JPS60215537A - Treatment of porous preform for optical fiber - Google Patents
Treatment of porous preform for optical fiberInfo
- Publication number
- JPS60215537A JPS60215537A JP6861084A JP6861084A JPS60215537A JP S60215537 A JPS60215537 A JP S60215537A JP 6861084 A JP6861084 A JP 6861084A JP 6861084 A JP6861084 A JP 6861084A JP S60215537 A JPS60215537 A JP S60215537A
- Authority
- JP
- Japan
- Prior art keywords
- porous
- preform
- optical fiber
- treatment
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光ファイバ用多孔質rq材の処理方法に関する
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for processing porous RQ material for optical fiber.
(従 来 技 術)
VAD法、OVD法などを介してつくられた光フアイバ
用多孔質母材は、その後、脱水および透明ガラス化のた
めの熱処理を受る。(Prior Art) A porous base material for an optical fiber produced by a VAD method, an OVD method, etc. is then subjected to heat treatment for dehydration and transparent vitrification.
通常、」−記の熱処理は11!素化合物含有雰囲気中で
行なわれ、従来では第1図のようにして光フアイバ用多
孔質母材を処理している。Usually, the heat treatment in "-" is 11! The process is carried out in an atmosphere containing elementary compounds, and conventionally, a porous base material for an optical fiber is processed as shown in FIG.
第1図において、加熱炉1は電気ヒータ2aと石英系の
炉心管2bとを備なえ、その炉心管2bには下部にガス
入1131.に部にガス出口4が形成されている。In FIG. 1, a heating furnace 1 is equipped with an electric heater 2a and a quartz-based furnace core tube 2b. A gas outlet 4 is formed at the bottom.
この加熱炉lにより多孔質m材5を処理するどき、ガス
人口3から炉心管2b内に1口素化合物を含むガスが供
給され、該炉心管2b内に挿入された多孔質m材5は回
転状態にて炉心管2bの高温部へと移動されるとともに
そのド端から順次加熱されて透明ガラス化される。When the porous m-material 5 is processed by this heating furnace l, a gas containing a single elemental compound is supplied from the gas population 3 into the furnace core tube 2b, and the porous m-material 5 inserted into the furnace core tube 2b is It is moved to the high-temperature part of the furnace tube 2b in a rotating state, and is sequentially heated from the end thereof to become transparent vitrified.
この際、透明ガラス化部5aを除く多孔質部5hが長く
塩素化合物(例えば5OC12)に曝されると、その塩
素化合物と多孔質1’iJ材5中のドーパント(例えば
Ge02)とが下式のごとく不必要に反応してしまい、
透明ガラス化後における母材のクラッド部の厚さが長手
方向に不均一となる。At this time, when the porous part 5h excluding the transparent vitrified part 5a is exposed to a chlorine compound (for example, 5OC12) for a long time, the chlorine compound and the dopant (for example, Ge02) in the porous 1'iJ material 5 are combined with the following formula. I reacted unnecessarily, like
The thickness of the cladding portion of the base material after being made into transparent vitrification becomes non-uniform in the longitudinal direction.
GeO+ 250111:l +GeCI2+ 2S0
22
(発明の目的)
本発明は−1−記の問題点に鑑み、クラッド部の厚さが
長手方向に均一となる光フアイバ用多孔質母材の処理方
法を提供しようとするものである。GeO+ 250111:l +GeCI2+ 2S0
22 (Objective of the Invention) In view of the problem described in -1-, the present invention provides a method for processing a porous preform for an optical fiber, in which the thickness of the cladding portion becomes uniform in the longitudinal direction.
(発明の構成)
本発明に係る処理方法は、光フアイバ用多孔質In材を
塩素化合物含有雰囲気中に入れ、該雰囲気中における多
孔質母材をその雰囲気中の高温部に向けて移動させなか
ら熱処理する方法において、上記雰囲気中の高温部には
、塩素化合物を含む処理ガスを多孔質母材の移動方向と
逆向して流し、該雰囲気中の多孔質母材外周にはその母
材移動方向と同方向にして不活性ガスを流すことを特徴
としている。(Structure of the Invention) The treatment method according to the present invention involves placing a porous In material for an optical fiber in an atmosphere containing a chlorine compound, and moving the porous base material in the atmosphere toward a high temperature part in the atmosphere. In the heat treatment method, a processing gas containing a chlorine compound is flowed in the high temperature part in the above atmosphere in the opposite direction to the moving direction of the porous base material, and the outer periphery of the porous base material in the atmosphere is heated in a direction opposite to the moving direction of the porous base material. The feature is that the inert gas flows in the same direction as the inert gas.
(実 施 例) 以下本発明の実施例につき、図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第2図は本発明力7ノ、に用いる装置の1例を示したも
のであり、同図の加熱炉11は石莢系の炉心管12と電
気ヒータ13とを備なえている。FIG. 2 shows an example of the apparatus used in the seventh aspect of the present invention, and the heating furnace 11 shown in the figure is equipped with a stone pod type furnace core tube 12 and an electric heater 13.
上記炉心管12内には、そのト端からヒータ部位にわた
って石莢系の内管14が内装され、該内管14と炉心り
1・12との間にガス流路15が形成されている。Inside the core tube 12, a stone pod type inner tube 14 is installed from its toe end to the heater region, and a gas passage 15 is formed between the inner tube 14 and the cores 1 and 12.
さらに炉心管12のF部に1」ガス入11】6が形成ご
れ、該炉心管12のに部には内管14内に通じるガス入
1117とカス流路15に通じるガス出口18とが形成
されている。Further, a gas inlet 1117 is formed in the F section of the furnace core tube 12, and a gas inlet 1117 communicating with the inner tube 14 and a gas outlet 18 communicating with the waste flow path 15 are formed in the F section of the furnace core tube 12. It is formed.
第2図の装置を用いて多孔質AI旧5を熱処理するとき
、加熱炉1.1の内管14内に挿入された多孔質角材5
を回転状が1としてこれを下方へ移動させるのであり、
この際、炉心’Ft’1.2内にはカス人口16から塩
素化合物含有の処理ガスを+JI給し。When heat-treating the porous AI old material 5 using the apparatus shown in FIG. 2, the porous square material 5 inserted into the inner tube 14 of the heating furnace 1.1
Assuming that the rotational shape is 1, we move it downward,
At this time, chlorine compound-containing processing gas was supplied +JI from Kass population 16 into the core 'Ft' 1.2.
内管14内にはカス人1−11.7から不活性ガスを供
給する。Inert gas is supplied into the inner pipe 14 from a gas pipe 1-11.7.
こうして多孔質+1’l材5を熱処理するときの条件は
1例として下記の通りである。The conditions for heat-treating the porous +1'l material 5 are as follows, as an example.
l)処理温度
700℃以上、望ましくは多孔質母材5が完全に透明ガ
ラス化できる温度。l) Treatment temperature: 700° C. or higher, preferably a temperature at which the porous base material 5 can be completely transformed into transparent glass.
2)処理ガス
SOCl2、CI、、 、 CCl2、NOCIなど、
ドーパントを揮散させる能力のある塩素化合物とヘリウ
ムとの混合ガス。2) Processing gas SOCl2, CI, , CCl2, NOCI, etc.
A gas mixture of chlorine compounds and helium that has the ability to volatilize dopants.
3)不活性ガス
ヘリウム、あるいはヘリウムと他の不活性ガス(Ar、
N2)とによる混合ガス。3) Inert gas helium, or helium and other inert gases (Ar,
Mixed gas with N2).
ただし、02や02を含む塩素化合物のようにドーパン
トを揮散させないものが混合されていてもよい。However, a substance that does not volatilize the dopant, such as 02 or a chlorine compound containing 02, may be mixed.
4)母材移動速度 1000mm/時以下。4) Base material movement speed 1000mm/hour or less.
なお、多孔質母材5はGe、 P 、 B 、 AI、
Sbなどの酸化物をドーパンI・とじて含有している
。Note that the porous base material 5 is made of Ge, P, B, AI,
It contains oxides such as Sb as Dopan I.
また、第3図に示すように、多孔質It]材5における
多孔質ff85bの下端と内管14の下端とlれこれら
の間隔りが5cm程度となっているのが望ましい。Further, as shown in FIG. 3, it is desirable that the distance between the lower end of the porous ff85b in the porous material 5 and the lower end of the inner tube 14 is about 5 cm.
に記のようにして多孔質15を炉心管12内で熱処理す
る場合、該炉心管12の高温部19には処理ガスが供給
され、かかる状態において多孔質母材5はそのド端から
順次脱水処理、透明ガラス化処理されるが、この際、多
孔f!jm材5の多孔質部5aが不活性ガスにより覆わ
れるため、該多孔質部5aが処理ガスに曝されることが
なく、それゆえ多孔質部5aからドーパントが揮散する
といった事態が生ぜず、当該処理後の母材はその長−L
方向にわたる屈折率分布を所定通りの均一状態に保持し
ている。When the porous material 15 is heat-treated in the furnace core tube 12 as described above, a processing gas is supplied to the high temperature section 19 of the furnace core tube 12, and in this state, the porous base material 5 is dehydrated sequentially from its end. treatment and transparent vitrification treatment, but at this time, porous f! Since the porous portion 5a of the jm material 5 is covered with an inert gas, the porous portion 5a is not exposed to the processing gas, and therefore the dopant does not volatilize from the porous portion 5a. The length of the base material after the treatment is −L
The refractive index distribution over the direction is maintained in a predetermined uniform state.
つぎに本発明方法の具体例、比較例について説明する。Next, specific examples and comparative examples of the method of the present invention will be explained.
具体例
既知の多重管バーナな用いたVAD法により、S i
OG e O2系からなる外径55 m mの多2
孔質8I材5をつくり、これを第2図の装置により熱処
理するとき、つぎの条件で行なった。By the VAD method using a known multi-tube burner, S i
A porous 8I material 5 made of OG e O2 system and having an outer diameter of 55 mm was prepared and heat treated using the apparatus shown in FIG. 2 under the following conditions.
加熱炉11の温度:1450’C!
処理ガス:He l0j2/分とS + CI 214
127分とをガス入口16より供給
不活性ガス:Hefl//分をガス人口17より供給
ハ目オ移動速度:360mm/時
上記処理後のけ材外径は約22mmであり、第4図のご
とく、そのコア部、クラッド部の界面が明瞭となる屈折
率分布が得られた。Temperature of heating furnace 11: 1450'C! Processing gas: He l0j2/min and S + CI 214
127 minutes is supplied from the gas inlet 16. Inert gas: Hefl//minute is supplied from the gas port 17. Moving speed: 360 mm/hour. The outer diameter of the bar after the above treatment is about 22 mm, and As a result, a refractive index distribution with a clear interface between the core and cladding parts was obtained.
また、−1−記処理母材におけるクラッド部の厚さは第
5図点線のごとくきわめて均一性の高いものとなった。Furthermore, the thickness of the cladding portion in the treated base material -1- was highly uniform as shown by the dotted line in Figure 5.
なお、第5図におけるクラッド部の厚さはコア部の外径
を50pLmとしたとき、その値に対応するよう換算し
である。Note that the thickness of the cladding portion in FIG. 5 is calculated to correspond to the value when the outer diameter of the core portion is 50 pLm.
比較例
前記具体例と同様の多孔質rii 44を第2図の装置
により熱処理するとき、ガス人目17から内管14内に
は不活性ガスを供給せず、他は具体例と同様にして当該
母材を処理した。Comparative Example When the same porous RII 44 as in the specific example was heat-treated using the apparatus shown in FIG. The base material was treated.
この処理母材の場合、屈折率分布は前記第4図のごとく
になったが、該処理母相におけるクラッド部の厚さは第
5図実線のごと〈均一性の低いものとなった。In the case of this treated matrix, the refractive index distribution was as shown in FIG. 4, but the thickness of the cladding part in the treated matrix was less uniform, as shown by the solid line in FIG.
(発明の効果)
以」二説明した通り、本発明方法によるとき1±、多孔
質母材をIJI素化合物含有雰囲気中で熱処理するとき
、該多孔質母材の外周を不活性ガスで覆いながらこれを
処理するので、クラッド部の長「方向にわたる厚さを均
一化できるとともにその長手方向の屈折率分布をも一様
にすることができる。(Effects of the Invention) As explained below, when using the method of the present invention, 1±, when a porous base material is heat treated in an atmosphere containing an IJI elementary compound, while covering the outer periphery of the porous base material with an inert gas. By processing this, it is possible to make the thickness of the cladding portion uniform over the length direction, and also to make the refractive index distribution in the longitudinal direction uniform.
第1図は従来例のIす材処理方法を略示した説明図、第
2図は本発明方法のtす材処理方法を略示した説明図、
第3図は第2図の一部拡大図、第4図は処理された母材
の屈折率分布図、第5図は処理後の母材につき、そのク
ラッド部の厚さを長手方向に測定して示した図である。
5・・・多孔質母材
11・・・加熱炉
12・・働炉心管
13−φ・電気ヒータ
14・・・内管
】5・・・ガス流路
16−−・処理ガスのガス入口
17・・台率活性ガスのガス入口
19・・・高温部
代理人 弁理士 斎 藤 義 雄
第1周 第2図
第41!0
屈r
第5図
= xoIV
弔J凶FIG. 1 is an explanatory diagram schematically illustrating a conventional method for treating I-shaped materials, and FIG. 2 is an explanatory diagram schematically illustrating a method for treating I-shaped materials according to the present invention.
Figure 3 is a partially enlarged view of Figure 2, Figure 4 is a refractive index distribution diagram of the treated base material, and Figure 5 is the longitudinal measurement of the thickness of the cladding part of the treated base material. FIG. 5 Porous base material 11 Heating furnace 12 Working furnace core tube 13-φ Electric heater 14 Inner tube 5 Gas flow path 16 Gas inlet 17 for processing gas ...Gas inlet for active gas 19... High temperature section agent Patent attorney Yoshio Saito 1st round Figure 2 41!0 Figure 5 = xoIV Condolences J-Kyo
Claims (1)
中に入れ、該雰囲気中における多孔質母材をその雰囲気
中の高温部に向けて移動させなから熱処理する方法にお
いて、上記雰囲気中の高温部には、1口素化合物を含む
処理ガスを多孔質母相の移動方向と逆向して流し、該雰
囲気中の多孔?jlτを材外周にはそのRJ材移動方向
と同方向にして不活性ガスを流すことを4¥徴とする光
フアイバ用多孔質母材の処理方法。Porous 1 for optical fiber? 11 materials! In a method in which the porous base material is placed in an atmosphere containing an elemental compound and is heat-treated without moving the porous base material in the atmosphere toward a high temperature part in the atmosphere, the high temperature part in the atmosphere contains a one elemental compound. The processing gas is caused to flow in the opposite direction to the moving direction of the porous matrix, and the porous pores in the atmosphere are allowed to flow. A method for processing a porous base material for an optical fiber, which includes flowing an inert gas around the outer periphery of the material with jlτ in the same direction as the moving direction of the RJ material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6861084A JPS60215537A (en) | 1984-04-06 | 1984-04-06 | Treatment of porous preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6861084A JPS60215537A (en) | 1984-04-06 | 1984-04-06 | Treatment of porous preform for optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60215537A true JPS60215537A (en) | 1985-10-28 |
Family
ID=13378705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6861084A Pending JPS60215537A (en) | 1984-04-06 | 1984-04-06 | Treatment of porous preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60215537A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4707173A (en) * | 1986-05-15 | 1987-11-17 | The Furukawa Electric Co., Ltd. | Method of fabricating porous glass rod and apparatus for fabricating the same |
US5470369A (en) * | 1991-12-16 | 1995-11-28 | Sumitomo Electric Industries, Ltd. | Process for consolidation of porous preform for optical fiber |
-
1984
- 1984-04-06 JP JP6861084A patent/JPS60215537A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4707173A (en) * | 1986-05-15 | 1987-11-17 | The Furukawa Electric Co., Ltd. | Method of fabricating porous glass rod and apparatus for fabricating the same |
US5470369A (en) * | 1991-12-16 | 1995-11-28 | Sumitomo Electric Industries, Ltd. | Process for consolidation of porous preform for optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5221309A (en) | Method for producing glass preform for optical fiber | |
JPS5571636A (en) | Production of base material for light transmission | |
JPS61247633A (en) | Production of glass base material for optical fiber | |
JPS6081033A (en) | Manufacture of optical fiber | |
JPS62275035A (en) | Production of base material for optical fiber | |
DK163658B (en) | PROCEDURE FOR MANUFACTURING A GLASS FRAME FOR OPTICAL FIBERS | |
JPS60215537A (en) | Treatment of porous preform for optical fiber | |
JPS54134128A (en) | Manufacture of basic material for light transmitting fiber | |
JP4565221B2 (en) | Optical fiber preform | |
JPS60221331A (en) | Process for treating porous parent material comprising quartz glass | |
JPH0699163B2 (en) | Vitrification method of optical fiber base material | |
JPS61191528A (en) | Thermal treatment of base material for doped quartz series porous glass | |
JPS603019B2 (en) | Manufacturing method of optical fiber base material | |
JPS60215536A (en) | Treatment of porous quartz glass preform | |
JPS6144725A (en) | Method of treating quartz porous glass layer | |
JPS5915093B2 (en) | Manufacturing equipment for anhydrous silica optical fiber base material | |
JPS61117127A (en) | Treatment of parent material comprising porous glass for optical fiber | |
JPS6140831A (en) | Manufacture of optical fiber base material | |
JPS60239336A (en) | Heat-treatment of quartz-based parent material for porous glass | |
JPS61205634A (en) | Production of image guide | |
JPS6345144A (en) | Production of optical fiber preform | |
JPS61197438A (en) | Method of converting porous parent material for optical fiber into clarified glass | |
JPH03232732A (en) | Production of glass preform for hydrogen-resistant optical fiber | |
JPS62143835A (en) | Production of glass material for light transmission | |
JPS603018B2 (en) | Manufacturing method of optical fiber base material |