vacuum chamber 72 of the glow discharge device 71, a flat substrate 61 is set on a substrate holder ω, and a heater (not shown) built in the substrate holder ω is used. can be heated to a predetermined temperature. A flat high frequency electrode 77 faces the substrate 61.
is disposed, and a jiglow discharge is generated between it and the substrate 61 by the high frequency power supply 56. Note that the supply of each gas into the vacuum chamber 72 is the same as that shown in FIG. 1, so illustration thereof is omitted. Furthermore, since the formation of the A-8I film on the substrate 61 is based on the same mechanism as the formation of the A-8T film on the cylindrical substrate, the explanation thereof will be omitted.

ところが、上記のような方法によるときは、第1図また
は第2図に示す電極57または77の両端からの放電漏
れや、電極57と真空槽52との間の、同じ<77と7
2との間の放電のようなa−8t膜形成と無関係の放電
(以下、リーク放電と称す。)が起シ、その結果、シリ
コン重合体の粉体が生成し、形成されるa−8t膜の品
質を低下させると共に、真空槽52または72の内壁面
に上記粉体が付着するようになる。 このような付着物
は次のアモルファス半導体膜の形成に際して、形成され
るアモルファス半導体膜の品質を低下させる。 %に1
例えばa−8i膜形成の次に同一装置を使用してアそル
ファスゲルマニウム膜を形成するような場合には、形成
されるアモルファスゲルマニウム膜中にSiが不純物と
して含有され、甚しく不都合である。
However, when using the above method, discharge leakage from both ends of the electrode 57 or 77 shown in FIG. 1 or FIG.
A discharge unrelated to the a-8t film formation (hereinafter referred to as leakage discharge) occurs, such as a discharge between the a-8t film and the a-8t film formed between the The quality of the film is degraded and the powder adheres to the inner wall surface of the vacuum chamber 52 or 72. Such deposits deteriorate the quality of the amorphous semiconductor film to be formed when the next amorphous semiconductor film is formed. 1 in %
For example, when an amorphous germanium film is formed using the same apparatus after forming an a-8i film, Si is contained as an impurity in the formed amorphous germanium film, which is extremely inconvenient.

而も、このような付着物を除去するのには甚しく手数が
掛る。
However, it takes a considerable amount of time to remove such deposits.

そこで、第1図、第2図に示すように、電極57または
770基板対向面を除く表面から数1離れた位置に、接
地された網状のシールド錦または59を設け、上記のよ
うなリーク放電を防止する方法が考えられるが、リーク
放電を完全に防止することは極めて困難である。
Therefore, as shown in FIGS. 1 and 2, a grounded net-shaped shield brocade or 59 is provided at a position several tens of meters away from the surface of the electrode 57 or 770, excluding the surface facing the substrate, to prevent leakage discharge as described above. Although there are ways to prevent leakage discharge, it is extremely difficult to completely prevent leakage discharge.

3、発明の目的 本発明は上記のような従来のアモルファス希者琳膜の形
成装置が有する問題点を解消し、リーク放電の発生を防
止する機能を備えたアモルファス希巻葎膜の形成装置を
提供することを目的としている。
3. Purpose of the Invention The present invention solves the problems of the conventional amorphous amorphous membrane forming apparatus as described above, and provides an amorphous amorphous membrane forming apparatus having a function of preventing the occurrence of leakage discharge. is intended to provide.

4、発明の構成 即ち、本発明は反応ガスのグロー放電分解によって基体
上にアモルファス半導体膜を形成する装置に於いて、前
記基体を収容する真空槽を構成する壁部の少なくとも一
部分が、前記グロー放電時の放電電圧印加用の電極とし
て構成されていることを特徴とするアモルファス半導体
膜の形成装置に係る。
4. Structure of the Invention In other words, the present invention provides an apparatus for forming an amorphous semiconductor film on a substrate by glow discharge decomposition of a reactive gas, in which at least a portion of a wall constituting a vacuum chamber housing the substrate is formed by the glow The present invention relates to an apparatus for forming an amorphous semiconductor film, which is configured as an electrode for applying a discharge voltage during discharge.

5、実施例 実施例1 ゛ この例は円筒状基板上にa−8t膜を形成する装置の例
であって、第3図に示すように真空槽は、ガス導入ロア
が設けられた外壁2と全面に亘って多数のガス導出孔5
が貫通する内壁3とからなり、両壁2.3との間にガス
流通空間4が形成され九周壁1と;排気口9を備えた支
持筒8aが下方に向って延設された下蓋8と;上蓋10
とからなっている0 このような真空槽を備えたグロー放電装置は、第4図に
示すように、周壁1内ではドラム状の基示しない駆動装
置によって回転するようにしである0 基板41は内側からヒータ5で所定温度に加熱し得るよ
うにしてアシ、基板41に対向してその周囲にガス導出
孔(細孔またはスリット)5が貫通する内壁3が位置し
、内壁3は高周波電極を兼ねていて、基板41との間に
高周波電源間によりグロー放電が生ぜしめられる。
5. Examples Example 1 ゛This example is an example of an apparatus for forming an A-8T film on a cylindrical substrate, and as shown in FIG. and a large number of gas outlet holes 5 over the entire surface.
an inner wall 3 through which a gas circulation space 4 is formed between both walls 2.3; 8 and; upper lid 10
As shown in FIG. 4, a glow discharge device equipped with such a vacuum chamber consists of a substrate 41 which is rotated within the peripheral wall 1 by a drum-shaped drive device without a base. An inner wall 3 through which a gas outlet hole (pore or slit) 5 penetrates is located facing the substrate 41 so that it can be heated to a predetermined temperature from the inside by a heater 5, and the inner wall 3 is provided with a high frequency electrode. Also, a glow discharge is generated between the high frequency power source and the substrate 41.

なお、図示省略したが、5IH4、k及び不純物ドーピ
ング用ガスの各供給源が第1図に於けると同様に設けら
れてあシ、供給ガスは導入ロア及び周壁1内の空間4を
経由してガス導出孔5から内壁3と基板41との間の環
状空間に入シ、下蓋8の支持筒8aに設けられた排気口
9からパタフライノ(ルプ聞を経由して図示しない真空
ポンプによって装置外へ排出される。
Although not shown, supply sources for 5IH4, K and impurity doping gas are provided in the same way as in FIG. The gas enters the annular space between the inner wall 3 and the substrate 41 through the gas outlet hole 5, passes through the exhaust port 9 provided in the support tube 8a of the lower cover 8 to the device via a vacuum pump (not shown) Expelled outside.

下蓋8と周壁1の外壁2との間のガスのシールは下蓋8
から上方に向って外壁2を囲むようにして延在するフラ
ンジ8bの内周面に削設された環状溝8cに嵌入したO
リング8dによって、下蓋8と回転軸葛との間のガスの
シールは支持筒8aと回転軸6との間に設けられたメカ
ニカルシール躬によってなされる。 上蓋10と周壁1
の外壁2との間のガスのシールは、上蓋10から下方に
向って外壁2を囲むようにして延在するフランジ10b
の内周面に削設された環状溝10cに嵌入した0リング
10dによってなされる。
The gas seal between the lower lid 8 and the outer wall 2 of the peripheral wall 1 is provided by the lower lid 8.
The groove 8c is fitted into an annular groove 8c cut into the inner circumferential surface of the flange 8b, which extends upward from the flange 8b to surround the outer wall 2.
The ring 8d provides a gas seal between the lower cover 8 and the rotating shaft 6 through a mechanical seal provided between the support tube 8a and the rotating shaft 6. Upper lid 10 and peripheral wall 1
The gas seal between the outer wall 2 and the outer wall 2 is provided by a flange 10b extending downward from the upper lid 10 to surround the outer wall 2.
This is done by an O-ring 10d fitted into an annular groove 10c cut into the inner circumferential surface of the holder.

このグロー放電装置に於いて、予め表面を清浄化した例
えばM基板41を真空槽内に配置し、真空槽内のガス圧
を10 ’Torrに排気し、かつ、基板41を100
〜350°C(望ましくは150〜300°C)に加熱
保持する。 次いでMをキャリアガスとして5iHaガ
ス及び必要とあればBJs等を適宜真空槽内に導入し、
例えば0,01〜10Torrの反応圧下で高周波電源
56により高周波電圧(例えば13.56MHz)を印
加する。 上記反応圧の制御はバタフライバルブ50に
よって行なう。
In this glow discharge device, for example, an M substrate 41 whose surface has been cleaned in advance is placed in a vacuum chamber, the gas pressure in the vacuum chamber is evacuated to 10' Torr, and the substrate 41 is heated to 100 Torr.
Heat and maintain at ~350°C (preferably 150-300°C). Next, using M as a carrier gas, 5iHa gas and, if necessary, BJs etc. are introduced into the vacuum chamber as appropriate.
For example, a high frequency voltage (for example, 13.56 MHz) is applied by the high frequency power supply 56 under a reaction pressure of 0.01 to 10 Torr. The reaction pressure is controlled by a butterfly valve 50.

これによって上記反応ガスを電極を兼ねた内壁3と基板
41との間でグロー放電分解し、a−8i:Hまたは不
純物ドープ)’a−8i:Hとして基板41上に堆積さ
せる。
As a result, the reaction gas is decomposed by glow discharge between the inner wall 3, which also serves as an electrode, and the substrate 41, and is deposited on the substrate 41 as a-8i:H or impurity-doped a-8i:H.

このように内壁3を高周波電極として使用することによ
って基板41以外に放電の対象となる相手がなくなシ、
リーク放電が起ることがなくなる。
By using the inner wall 3 as a high frequency electrode in this way, there is no other target for discharge other than the substrate 41, and
Leakage discharge will no longer occur.

その結果、化学的活性種が内壁3と基板41との間の断
面環状空間、即ち、反応室全体に均一に広がりて、品質
の良いa−8i膜が形成されるようになシ、更に装置を
簡素化、かつ、小型化することができ、製膜の高速化も
期待できる。 また、外壁2の外側は大気圧であるから
、外部への放電漏れが起る虞れはない。
As a result, the chemically active species are uniformly spread throughout the cross-sectional annular space between the inner wall 3 and the substrate 41, that is, the entire reaction chamber, and a high quality A-8I film is formed. It can be simplified and downsized, and it is also expected to speed up film formation. Furthermore, since the outside of the outer wall 2 is at atmospheric pressure, there is no risk of discharge leaking to the outside.

々お、危険防止のために外壁2、下蓋8及び上蓋10の
外面に絶縁塗料を塗布するか、或いは第5図に示すよう
に、下蓋8′、上蓋10′及び周壁1′の外壁2′の材
料を絶縁性材料とし、周壁1′の内壁3′の材料を導電
性材料として真空槽を構成することが望ましく、また1
、装置外で高周波ノイズが生ずることを防止するために
、真空槽全体をシールド部材で覆うことが望ましい。
In order to prevent danger, insulating paint should be applied to the outer surfaces of the outer wall 2, the lower cover 8 and the upper cover 10, or the outer walls of the lower cover 8', the upper cover 10' and the peripheral wall 1' should be painted as shown in FIG. It is desirable that the vacuum chamber is constructed by using an insulating material as the material of 2' and a conductive material as the inner wall 3' of the peripheral wall 1'.
In order to prevent high frequency noise from occurring outside the apparatus, it is desirable to cover the entire vacuum chamber with a shielding member.

実施例2 この例は、前記実施例1の装置に、よシ均一にa−8t
膜が形成されるよう、改善を加えた例である0 第6図に示すように真空槽は、周壁11、下蓋18及び
上蓋20とからなっていて、周壁11は、外壁12、内
壁13及び両者の間の空間を2つの空間14a及び14
bに2分する2枚の仕切シ壁16とからなっているO 外壁12には空間14aに向って貫通するガス導入口1
7及び空間14bに向って貫通するガス排気口19が設
けられ、内壁13には空間14aに向って貫通する多数
のガス導出孔15a及び空間14bに向って貫通する多
数のガス排出孔15bが全面に亘って設けられている。
Example 2 In this example, a-8t was applied more uniformly to the apparatus of Example 1.
As shown in FIG. 6, the vacuum chamber is made up of a peripheral wall 11, a lower lid 18, and an upper lid 20. and the space between them into two spaces 14a and 14
The outer wall 12 has a gas inlet 1 that penetrates toward the space 14a.
7 and a gas exhaust port 19 penetrating toward the space 14b, and the inner wall 13 is provided with a large number of gas outlet holes 15a penetrating toward the space 14a and a large number of gas exhaust holes 15b penetrating toward the space 14b. It is set up over .

第7図は第6図に示した真空槽を備えたグロー放電装置
の概要を示す断面図(但し、ヒータ(第4図中の55)
は図示省略しである。)である。
Figure 7 is a cross-sectional view showing the outline of the glow discharge device equipped with the vacuum chamber shown in Figure 6 (however, the heater (55 in Figure 4)
is not shown. ).

下蓋18は前記実施例1に於けるそれとは異なシ、軸4
3との間のガスのシールはメカニカルシールシによって
なされ、かつ、回転軸招の回転を可能ならしめている。
The lower lid 18 is different from that in the first embodiment and has a shaft 4.
A gas seal between the rotary shaft and the rotary shaft 3 is provided by a mechanical seal, and the rotation of the rotary shaft is enabled.

ガス導入口17から真空槽内に導入されたガスは、空間
14aに入シ、ガス導出孔(細孔またはスリッ))15
aを通過して内壁13と基板41との間の環状空間に入
シ、ガス排出孔(細孔またはスリット)15b1空間1
4b1排気口19及びバタフライノ(ルプ関を経由して
図示しない真空ポンプによって真空槽外へ排出される。
The gas introduced into the vacuum chamber from the gas inlet 17 enters the space 14a and the gas outlet hole (pore or slit) 15.
a, enters the annular space between the inner wall 13 and the substrate 41, and gas discharge hole (pore or slit) 15b1 space 1
It is discharged to the outside of the vacuum chamber by a vacuum pump (not shown) via the 4b1 exhaust port 19 and the butterfly nozzle.

周壁11と下蓋18及び上蓋加との間のガスのシール並
びにa−8i膜形成の機構は前記実施例1に於けると同
様であるので、これらの説明は省略する0真空槽を上記
のような構造とすることによって、内壁13と基板41
によって形成され、断面環状を呈する反応室内で、反応
ガスが円周方向に移動するようになり、a=si膜が一
層均一に形成されるようになる。
The gas seal between the peripheral wall 11, the lower cover 18, and the upper cover and the mechanism for forming the a-8i film are the same as in Example 1, so their explanation will be omitted. By having such a structure, the inner wall 13 and the substrate 41
The reaction gas moves in the circumferential direction within the reaction chamber having an annular cross section, and the a=si film is formed more uniformly.

なお、第6図では、27枚の仕切シ壁16を、周壁11
内の空間を同じ容積の空間14aと14bとに2分する
ように設けであるが、空間14aと14bとは必ずしも
それらの容積を等しくする必要はない。
In addition, in FIG. 6, the 27 partition walls 16 are replaced by the peripheral wall 11.
Although the inner space is divided into two spaces 14a and 14b having the same volume, the spaces 14a and 14b do not necessarily have to have the same volume.

寧ろ、第8図に示すように、ガス声入口17に接する側
の空間14aの容積をガス排気口19に接する側の空間
14bの容積よシも大きくとるようにすると、供給され
る新しい反応ガスに接する基板410表面になる。
On the contrary, as shown in FIG. 8, if the volume of the space 14a on the side in contact with the gas outlet 17 is made larger than the volume of the space 14b on the side in contact with the gas exhaust port 19, the new reaction gas to be supplied will be reduced. The surface of the substrate 410 is in contact with the surface of the substrate 410.

実施例3 この例は前記実施例2の装置に生産性が向上するよう、
改善を加えた例である。
Embodiment 3 In this example, in order to improve the productivity of the apparatus of Embodiment 2,
This is an example of improvements.

この例では第9図に示すように、周壁21の外壁nをそ
の側面が上から見て矩形となるように形成しである。 
その相対向する長手方向の側壁の一方にガス導入口27
を、羊の他方に排気日齢を設け、外壁四の内側長手方向
に複数個の円筒状内壁器を1列に並べて配し、相隣れる
内壁器の間及び最端に位置する内壁器と外壁22との間
に仕切シ壁%を設けて、外壁22と内壁器との間に形成
される空間を、空間24a及び24bに2分し、各内壁
nに、空間24aK向って貫通する多数のガス導出孔(
細孔またはスリッ))25aを、空間24bに向って貫
通41が配される。
In this example, as shown in FIG. 9, the outer wall n of the peripheral wall 21 is formed so that its side surface is rectangular when viewed from above.
A gas inlet 27 is provided on one of the opposing longitudinal side walls.
The other side of the sheep is given an evacuation age, and a plurality of cylindrical inner wall vessels are arranged in a row in the inner longitudinal direction of the outer wall 4, and between adjacent inner wall vessels and between the inner wall vessels located at the end. A partition wall is provided between the outer wall 22 and the space formed between the outer wall 22 and the inner wall to be divided into two spaces 24a and 24b. gas outlet hole (
A penetration 41 is arranged through the pore or slit 25a towards the space 24b.

この周壁21を備え九グロー放電装置の構造は、外壁が
上記の形状を有することと、内壁を複数個配しているこ
とを除いては、前記実施例3に於けると同様であるので
、その詳細な説明は省略する0上記のようにすることに
より、複数個の基板上に同時にa−8t膜が形成される
ので、1回の操作で多数の製膜ができ、生産性が大幅に
向上される0実施例4 この例は平板状の基板上にa −St膜を形成する装置
の例でめる0 第10図に示すように、真空槽31は、その底壁31a
が導電性材料からなシ、その他の部分は絶縁性材料から
なって構成され、その側壁にガス導入口37及び排気口
39が設けである。
The structure of the nine-glow discharge device equipped with this peripheral wall 21 is the same as that in the third embodiment, except that the outer wall has the above-mentioned shape and a plurality of inner walls are arranged. A detailed explanation will be omitted. By doing the above, A-8T films can be formed on multiple substrates at the same time, so a large number of films can be formed in one operation, greatly increasing productivity. Embodiment 4 This example is an example of an apparatus for forming an a-St film on a flat substrate.As shown in FIG. 10, a vacuum chamber 31 has a bottom wall 31a.
The main body is not made of a conductive material, and the other parts are made of an insulating material, and a gas inlet 37 and an exhaust port 39 are provided on the side wall.

真空槽31内には基板41aを保持する基板ホルダ42
aが配してアシ、真空槽31の底壁31aは高周波電源
56に、基板41aは基板ホルダ42aを介して高周波
電源間及び接地回路に接続され、真空槽31の底壁31
aと基板41aとが対向電極を構成する。
Inside the vacuum chamber 31 is a substrate holder 42 that holds a substrate 41a.
The bottom wall 31a of the vacuum chamber 31 is connected to the high frequency power source 56, and the substrate 41a is connected to the high frequency power source and the ground circuit via the substrate holder 42a.
a and the substrate 41a constitute a counter electrode.

真空槽31内のガスは排気口39、バタフライノ(ルプ
聞を経由して図示しない真空ポンプによって装置外へ排
出される。
The gas in the vacuum chamber 31 is exhausted to the outside of the apparatus by a vacuum pump (not shown) via an exhaust port 39 and a butterfly nozzle.

なお、図示省略したが、第1図に於けると同様に、5i
Ha 、Ar及び不純物ガスの各供給源が設けられてい
る。
Incidentally, although not shown, similarly to FIG. 1, 5i
Ha, Ar, and impurity gas supply sources are provided.

このような装置によって前記実施列1に於けると同様に
して、平板状の基板41aの表面にa−8t膜が形成さ
れる。
Using such an apparatus, an a-8t film is formed on the surface of the flat substrate 41a in the same manner as in the first embodiment.

以上、いずれの実施例にあってもリーク放電を起すこと
がな(、a−8t膜が均一に形成され、品質の良いa−
8t膜が形成され、装置の簡素化や小型化が可能であし
、製膜速度の高速化も期待できるO なお、上記実施例ではいずれも&−8t膜形成について
説明したが、本発明の装置はガス供給源を変更または追
加して設けることにより、a−8i膜以外のアモルファ
ス半導体膜、例えばアモルファス炭化珪素膜、アモルフ
ァス窒化珪素膜、アモルファスゲルマニウム膜等々、他
のアモルファス半導体膜の形成にも使用できることは言
う迄もない。
As mentioned above, leakage discharge does not occur in any of the examples (the a-8t film is uniformly formed and the a-8t film is of good quality).
8t film is formed, the apparatus can be simplified and miniaturized, and the film formation speed can be expected to be increased.Although the above embodiments have described &-8t film formation, the apparatus of the present invention By changing or adding a gas supply source, it can also be used to form other amorphous semiconductor films other than the A-8I film, such as an amorphous silicon carbide film, an amorphous silicon nitride film, an amorphous germanium film, etc. It goes without saying that it can be done.

また、本発明は前記容量結合型の装置のみなら9.19
.29.39・・・・・・・・・・・・・・・排気口1
0.10−20・・・・・・・・・・・・・・・上蓋3
1・・・・・・・・・・・・・・・・・・真空槽31a
・・・・・・・・−・・・・・底壁41.41a・−・
・・・・・・・・・・・基板42・・・・・・・・・・
・・・・・基板支持台42a・・・・・・・・・・・・
基板ホルダ圓・・・・・・・・・・・・・・・バタフラ
イバルブ関・・・・・・・・・・・・・・・高周波電源
である。
Further, the present invention is applicable only to the capacitively coupled device described above.
.. 29.39・・・・・・・・・・・・Exhaust port 1
0.10-20・・・・・・・・・・・・Top lid 3
1・・・・・・・・・・・・・・・Vacuum chamber 31a
・・・・・・・・・−・・Bottom wall 41.41a・−・
・・・・・・・・・・・・Substrate 42・・・・・・・・・・
..... Board support stand 42a .....
Board holder circle...Butterfly valve connection...High frequency power supply.

代理人 弁理士 逢 坂 宏(他1名)第1図 第3図 帖4目 第5図 11’l’Agent: Patent attorney Hiroshi Aisaka (and 1 other person) Figure 1 Figure 3 Chapter 4 Figure 5 11’l’

Claims (1)

【特許請求の範囲】[Claims] 1、反応ガスのグロー放電分解によって基体上にアモル
ファス半導体膜を形成する装置に於いて、前記基体を収
容する真空槽を構成する壁部の少なくとも一部分が、前
記グロー放電時の放電電圧印加用の電極として構成され
ていることを特徴とするアモルファスm膜の形成装置。
1. In an apparatus for forming an amorphous semiconductor film on a substrate by glow discharge decomposition of a reactive gas, at least a portion of a wall constituting a vacuum chamber accommodating the substrate is used for applying a discharge voltage during the glow discharge. An apparatus for forming an amorphous m film, characterized in that it is configured as an electrode.
JP6947484A 1984-04-07 1984-04-07 Device for forming amorphous film Pending JPS60215768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6947484A JPS60215768A (en) 1984-04-07 1984-04-07 Device for forming amorphous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6947484A JPS60215768A (en) 1984-04-07 1984-04-07 Device for forming amorphous film

Publications (1)

Publication Number Publication Date
JPS60215768A true JPS60215768A (en) 1985-10-29

Family

ID=13403708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6947484A Pending JPS60215768A (en) 1984-04-07 1984-04-07 Device for forming amorphous film

Country Status (1)

Country Link
JP (1) JPS60215768A (en)

Similar Documents

Publication Publication Date Title
JP4329403B2 (en) Plasma processing equipment
US6103304A (en) Chemical vapor deposition apparatus
JPH076956A (en) Heat treating device
JP2003045864A (en) Substrate processing system
JPH04264715A (en) Vertical batch treatment device
JPH05251391A (en) Plasma processing device for semiconductor wafer
JP2006279058A (en) Heat treatment apparatus and method of manufacturing semiconductor device
JP2014053136A (en) Atmospheric pressure plasma processing apparatus
US4633812A (en) Vacuum plasma treatment apparatus
TW202107591A (en) Batch type substrate processing apparatus
US4909183A (en) Apparatus for plasma CVD
KR101324208B1 (en) Substrate processing apparatue
JPS592374B2 (en) Plasma vapor phase growth equipment
JPH06124906A (en) Plasma electrode device
JPS60215768A (en) Device for forming amorphous film
US5164017A (en) Method for cleaning reactors used for gas-phase processing of workpieces
JP2003017479A (en) Precoating method, treatment method, and plasma apparatus
JP2022049556A (en) Plasma purge method
JPH024976A (en) Thin film formation
CN111793791A (en) Flexible silicon oxide film growth device
JP2003201565A (en) Apparatus and method for forming deposit film
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH04154117A (en) Low pressure cvd system
JPH0892746A (en) Plasma chemical vapor deposition and device therefor