JPS60215739A - High-carbon steel plate for vessel having excellent workability and corrosion resistance - Google Patents

High-carbon steel plate for vessel having excellent workability and corrosion resistance

Info

Publication number
JPS60215739A
JPS60215739A JP7092084A JP7092084A JPS60215739A JP S60215739 A JPS60215739 A JP S60215739A JP 7092084 A JP7092084 A JP 7092084A JP 7092084 A JP7092084 A JP 7092084A JP S60215739 A JPS60215739 A JP S60215739A
Authority
JP
Japan
Prior art keywords
steel plate
corrosion resistance
cementite
excellent workability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7092084A
Other languages
Japanese (ja)
Inventor
Hidejiro Asano
朝野 秀次郎
Shinichi Arai
信一 新井
Kiyokazu Sasaki
清和 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7092084A priority Critical patent/JPS60215739A/en
Publication of JPS60215739A publication Critical patent/JPS60215739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a high-carbon steel plate for a vessel having excellent workability and corrosion resistance by controlling respectively the contents of C, Si, Mn, Al, P, S, N and O and fining cementite. CONSTITUTION:The above-described steel plate consists of 0.10-0.30% C, <=0.03% Si, 0.05-0.60% Mn, <=0.01% Al, <=0.025% P, <=0.05% S, <=0.015% N, <=0.03% O and the balance Fe and unavoidable impurities and has <=0.5mu average particle size of cementite. Such steel plate is produced by subjecting a continuous casting slab, which is subjected to component adjustment in the abovementioned way, to hot finish rolling at the temp. in the austenite region then cooling the hot-rolled plate to an about 450-620 deg.C temp. range at a cooling rate of about 40-200 deg.C/sec and coiling the plate. Such steel plate is decreased in the content of Al by the increased rate of carbon and at the same time excellent workability and corrosion resistance are provided thereto by refining of cementite. The steel plate lends itself to various diversified applications as a blank material for vessels.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加工性および耐食性の優れた缶用高炭素鋼板に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high carbon steel sheet for cans that has excellent workability and corrosion resistance.

(従来技術およびその問題点) 金属容器、とくにスチール製の容器は古くから、厳しい
貯蔵環境下においても、密封容器としての機能を失わな
いものとして消費者の信頼を得てきた。この背景には品
質改善および低コスト化に対する関連業界の絶え間ない
努力があり、例えばスチールメーカーにおいては品質の
均一性が優れた連鋳材への造塊材からの転換、素材の高
強度化によるゲージダウン、あるいはメッキ機能の向上
による目付量の低減等があげられる。又、近年では優れ
たフランジ加工性の要求される01缶、或は優れた開缶
性の要求されるイージーオープン缶などに見られるよう
に、鋼板の加工性も一段と要求されるようになり、これ
については、本発明者らも特開昭57−198244号
公報、或いは特開昭58−52455号公報などにより
、延性の劣化原因である固溶炭素をセメンタイトの微細
化および高炭素化による多量分散化により低減して加工
性を向上させる技術について既に提案を行なっている。
(Prior Art and its Problems) Metal containers, especially steel containers, have long been trusted by consumers as they do not lose their function as sealed containers even under harsh storage environments. Behind this is the constant efforts of related industries to improve quality and reduce costs. For example, steel manufacturers are switching from ingots to continuous cast materials with excellent quality uniformity, and by increasing the strength of materials. Examples include reducing the area weight by lowering the gauge or improving the plating function. In addition, in recent years, the workability of steel sheets has become even more demanding, as seen in 01 cans, which require excellent flange workability, and easy-open cans, which require excellent openability. Regarding this, the present inventors also reported in Japanese Unexamined Patent Publications No. 57-198244 and No. 58-52455 that a large amount of solid solute carbon, which is a cause of deterioration of ductility, is reduced by making cementite finer and having a higher carbon content. We have already proposed a technology to reduce this through dispersion and improve workability.

このような品質改善等の努力により、食缶は内容物の種
類および用途を拡大し、世界の各地で日常的に使用に供
されるに至ったが、近年、気温の高い貯蔵環境下で長期
間保存された場合、あるいは内容物の種類等によっては
、食缶の内面の耐食性が損なわれる現象が散見されるよ
うになった。
Through these efforts to improve quality, food cans have expanded the variety of contents and applications, and have come to be used on a daily basis in many parts of the world. When stored for a long period of time or depending on the type of contents, etc., the corrosion resistance of the inner surface of food cans is sometimes observed to be impaired.

この現象には大別して2つの種類があり、一つは主とし
てブリキを素材とした缶胴等の缶内面のメッキ層の溶出
速度が異常に促進される現象(異常溶出)、他はブリキ
およびTFS (ティンフリースチール)等を素材とし
た減圧缶の缶蓋の内面のビード等の加工部に腐食割れを
生ずる現象である。これらは通常の条件下では食缶とし
ての気密性を損なうまでには至らず、発生頻度としても
小さいが、食缶の寿命予測が不正確となる恐れがあり、
原因の解明が急がれている。発生原因については未だ明
らかでない点もあるが、上述の錫等のメッキ層の異常溶
出および腐食割れのいずれも造塊材に比して連鋳材(ア
ルミギルド鋼)の方が発生し易い傾向が指摘されており
、鋼板表層の清浄性に関連した見方がある。また、焼鈍
方式により発生傾向に差異があり、錫の異常溶出は箱焼
鈍材に、腐食割れは連焼材に発生し易いとも云われてい
る。
There are two types of this phenomenon: one is a phenomenon in which the elution rate of the plating layer on the inner surface of can bodies mainly made of tinplate is abnormally accelerated (abnormal elution), and the other is a phenomenon in which the elution rate of the plating layer on the inner surface of cans mainly made of tinplate is accelerated (abnormal elution). This is a phenomenon in which corrosion cracks occur in the processed parts such as beads on the inner surface of the can lid of vacuum cans made of materials such as (tin-free steel). Under normal conditions, these do not impair the airtightness of food cans, and their occurrence frequency is small, but there is a risk that predicting the lifespan of food cans will be inaccurate.
Elucidation of the cause is urgently needed. Although the causes of occurrence are still unclear, the above-mentioned abnormal elution of the plating layer such as tin and corrosion cracking tend to occur more easily in continuously cast materials (aluminum guild steel) than in ingot materials. has been pointed out, and there is a view related to the cleanliness of the surface layer of the steel plate. Additionally, there are differences in the occurrence tendency depending on the annealing method, and it is said that abnormal elution of tin is more likely to occur in box-annealed materials, and corrosion cracking is more likely to occur in continuously fired materials.

かかる背景のもとに本発明者らは前述の如き長年にわた
る消費者の信頼に応え、連鋳化および連焼化の方向を損
なうことなく、かつ素材の高強度指向に沿ったこの問題
の合理的な解決を図るべく鋭意検討を行なってきた。
Against this background, the inventors of the present invention have responded to the long-standing trust of consumers as described above, and sought to rationalize this problem in line with the trend towards high strength materials without compromising the direction of continuous casting and continuous firing. We have been conducting intensive studies to find a solution.

その結果、これらの耐食性劣化の主原因は鋼板表面のア
ルミナ系非金属介在物がメッキ層および塗膜に欠陥(ピ
ンホール)を生成し、このピンホールを起点として腐食
がi行することによるものであるとの知見を得た。この
際腐食の進行の形態がメ・ンキ層の異常溶出になるか、
あるいは腐食割れになるかは前述の如くメッキの種類、
内容物、素材の焼鈍方式等によって異なり一概に規足し
難いか、焼鈍方式について云えば、本発明者らの調査に
よるとA1の鋼板表面への富化を助長する箱焼鈍材の場
合には、このA1富化層がメッキ金属と地鉄の界面に生
成する合金層の健全性を阻害することによるメッキ層全
面の異常溶出を、連焼材の場合には缶蓋加工での加工歪
の不均一性が大きくなり易い(ストレッチャーストレイ
ンが大きい)ことから、前述のピンホールに生じた孔食
な起点として、ストレッチャーストレインに沿った腐食
割れを、生じ易い傾向が認めEれた。
As a result, the main cause of these corrosion resistance deteriorations is that alumina-based nonmetallic inclusions on the surface of the steel sheet create defects (pinholes) in the plating layer and coating film, and corrosion starts from these pinholes. We obtained the knowledge that At this time, whether the form of corrosion progress is abnormal elution of the coating layer or not,
Or whether it will cause corrosion cracking depends on the type of plating as mentioned above.
Regarding the annealing method, it may be difficult to make a general rule because it depends on the contents, the annealing method of the material, etc. According to the research conducted by the present inventors, in the case of box annealed materials that promote enrichment of A1 on the steel plate surface, This A1-enriched layer inhibits the integrity of the alloy layer that forms at the interface between the plated metal and the base iron, causing abnormal elution of the entire surface of the plated layer. Since the uniformity tends to be large (stretcher strain is large), it was observed that corrosion cracking along the stretcher strain tends to occur as a starting point for the pitting corrosion generated at the pinholes described above.

以上により、耐食性の劣化が最終的に前述のいずれかの
腐食形態で現われるにしても、その改善にはAliの可
能な限りの低減が必須である。この場合、AIは主とし
て脱酸を目的として添加されるものであるから、これを
低減するには、鋼成分の高炭素化を図ることが有効であ
る。しかしながら鋼成分を単に高炭素化したのみでは鋼
板の加工性が劣化し、加工用鋼板として使用に耐えない
。但し、前述の如く本発明者らはセメンタイトを微細化
し、かつ多量分散を図った高炭素材は、固溶C量の低減
効果により優れた加工性を示すことを既に特開昭58−
52455号などで提案しており、かかる知見にさらに
Al量の低減による耐食性の改善効果を層状することに
よって、加工性および耐食性の共に優れた鋼板の提供が
可能となったものである。
As described above, even if deterioration of corrosion resistance ultimately appears in any of the corrosion forms described above, it is essential to reduce the amount of Al as much as possible to improve the deterioration. In this case, since AI is added mainly for the purpose of deoxidation, it is effective to increase the carbon content of the steel component in order to reduce this. However, simply increasing the carbon content of the steel sheet deteriorates the workability of the steel sheet, making it unsuitable for use as a working steel sheet. However, as mentioned above, the present inventors have already shown in Japanese Patent Application Laid-Open No. 58-1987 that a high carbon material made of fine cementite and dispersed in a large amount exhibits excellent workability due to the effect of reducing the amount of solid solute C.
No. 52455, etc., and by layering this knowledge with the effect of improving corrosion resistance by reducing the amount of Al, it has become possible to provide a steel plate with excellent workability and corrosion resistance.

(発明の構成) すなわち、本発明は高炭素化によっても材質特性が劣化
することなく、むしろその材質改善効果が大きいセメン
タイトの微細化、多量分散効果および高炭素化によるA
I含有量の低減効果、すなわち耐食性に悪影響するアル
ミナ系非金属介在物の低減、および鋼板表面へのAIの
富化の抑制に着目して構成されたもので、素材の高強度
化および連鋳化および連焼化による製造コストの低減指
向に沿った解決策を提供することを可能としたものであ
って、その要旨のするところは、重量2でC: 0.1
0〜0.30X 、 Mn : 0.05〜0.80%
ヲ含み、3 i : 0.03X以下、Al : 0.
01X以下に制限し、P : 0.025X以下、S 
: 0.05X以下、N: 0.015%以下、O: 
0.03を以下とし、残部鉄および不可避的不純物元素
から成り、且つセメンタイトの平均粒子径が0.5 p
t、以下であることを特徴とする加工性および耐食性の
優れた容器用高炭素鋼板にある。
(Structure of the Invention) In other words, the present invention does not deteriorate the material properties even with high carbon content, but rather improves A by making cementite finer, having a large amount of dispersion effect, and having a high carbon content, which has a great effect of improving the material quality.
It was constructed with a focus on the effect of reducing I content, that is, reducing alumina-based nonmetallic inclusions that adversely affect corrosion resistance, and suppressing the enrichment of AI on the steel sheet surface. It has made it possible to provide a solution in line with the aim of reducing manufacturing costs through combustion and continuous firing, and its gist is that C: 0.1 at weight 2.
0~0.30X, Mn: 0.05~0.80%
3i: 0.03X or less, Al: 0.
Limited to 0.01X or less, P: 0.025X or less, S
: 0.05X or less, N: 0.015% or less, O:
0.03 or less, the balance consists of iron and unavoidable impurity elements, and the average particle diameter of cementite is 0.5 p
A high carbon steel sheet for containers having excellent workability and corrosion resistance, characterized in that the steel sheet has the following properties:

以下、本発明の詳細について説明する。The details of the present invention will be explained below.

先ず、C3lの下限を0.10% (以下重量2)とし
たのは0.10%未満では脱酸が不十分となるため他の
脱酸元素(AI等)を増量しなければならず耐食性改善
効果が不十分となるからである。またC量の上限を0.
30%としたのは0.3zを超えると冷延板の硬質化が
著しく、冷延作業が困難になるからである。
First of all, the lower limit of C3l was set at 0.10% (hereinafter referred to as weight 2) because if it is less than 0.10%, deoxidation is insufficient, so other deoxidizing elements (AI, etc.) must be increased, which improves corrosion resistance. This is because the improvement effect will be insufficient. Also, the upper limit of the amount of C is set to 0.
The reason why it is set at 30% is that if it exceeds 0.3z, the cold-rolled sheet becomes extremely hard, making cold-rolling work difficult.

マタ、Mn量を0.05$ −0,80g ニ限定しタ
ノは、Mn量が0.05%未満であると鋼板強度が不十
分となり、Mn量を0.8zを超えるほど多くすると冷
延時の硬質化が著しく、冷延作業が困難となるからであ
る。
However, if the Mn content is less than 0.05%, the strength of the steel sheet will be insufficient, and if the Mn content is increased to more than 0.8z, the strength of the steel plate will be insufficient during cold rolling. This is because the steel becomes extremely hard, making cold rolling difficult.

次に、SiはSn 、Cr 、Ni 、AI等のメッキ
を施して表部処理鋼板とするときメッキ密着性を劣化し
て耐食性に悪影響を及ぼすため上限を0.03駕に制限
した。
Next, since Si deteriorates plating adhesion and adversely affects corrosion resistance when plated with Sn, Cr, Ni, AI, etc. to form a surface-treated steel sheet, the upper limit was limited to 0.03.

次に°、本発明においてはAI量を0.01を以下に制
限する点を重要な構成要件の一つとするものである。即
ち、A1はアルミナ系介在物を形成して耐食性に悪影響
を及ぼすものであり、従ってその量は低く制限されるほ
ど有効である。この場合、その上限を0.01%と定め
たのは、後述するセメンタイト粒子径との関連で、次の
実験から得られた知見に基づくものである。
Next, in the present invention, one of the important constituent requirements is to limit the amount of AI to 0.01 or less. That is, A1 forms alumina-based inclusions and has an adverse effect on corrosion resistance, so it is more effective to limit its amount to a lower level. In this case, the upper limit was set at 0.01% based on the knowledge obtained from the following experiment in relation to the cementite particle diameter described later.

即ち、第1図は耐食性(錫の異常溶出)に及ぼすA1量
とセメンタイト粒子径の影響を示すものである。耐食性
の評価はブリキ(板厚0.20+am 、箱焼鈍材、ス
キンバス圧下車1.0% 、目付量#75)を使用して
作成した無塗装はんだ缶(5号缶)に内容物としてクエ
ン酸シロ・ンプを添加したミカンをパックし40℃で1
2ケ月間の貯蔵条件による促進試験を行ない、内容物中
への錫の溶出量(ppm)を測定して評価した。試験に
使用した鋼板の成分は、A1が0.001 (無添加)
〜0.048駕でその他元素はG O,IJχ9Mn 
0.43N 、 S i 0.013X、 P O,0
15LS O,014X 、 N O,0041L O
G、004% テある。
That is, FIG. 1 shows the influence of the amount of A1 and the cementite particle size on corrosion resistance (abnormal elution of tin). Corrosion resistance was evaluated using unpainted solder cans (No. 5 cans) made using tinplate (plate thickness 0.20+am, box annealed material, skin bath pressure 1.0%, area weight #75). Packed mandarin oranges with acid syrup added and heated at 40℃ for 1 hour.
An accelerated test was conducted under storage conditions for two months, and the amount of tin eluted into the contents (ppm) was measured and evaluated. The composition of the steel plate used in the test was A1 of 0.001 (no additives).
〜0.048 and other elements are GO, IJχ9Mn
0.43N, S i 0.013X, P O,0
15LS O,014X, N O,0041L O
G, 004% Yes.

第1図から明らかな如く、AI量を0.011以下、セ
メンタイト粒子径を0.5w以下とすることによって耐
食性の優れた鋼板が得られることがわかる。また後述す
る実施例からも明らかな如く、セメンタイト粒子径が0
.51Lを超える鋼板では、加工性の劣化も大きく、エ
リクセン値が6.0未満となり、加工性鋼板とじての特
性が不十分となる。
As is clear from FIG. 1, a steel plate with excellent corrosion resistance can be obtained by setting the AI amount to 0.011 or less and the cementite particle size to 0.5W or less. Furthermore, as is clear from the examples described later, the cementite particle size is 0.
.. A steel plate exceeding 51L has a large deterioration in workability, with an Erichsen value of less than 6.0, and the properties as a workable steel plate are insufficient.

以上の結果に基いてAllの上限を0.011と定めた
。なお、その含有量は前述の通り、低い程有効であり、
実質的にはゼロであることが望ましいが、通常の製造工
程において原料から不可避的に混入する不純物程度の存
在は止むを得ないものとする。
Based on the above results, the upper limit of All was determined to be 0.011. As mentioned above, the lower the content, the more effective it is.
Although it is desirable that the impurities be substantially zero, the presence of some impurities that are inevitably mixed in from raw materials in normal manufacturing processes is unavoidable.

P、SおよびNは鋼板の延性および耐食性を劣化するこ
とがあるため、それぞれのL限を0.025$、0.0
5$ 、 及ヒ0.015gトLり。
Since P, S, and N can deteriorate the ductility and corrosion resistance of steel sheets, the L limits for each are set at 0.025 $ and 0.0
5$, and 0.015g.

0はMnO、SiOx 、 A 1.Oi等の介在物と
して鋼中に存在し、粗大なものは加工性に悪影響を及ぼ
し、また孔食の生成源となり易いため上限を0.03%
とした。
0 is MnO, SiOx, A1. Oi and other inclusions exist in steel, and coarse ones have a negative effect on workability and can easily become a source of pitting corrosion, so the upper limit is set at 0.03%.
And so.

次に本発明においてはセメンタイトの平均粒子径が0.
5延以下であることも重要な構成要件の一つとしている
が、この理由は前述の第1図の結果から明らかなように
、 0.5給を超えると加工性および耐食性改善効果が
消失し、更には粗大なセメンタイト粒子に起因する加工
割れおよび孔食を生じ加工性、耐食性を劣化するからで
ある。
Next, in the present invention, the average particle diameter of cementite is 0.
The reason for this is that, as is clear from the results shown in Figure 1 above, if it exceeds 0.5, the effect of improving workability and corrosion resistance disappears. Furthermore, processing cracks and pitting corrosion due to coarse cementite particles occur, resulting in deterioration of workability and corrosion resistance.

次に本発明鋼板の製造方法について説明する。Next, a method for manufacturing the steel plate of the present invention will be explained.

前述の如き成分調整を行なった連鋳スラブの熱間圧延は
焼鈍板のセメンタイトを微細化する観点から、熱延板の
主たる組織かベーナイト組織となる条件で実施する。即
ち、この熱延条件としては前記成分の鋼をオーステナイ
ト城の温度で熱間仕上圧延後、得られた熱延板をほぼ4
0℃/sec〜200’O/secの冷却速度でおよそ
450℃〜620°C程度の温度範囲に冷却して巻取れ
ばよい。
Hot rolling of the continuously cast slab, which has been subjected to the compositional adjustment as described above, is carried out under conditions such that the main structure of the hot rolled sheet is a bainite structure, from the viewpoint of refining the cementite in the annealed sheet. That is, the hot rolling conditions are such that after hot finish rolling the steel having the above components at the temperature of the austenitic castle, the obtained hot rolled sheet is rolled at approximately 40°C.
It may be cooled to a temperature range of approximately 450°C to 620°C at a cooling rate of 0°C/sec to 200'O/sec and then wound.

熱延後は酸洗、冷延、再結晶焼鈍を行なう。焼鈍方式は
連続焼鈍あるいは箱焼鈍のいずれで実施しても良い。焼
鈍温度は700°C以下のフェライト城が望ましく、 
700℃を超えるとセメンタイトが粗大化する場合があ
る。焼鈍を連続焼鈍で行った場合には必要に応じて常法
に従って約300〜450℃程度の温度で過時効処理を
施す。また、再結晶焼鈍後は通常1〜3z程度の圧卜°
率で調質圧延を施すが、腐食割れを抑制する観点からは
高い調圧率が望ましい。さらに鋼板に強度を付与するこ
とを目的として、はぼ3〜40%程度の冷間圧下率で二
回目冷延を施し、いわゆるZCR材として使用すること
もできる。
After hot rolling, pickling, cold rolling, and recrystallization annealing are performed. The annealing method may be continuous annealing or box annealing. A ferrite castle with an annealing temperature of 700°C or less is desirable.
If the temperature exceeds 700°C, cementite may become coarse. When annealing is carried out by continuous annealing, an overaging treatment is performed at a temperature of about 300 to 450° C. according to a conventional method, if necessary. In addition, after recrystallization annealing, there is usually a pressure of about 1~3z.
Temper rolling is performed at a high pressure reduction rate, but a high pressure reduction rate is desirable from the viewpoint of suppressing corrosion cracking. Furthermore, for the purpose of imparting strength to the steel sheet, it can be cold rolled a second time at a cold rolling reduction of about 3 to 40% and used as a so-called ZCR material.

このような高炭素化によりA1最の低減を図り、同時に
セメンタイトを微細化した鋼板は優れた加工性および耐
食性を有するものであって、缶用素材としてSn 、N
i 、Cr等の単層あるいは多層もしくは複合メッキが
常法に従って施されて、例えばイージーオープン缶等の
缶蓋、溶接缶等の3ピース缶、絞り缶、ドローアンドア
イアニング缶等各種多様な用途に供せられる。
The steel sheet that achieves the highest reduction in A1 through high carbonization and has fine cementite has excellent workability and corrosion resistance, and can be used as a material for cans using Sn, N, etc.
i, Single-layer, multi-layer or composite plating of Cr etc. is applied according to conventional methods for various uses such as can lids such as easy-open cans, 3-piece cans such as welded cans, drawn cans, draw and iron cans, etc. It is offered to

次に本発明の効果を実施例によりさらに具体的に示す。Next, the effects of the present invention will be illustrated in more detail with reference to Examples.

(実施例) 第1表に示す処理条件によって作成した12種類の鋼板
(板厚0.20m’m、スキンパス圧下率1.0%’、
錫目付量#25/75 )を用いて実母による錫溶出試
験および腐食割れ試験を実施した。
(Example) Twelve types of steel plates were prepared according to the processing conditions shown in Table 1 (thickness: 0.20 mm, skin pass reduction rate: 1.0%,
A tin elution test and a corrosion cracking test using a real mother sample were conducted using a sample with a tin weight of #25/75.

錫溶出試験は錫目付量#75の鋼板面を缶の内面とした
無塗装はんだ缶(5号缶)に内容物としてクエン酸シロ
ップを添加したミカンをパックし、40°Cで12ケ月
間貯蔵の促進試験を行ない、錫の溶出量(ppm)をめ
た。
In the tin elution test, mandarin oranges with citric acid syrup added as contents were packed in an unpainted solder can (No. 5 can) with the inner surface of the steel plate having a tin weight of #75 and stored at 40°C for 12 months. An accelerated test was conducted to determine the amount of tin eluted (ppm).

腐食割れ試験は錫付着量#25の鋼板面を缶蓋の内面と
した全内面塗装はんだ缶に、内容物として鯖トマト煮を
真空巻締めによりパックして23°Cで12ケ月間貯蔵
後、開開して缶蓋のビード等の加工部におけるクラック
発生状況を調査し、 100缶当りのクラック発生缶蓋
数を百分率で表示した。また鋼板の加工性はエリクツセ
ン試験によって評価し、それぞれ第1表に示した。
The corrosion cracking test was carried out using a fully coated solder can with a tin coating of #25 on the steel plate surface as the inner surface of the can lid, the contents of which were packed with mackerel and tomato stew by vacuum sealing, and stored at 23°C for 12 months. The cans were opened and opened to investigate the occurrence of cracks in processed parts such as beads on the can lids, and the number of cracked can lids per 100 cans was expressed as a percentage. Further, the workability of the steel plate was evaluated by the Erichtsen test, and the results are shown in Table 1.

これらの結果、本発明鋼板は比較鋼板に比して耐食性お
よび加工性が格段に優れていることが明らかである。
From these results, it is clear that the steel sheet of the present invention has much better corrosion resistance and workability than the comparative steel sheet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は錫の異常溶出に及ぼすAI含有量とセメンタイ
ト粒子径の影響を整理した結果を示す図である。 特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名) だ \ 怖 謹 や キ 大 躯 人 ν 第1図 Aρ旬34(4童〆)
FIG. 1 is a diagram showing the results of organizing the effects of AI content and cementite particle size on abnormal tin elution. Patent Applicant Representative Patent Attorney Tomoyuki Yafuki (and 1 other person)

Claims (1)

【特許請求の範囲】 重量%で C: 0.10〜0.30% S i : 0.03X以下 M n : 0.05〜0.80g Al : 0.01%以下 p : o、o25%以下 S : 0.05%以下 N : 0.015%以下 0 : 0.03%以下 残部鉄および不可避的不純物元素から成り、且つセメン
タイトの平均粒子径が0.5p以下であることを特徴と
する加工性および耐食性−の優れた容器用高炭素鋼板。
[Claims] C: 0.10 to 0.30% by weight Si: 0.03X or less M n: 0.05 to 0.80 g Al: 0.01% or less p: o, o 25% or less S: 0.05% or less N: 0.015% or less 0: 0.03% or less The remainder consists of iron and unavoidable impurity elements, and the processing is characterized in that the average particle size of cementite is 0.5p or less High carbon steel sheet for containers with excellent durability and corrosion resistance.
JP7092084A 1984-04-11 1984-04-11 High-carbon steel plate for vessel having excellent workability and corrosion resistance Pending JPS60215739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7092084A JPS60215739A (en) 1984-04-11 1984-04-11 High-carbon steel plate for vessel having excellent workability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7092084A JPS60215739A (en) 1984-04-11 1984-04-11 High-carbon steel plate for vessel having excellent workability and corrosion resistance

Publications (1)

Publication Number Publication Date
JPS60215739A true JPS60215739A (en) 1985-10-29

Family

ID=13445418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7092084A Pending JPS60215739A (en) 1984-04-11 1984-04-11 High-carbon steel plate for vessel having excellent workability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPS60215739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134159A (en) * 1984-07-25 1986-02-18 Nippon Steel Corp Steel sheet for weld can superior in flanging property and its manufacture
JPH058264B2 (en) * 1984-07-25 1993-02-01 Nippon Steel Corp

Similar Documents

Publication Publication Date Title
WO2013008457A1 (en) Steel sheet for can and process for producing same
JP5810714B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JPH0120221B2 (en)
JP4853325B2 (en) Thin wall cold-rolled steel sheet for drums and method for producing the same
JPS62161936A (en) Fe-ni alloy cold-rolled sheet and its production
KR20040037255A (en) Steel sheet for container and method of producing the same
KR102353731B1 (en) Formable blackplate and manufacturing method the same
JPH08295936A (en) Production of nonoriented silicon steel sheet excellent in surface property and magnetic property
KR100623681B1 (en) Steel sheet for container excellent in formability and properties at weld, and method for producing the same
JP3727151B2 (en) Cold-rolled steel sheet for drums, method for producing the same, and steel high-strength drum
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP2008163390A (en) Steel sheet for irregularly-shaped can
JP4276388B2 (en) Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same
JPS60215739A (en) High-carbon steel plate for vessel having excellent workability and corrosion resistance
JPH06248332A (en) Production of steel sheet for vessel
JP6060603B2 (en) High strength steel plate for cans with excellent flange workability and manufacturing method thereof
JPH06102810B2 (en) Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability
JP3976396B2 (en) High-strength steel plate for drums, method for producing the same, and steel drum
JPS60149743A (en) Steel sheet for can having superior crack corrosion resistance and workability and its manufacture
KR102587650B1 (en) Steel sheet for cans and method of producing same
JPH07102344A (en) Continuously annealed cold rolled steel sheet well balanced between deep drawability and resistance to deep drawing brittleness
JPH07331383A (en) Cold rolled steel sheet for surface treatment, excellent in corrosion resistance, and the surface treated steel sheet
JP5315928B2 (en) Cold rolled steel sheet for drums and method for producing the same
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH07126806A (en) Steel sheet for can excellent in corrosion resistance and its production