JPS60215150A - Shift characteristic controller for stepless transmission - Google Patents

Shift characteristic controller for stepless transmission

Info

Publication number
JPS60215150A
JPS60215150A JP6961184A JP6961184A JPS60215150A JP S60215150 A JPS60215150 A JP S60215150A JP 6961184 A JP6961184 A JP 6961184A JP 6961184 A JP6961184 A JP 6961184A JP S60215150 A JPS60215150 A JP S60215150A
Authority
JP
Japan
Prior art keywords
pressure
pulley
shift
hydraulic
speed change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6961184A
Other languages
Japanese (ja)
Inventor
Yoshihiko Morimoto
森本 嘉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Fuji Jukogyo KK
Priority to JP6961184A priority Critical patent/JPS60215150A/en
Publication of JPS60215150A publication Critical patent/JPS60215150A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling

Abstract

PURPOSE:To perform proper control over a running state, by judging the driving condition of a driver and automatically selecting it to a power or economy shift range of shift characteristics. CONSTITUTION:A solenoid valve 63 is connected to a pressure-regulating valve 61 installed in a branch oil passage 60, while a main rotation sensor 72 and a throttle opening sensor 73 both are connected to a control unit 74 controlling this solenoid valve 63, judging the driving condition of a drive, and according to this judgement, a rotary hydraulic characteristic is selected, automatically changing over to a shift characteristic conformable to the driving condition of the driver. With this constitution, since this shift characteristic is automatically selectable to a power or economy range, optimum control over a running state is performable.

Description

【発明の詳細な説明】 本発明は、ベルト式無段変速機においてエンジン回転、
スロットル開度により設定される変速特性を可変にする
変速特性制御装置に関し、特に運転者の運転状況を一定
時間毎に判断してそれに適応したエコノミ重視又はパワ
ー重視の変速特性を得るものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a belt-type continuously variable transmission in which engine rotation,
The present invention relates to a shift characteristic control device that changes the shift characteristic set by the throttle opening degree, and particularly relates to a device that determines the driving situation of a driver at regular intervals and obtains an economy-oriented or power-oriented shift characteristic adapted to the driving situation.

この種の無段変速機は、プーリ間隔可変の主ブ′−りと
副プーリ、及びそれらのプーリ相互の間に巻装される駆
動ベルトから成るプーリ比変換部が主要部になっており
、かかるプーリ比変換部の変速制御に関して従来例えば
特開昭55−65755号公報の先行技術がある。即ち
、各変速比の伝達トルクに応じて調圧されたライン圧を
常に副プーリ側に作用づる。一方、スロットル開度に応
じスロットルカムを回動してそのカムリフト聞により変
化したスプリング力と、エンジン側の主プーリ回転に応
じたピトー圧とを変速制御弁に対抗して作用し、この変
速制御弁により上記ライン圧を主プーリ側に供給又は排
出して、駆動ベルトの主プーリに対する副プーリの巻回
手径、即ちプーリ比又は変速比を変化させ無段階に変速
制御丈るようになっている。
The main part of this type of continuously variable transmission is a pulley ratio converter consisting of a main pulley and a sub pulley with variable pulley intervals, and a drive belt wound between these pulleys. Regarding the speed change control of such a pulley ratio conversion section, there is a prior art, for example, disclosed in Japanese Patent Application Laid-Open No. 55-65755. That is, the line pressure, which is regulated in accordance with the transmission torque of each gear ratio, is always applied to the sub-pulley side. On the other hand, the spring force changed by rotating the throttle cam according to the throttle opening and the cam lift, and the pitot pressure corresponding to the rotation of the main pulley on the engine side act against the speed change control valve to control the speed change. By supplying or discharging the line pressure to the main pulley side using a valve, the winding radius of the sub pulley relative to the main pulley of the drive belt, that is, the pulley ratio or gear ratio, is changed, thereby providing stepless speed change control. There is.

ところで、スロットル開度に応じたスロットルカムの特
性及びエンジン回転に応じたピトー圧の特性は一義的に
定めであるため、これらの関係による変速制御弁の動作
は常に一定であり、これに“伴いエンジン回転数とスロ
ットル開度に対する変速特性が走行条件等に関係なく固
定的に設定されている。従って、平坦部と山間部の走行
条件の相違等に対して適確な変速特性を得ることができ
ず、燃費等の点でも問題があった。
By the way, the characteristics of the throttle cam according to the throttle opening degree and the characteristics of the pitot pressure according to the engine rotation are uniquely determined, so the operation of the speed change control valve based on these relationships is always constant, and the Shift characteristics for engine speed and throttle opening are fixedly set regardless of driving conditions, etc. Therefore, it is difficult to obtain appropriate speed change characteristics for differences in driving conditions between flat areas and mountainous areas. However, there were also problems in terms of fuel efficiency, etc.

本発明は、このような従来技術の固定的に設定される変
速特性の問題点に鑑み、変速特性を変更可能にして運転
者の運転状況に合ったパワー又はエコノミ領域の変速特
性に自動的に切換え、走行状態に対して最適な変速制御
を行うようにした無段変速機の変速特性制御装置を提供
することを目的とする。
In view of the problem of the fixedly set speed change characteristics of the prior art, the present invention makes it possible to change the speed change characteristics and automatically adjusts the speed change characteristics to the power or economy range that suits the driving situation of the driver. It is an object of the present invention to provide a shift characteristic control device for a continuously variable transmission that performs optimum shift control for switching and driving conditions.

この目的のため本発明の構成は、変速制御弁の一方に作
用する主ブーり回転数に応じたピトー圧の特性を変える
ことにより変速特性を変更し得る点に着目し、パワーと
エコノミ領域の各ピトー圧特性と類似の特性を有する回
転油圧を電気的に生成するように構成し、且つスロット
ル開度と主プーリ回転数との関係で予めパワーとエコノ
ミ領域を設定しておき、運転者の運転状況を一定時間毎
にどの領域にあるかを判断して上記各回転油圧特性をそ
れに応じて選択し、パワー又はエコノミの運転状況に対
し変速特性をそれに適合したものに自動的に切換えるこ
とを要旨とするものである。
For this purpose, the configuration of the present invention focuses on the fact that the shift characteristics can be changed by changing the characteristics of the pitot pressure depending on the main boolean rotation speed acting on one side of the shift control valve. It is configured to electrically generate rotary oil pressure having characteristics similar to each pitot pressure characteristic, and the power and economy ranges are set in advance in relation to the throttle opening and main pulley rotation speed, and the driver's The system determines in which range the operating conditions are at regular intervals, selects the above-mentioned rotary hydraulic characteristics accordingly, and automatically switches the shifting characteristics to those suitable for the power or economy operating conditions. This is a summary.

以下、図面を参照して本発明の一実施例を具体的に説明
する。まず第1図において本発明が適用される無段変速
機の一例として、電磁粉式クラッチ付無段変速機につい
て説明すると、符号1は電) 磁粉式クラッチ、2は無段変速機であり、無段変速機2
は大別すると前、後進の切換部3、プーリ比変換部4、
終減速部5及び油圧制御部6から構成されている。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. First, a continuously variable transmission with an electromagnetic powder clutch will be described as an example of a continuously variable transmission to which the present invention is applied in FIG. Continuously variable transmission 2
can be roughly divided into forward and reverse switching section 3, pulley ratio conversion section 4,
It is composed of a final reduction section 5 and a hydraulic control section 6.

電磁扮式クラッチ1はエンジンからのクランク軸1にコ
イル8を内蔵したドライブメンバ9が一3体結合され、
これに対し変速機入力軸10にドリブンメンバ11が回
転方向に一体的にスプライン結合し、これらのドライブ
及びドリブンメンバ9,11がギャップ12を介して遊
嵌して、このギャップ12にパウダ室13から電磁粉を
集積づるようになっている。まノ〔、ドライブメンバ9
にはホルダ14を介してスリップリング15が設置され
、スリップリング15に給電用のブラシ1Gが摺接して
コイル8にクラッチ電流を流すようにしである。
In the electromagnetic clutch 1, 13 drive members 9 each having a built-in coil 8 are connected to the crankshaft 1 from the engine.
On the other hand, a driven member 11 is integrally spline-coupled to the transmission input shaft 10 in the rotational direction, and these drives and driven members 9 and 11 are loosely fitted through a gap 12, and a powder chamber 13 is inserted into this gap 12. It is designed to collect electromagnetic particles from the ground. Mano [, Drive member 9
A slip ring 15 is installed through a holder 14, and a power feeding brush 1G is in sliding contact with the slip ring 15 to cause a clutch current to flow through the coil 8.

こうして、コイル8にクラッチ電流を流すと、ドライブ
及びドリブンメンバ9.11の間に生じる磁力線により
両者のギャップ12に電磁粉が鎖状に結合して集積し、
これによる結合力でドライブメンバ9に対しドリブンメ
ンバ11が滑りながら一体結合して接続した状態になる
。一方、クラッチ電流をカットすると、電磁粉によるド
ライブ及びドリブンメンバ9.11の結合力が消失して
クラッチ切断状態になる。そしてこの場合のクラッチ電
流の供給及びカットを無段変速機2の切換部3をシフト
レバ−等で操作する際に連動して行うようにすれば、P
(パーキング)又はNにュートラル)レンジからD(ド
ライブ)、L(ロー)又はR(リバース)レンジへの切
換時に自動的にクラッチ1が接面して、クラッチペダル
操作tよ不要になる。
In this way, when a clutch current is applied to the coil 8, electromagnetic particles are combined in a chain shape and accumulated in the gap 12 between the drive and driven members 9 and 11 due to the lines of magnetic force generated between the drive and driven members 9 and 11.
Due to this coupling force, the driven member 11 slides and is integrally coupled to the drive member 9. On the other hand, when the clutch current is cut, the coupling force between the drive and driven members 9 and 11 due to the electromagnetic powder disappears, resulting in a clutch disengaged state. In this case, if the clutch current is supplied and cut in conjunction with the operation of the switching section 3 of the continuously variable transmission 2 with a shift lever, etc., the P
When switching from the (parking) or N (neutral) range to the D (drive), L (low) or R (reverse) range, the clutch 1 is automatically brought into contact, eliminating the need for clutch pedal operation.

次いで無段変速機2において、切換部3は上記クラッチ
1からの入力軸10とこれに同軸上に配置された無段変
速機2の主軸17との間に設けられるもので、入力軸1
0に一体結合する後進用ドライブギヤ18と主軸11に
回転自在に嵌合する後進用ドリブンギヤ19とがカウン
タギヤ20及びアイドラギヤ21を介して噛合い構成さ
れ、更にこれらの主軸17とギヤ18.19の間に切換
クラッチ22が設けらfしる。
Next, in the continuously variable transmission 2, the switching section 3 is provided between the input shaft 10 from the clutch 1 and the main shaft 17 of the continuously variable transmission 2 disposed coaxially therewith.
A reverse drive gear 18 integrally connected to the main shaft 11 and a reverse driven gear 19 rotatably fitted to the main shaft 11 are meshed with each other via a counter gear 20 and an idler gear 21, and these main shaft 17 and gears 18, 19 A switching clutch 22 is provided between the two.

モしてP又はNレンジの中立位置から切換クラッチ22
をギヤ18側に係合すると、入力軸10に主軸17が直
結してD又はLレンジの前進状態になり、切換クラッチ
22をギヤ19側に係合すると、入力軸10の動力がギ
ヤ18ないし21により減速逆転してNレンジの後進状
態になる。
Switching clutch 22 from the neutral position of P or N range
When the switching clutch 22 is engaged with the gear 18 side, the main shaft 17 is directly connected to the input shaft 10 and the forward state is in the D or L range.When the switching clutch 22 is engaged with the gear 19 side, the power of the input shaft 10 is transferred to the gear 18 or 21, the vehicle is decelerated and reversed to enter the reverse state of N range.

プーリ比変換部4は上記主軸17に対し副軸23が平行
配置され、これらの両軸17.23にそれぞれ主プーリ
24、副プーリ25が設けられ、且つプーリ24゜25
の間にエンドレスの駆動ベルト2Gが掛は渡しである。
In the pulley ratio converter 4, a sub-shaft 23 is arranged parallel to the main shaft 17, a main pulley 24 and a sub-pulley 25 are provided on both of these axes 17 and 23, respectively, and pulleys 24 and 25 are provided.
An endless drive belt 2G runs between them.

プーリ24.25はいずれも2分割に構成され、可動側
プーリ半休24a 、 25aには油圧サーボ装置27
.28が付設されてブーり間隔を可変にしである。
The pulleys 24 and 25 are each divided into two parts, and the movable pulleys 24a and 25a are equipped with a hydraulic servo device 27.
.. 28 is attached to make the boob interval variable.

そしてこの場合に、主プーリ24は固定側プーリ半休2
4bに対して可動側プーリ半体24aを近づけてプーリ
間隔を順次狭くさせ、副プーリ25は逆に固定側プーリ
牛体25bに対し可動側プーリ半体25aを遠ざけてプ
ーリ間隔を順次広げ、これにより駆動ベルト26のプー
リ24.25における巻付は径の比を変化して無段変速
した動力を副軸23に取出すようになっている。
In this case, the main pulley 24 is fixed side pulley half rest 2
The movable pulley half 24a is moved closer to the fixed pulley body 25b to gradually narrow the pulley interval, and the sub pulley 25 is moved away from the fixed pulley body 25b to gradually increase the pulley interval. As a result, the drive belt 26 is wound around the pulleys 24 and 25 so that the ratio of diameters is changed so that continuously variable power is extracted to the subshaft 23.

終減速部5は上記副軸23に中間減速ギヤ29を介して
連結される出力軸30の出力ギヤ31に大径のファイナ
ルギヤ32が噛合い、このファイナルギヤ32から差動
機構33を介して左右の駆動輪の車軸34゜35に伝動
構成される。
In the final reduction section 5 , a large-diameter final gear 32 meshes with an output gear 31 of an output shaft 30 that is connected to the subshaft 23 via an intermediate reduction gear 29 , and a large-diameter final gear 32 meshes with an output gear 31 of an output shaft 30 that is connected to the subshaft 23 via an intermediate reduction gear 29 . Transmission is provided to the axles 34 and 35 of the left and right drive wheels.

更に油圧制御部6は主プーリ24側に、その主軸17及
び入力軸10の内部を貫通してエンジンクランク軸7に
直結するポンプ駆動軸36でエンジン運転中宮に油圧を
生じるように油圧ポンプ31が設けられる。そしてこの
ポンプ油圧が油圧制御回路38でアクセルの踏込みに応
じたスロットル開陳及びエンジン回転数等により制御さ
れて油路39.40Q介し主プーリ及び副プーリ側の各
油圧サーボ装置27゜28に供給され、プーリ比変換部
4の無段変速制御を行うように構成される。
Further, the hydraulic control unit 6 has a hydraulic pump 31 on the main pulley 24 side so as to generate hydraulic pressure during engine operation through a pump drive shaft 36 that passes through the main shaft 17 and the input shaft 10 and is directly connected to the engine crankshaft 7. provided. This pump oil pressure is controlled by the oil pressure control circuit 38 according to the throttle opening and engine rotation speed according to the depression of the accelerator, and is supplied to each of the hydraulic servo devices 27 and 28 on the main pulley and sub pulley sides via oil passages 39 and 40Q. , is configured to perform continuously variable speed control of the pulley ratio converter 4.

M2図において変速制御系について51明すると、主プ
ーリ側の油圧ナーボ装置27において可動側プーリ半体
24aがピストンを兼ねてシリンダ27aに嵌合し、サ
ーボ室27bのライン圧で動作するようにされ、副プー
リ側の油圧サーボ装置28においても可動側プーリ半体
25aがシリンダ28aに嵌合し、サーボ室28bのラ
イン圧で動作するようにされ、この場合にプーリ半休2
4aの方がプーリ半体25aに比べてライン圧の受圧面
積が大さくなっている。
Regarding the speed change control system in Fig. M2, in the hydraulic nervo device 27 on the main pulley side, the movable pulley half 24a is fitted into the cylinder 27a, which also serves as a piston, and is operated by the line pressure of the servo chamber 27b. Also in the hydraulic servo device 28 on the sub-pulley side, the movable pulley half 25a is fitted into the cylinder 28a and is operated by the line pressure of the servo chamber 28b.
4a has a larger line pressure receiving area than pulley half 25a.

そして、副プーリサーボ室28bからの油路40が油圧
ポンプ37、フィルター41を介して油溜42に連通し
、この油路40の油圧ポンプ吐出側から分岐して主プー
リサーボ室27bに連通する油路39に圧力調整弁43
及び変速制御弁44が設けられている。
An oil passage 40 from the sub-pulley servo chamber 28b communicates with an oil reservoir 42 via a hydraulic pump 37 and a filter 41, and an oil passage branches from the hydraulic pump discharge side of this oil passage 40 and communicates with the main pulley servo chamber 27b. 39, pressure regulating valve 43
and a speed change control valve 44 are provided.

変速制御弁44は弁本体′45、スプール46、スプー
ル46の一方に付勢されるスプリング47及びスプリン
グ力を変化する作動部材48から成り、スプール46の
スプリング47と反対側のボート45aに、後述する主
プーリ回転数に対応した油圧が油路50を介して導かれ
、作動部材48にはスロットル開度に応じて回動するス
ロットルカム51が当接しである。
The speed change control valve 44 consists of a valve body '45, a spool 46, a spring 47 biased against one of the spools 46, and an actuation member 48 that changes the spring force. Hydraulic pressure corresponding to the rotational speed of the main pulley is guided through an oil passage 50, and a throttle cam 51 that rotates in accordance with the throttle opening is in contact with the operating member 48.

また、弁本体45のボート45bはスプール4Gのラン
ド46a 、 46bによりライン圧供給用ポート45
cとドレンポート45dの一方に選択的に連通ずるよう
になっており、ボート45bが油路39の油路39aに
よりサーボ室27bに連通し、ボート45cが油路39
bにより圧力調整弁43側に連通し、ドレンボート45
dが油路52により油溜側に連通する。
In addition, the boat 45b of the valve body 45 is connected to the line pressure supply port 45 by the lands 46a and 46b of the spool 4G.
The boat 45b communicates with the servo chamber 27b through the oil passage 39a of the oil passage 39, and the boat 45c communicates with the servo chamber 27b through the oil passage 39a.
b communicates with the pressure regulating valve 43 side, and the drain boat 45
d communicates with the oil reservoir side through an oil passage 52.

これにより、変速制御弁44のスプール46においては
、ボー1−45aの主プーリ回転数に応じた油圧と、ス
ロットルカム51の回動に伴うスロットル開度に応じた
スプリングツノとが対抗して作用し、これら両者の関係
により動作する。即ち、エンジン回転数と共にその油圧
が上昇すると、ボート45b。
As a result, on the spool 46 of the speed change control valve 44, a hydraulic pressure corresponding to the main pulley rotation speed of the bow 1-45a and a spring horn corresponding to the throttle opening degree caused by the rotation of the throttle cam 51 act against each other. However, it operates based on the relationship between these two. That is, when the oil pressure increases with the engine speed, the boat 45b.

と45cが連通し主プーリサ・−ボ室27bにライン圧
を供給して高速段側への変速を開始し、このときスロッ
トル開度に応じたスプリング41の力が大きい程上記変
速開始点を遅らせて高回転側で変速が開始する。
and 45c communicate with each other to supply line pressure to the main pulley valve chamber 27b to start shifting to a high speed gear. Shifting starts on the high rotation side.

次いで、圧力調整弁43は弁本体53、スプール54、
スプール54の一方に付勢されるスプリング55から成
り、スプール54のスプリング55と反対側のボート5
3a 、 53bにはそれぞれ油路50の油圧、油路3
9Cのライン圧が導かれ、スプリング55には主プーリ
24の可動側プーリ半体24aに係合して実際の変速比
を検出するフィードバックセンサ5Gが連結される。更
に、ポンプ側の油路39cは、スプール54の位置にか
かわらず常に変速制御弁側の油路39bに連通している
。また、ドレン側の油路52も、ボート53(1に連通
している。スプール54は、油路50の油圧とスプリン
グの)〕により左右に移動しており、スプール54のラ
ンド54a部の切欠により、ライン圧のボート53cと
ドレン側油路52との連通が制御されることで、ライン
圧を調圧づるようになっている。
Next, the pressure regulating valve 43 includes a valve body 53, a spool 54,
It consists of a spring 55 biased on one side of the spool 54, and the boat 5 on the opposite side of the spool 54.
3a and 53b respectively indicate the oil pressure of the oil passage 50 and the oil pressure of the oil passage 3.
A line pressure of 9C is introduced, and a feedback sensor 5G that engages with the movable pulley half 24a of the main pulley 24 and detects the actual gear ratio is connected to the spring 55. Further, the oil passage 39c on the pump side always communicates with the oil passage 39b on the speed change control valve side regardless of the position of the spool 54. Furthermore, the oil passage 52 on the drain side is also moved left and right by the boat 53 (which is in communication with the boat 53 (1). By controlling the communication between the line pressure boat 53c and the drain side oil passage 52, the line pressure is regulated.

これにより、圧力調整弁43のスプール54には油路5
0の油圧がライン圧をドレンして低下する方向に作用し
、これに対しフィードバックセンサ56による変速比に
応じたスプリング55の力がライン圧を高める方向に作
用する。そして、伝達トルクの大きい低速段ではフィー
ドバックセンサ5′6により付勢されるスプリング55
の力が大きいことからライン圧を高く設定し、高速段側
への変速に伴いライン圧を低下すべく制御し、常にベル
トスリップを生じないようなプーリ押付力を保持する。
As a result, the spool 54 of the pressure regulating valve 43 has an oil passage 5.
The zero oil pressure drains the line pressure and acts in a direction to lower it, whereas the force of the spring 55 according to the gear ratio determined by the feedback sensor 56 acts in a direction to increase the line pressure. In low speed gears where the transmitted torque is large, the spring 55 is biased by the feedback sensor 5'6.
Since the force is large, the line pressure is set high, and the line pressure is controlled to decrease as the gear shifts to the high speed side, and the pulley pressing force is always maintained to prevent belt slip.

 上記構成において、本発明によると、まずライン圧回
路の例えば油路39cから主プーリ回転数に応じた油圧
を生成する油路60が分岐し、この油路Goに調圧弁6
1、絞りθ2及び排圧制御するソレノイド弁63が順次
設けられる。調圧弁61はスプール64とそ 。
In the above configuration, according to the present invention, first, an oil passage 60 that generates oil pressure according to the main pulley rotation speed branches from, for example, the oil passage 39c of the line pressure circuit, and a pressure regulating valve 60 is connected to this oil passage Go.
1. A throttle θ2 and a solenoid valve 63 for controlling exhaust pressure are sequentially provided. The pressure regulating valve 61 is connected to the spool 64.

の一方に付勢するスプリング65から成りライン圧を調
圧して常に一定の油圧を生じるように構成される。ソレ
ノイド弁63はコイル6Gに入力する所定のデユーティ
比の信号により弁体61がルンポート68を開閉して排
圧制御し、ボート69に主プーリ回転数に応じた油圧を
取出すように構成され、ポート69が変速制御弁44、
圧力調整弁43への油路50に連通し、ドレンポート6
8がドレン側油路52に連通している。
It is composed of a spring 65 that biases one side of the line pressure and is configured to always produce a constant oil pressure by regulating the line pressure. The solenoid valve 63 is configured such that the valve body 61 opens and closes the pump port 68 in response to a signal of a predetermined duty ratio input to the coil 6G to control exhaust pressure, and extracts hydraulic pressure to the boat 69 according to the main pulley rotation speed. 69 is a speed change control valve 44;
The drain port 6 communicates with the oil passage 50 to the pressure regulating valve 43.
8 communicates with the drain side oil passage 52.

また、プーリ比変換部4の主ブー924において主軸1
1と一体的な固定側ブーり牛体24bの個所には、その
全周に形成される突起70と電磁ピックアップ71から
成る回転センサ72が設けられる。そして、この回転セ
ンサ72とスロットル間度ヒン号73が制御ユニット1
4を介してソレノイド弁63のコイル66に回路構成さ
れる。
In addition, the main shaft 1 in the main boot 924 of the pulley ratio converter 4
A rotation sensor 72 consisting of a protrusion 70 and an electromagnetic pickup 71 formed around the entire circumference of the fixed-side boob body 24b, which is integral with the fixed-side boob body 24b, is provided. The rotation sensor 72 and the throttle angle signal 73 are connected to the control unit 1.
4 to the coil 66 of the solenoid valve 63.

制御ユニット74は各センサ72.73の出力信号の処
理部75、両信号による運転状況の判断部76、その判
断部76の判断に基づいて選択された回転油圧特性を主
プーリ回転数に応じて出力する回転油圧特性設定部71
、更に回転油圧特性に応じたデユーティ比を定めて出力
するデユーティ比設定部78を有する。ここで、判断部
76には予め第3図に承りようにエンジンの軸トルクと
エンジン回転数との関係において所定の吸入管負圧(例
えば−i oommf−1g>によりパワー領域Ll)
とエコノミ領域LEとに分割すると13図(a)のよう
になり、スロットル開麿とエンジン回転数又は主プーリ
回転数との関係で分割すると(b)のようになり、スロ
ットル開度の大きい側にパワー領域Lpが、主プーリ回
転数の大きい側にエコノミ領域LLがそれぞれ設定され
ており、このLl)、La を分割する線図を参照して
判断される。また、設定部17には同図(0)に示すよ
うに回転油圧の上昇割合の小さいパワーレンジの特性曲
線Lpと上昇割合の大きいエコノミレンジの特性曲線L
E とが定めてあり、エンジンの運転状況を判断する判
断部76の結果に基づきいずれか一方を選択する。更に
所定時間運転状況にしどずくLpと[εの割合を計算す
ると共に、計粋時の運転状況時のLDとLεのライン圧
を索引して来て、そのライン圧と1p、La 割合を乗
じることに依り、運転状況にもとずく回転油圧特性を得
、デユーティ設定部78で回転油圧特性をデユーティ比
に変換する 次いで、このように構成された変速特性制御装置の動作
を第4図を用いて説明すると、運転者の運転状況に対応
して、各センサ72.73からの信号により制御ユニッ
ト74の判断部76で前記第3図(b)の関係からパワ
ー又はエコノミ領域の判断を行い、エコノミ領域ではN
aを1インクリメントし、パワー領域ではN+1を1イ
ンクリメントする。その後一定時間NxΔt = (N
E +N9 )△を経過したかどうか判断し経過しない
場合は再度上述の処理を行い、一定時間経過後は各デー
タをRp、RBとして記憶し、その後上述のND、Nu
をクリアする。さらに第3図(C)の関係により、主プ
ーリ回転数に応じた回転油圧をLε、Lpよりめ、それ
ぞれPE 、 Ppとしてピックアップし、(Rp X
pp +Rh XPa )/ (R1)+Ra )の計
粋を行う。即ち、運転状況によりパワー又はエコノミ領
域のどららに重みをおくかを比率でめ、回転油圧を決定
する。
The control unit 74 includes a processing section 75 for the output signals of each sensor 72 and 73, a judgment section 76 for determining the operating status based on both signals, and a rotational hydraulic characteristic selected based on the judgment of the judgment section 76 in accordance with the main pulley rotation speed. Output rotary oil pressure characteristic setting section 71
Furthermore, it has a duty ratio setting section 78 that determines and outputs a duty ratio according to the rotational oil pressure characteristics. Here, as shown in FIG. 3, the determination unit 76 determines in advance a predetermined suction pipe negative pressure (for example, power range Ll due to -i oommf-1g) based on the relationship between the engine shaft torque and the engine rotation speed.
When divided into economy region LE and economy region LE, it becomes as shown in Figure 13 (a), and when divided according to the relationship between throttle opening and engine speed or main pulley speed, it becomes as shown in (b), where the throttle opening is large. A power region Lp is set on the side where the main pulley rotation speed is large, and an economy region LL is set on the side where the main pulley rotation speed is large, and the decision is made with reference to a diagram dividing these Ll) and La. In addition, the setting section 17 has a characteristic curve Lp for the power range in which the rate of increase in the rotational oil pressure is small and a characteristic curve L in the economy range in which the rate of increase in the rotational oil pressure is large, as shown in FIG.
E is determined, and one of them is selected based on the result of the determination unit 76 that determines the operating status of the engine. Furthermore, calculate the ratio of Lp and [ε that drip under the operating condition for a predetermined time, index the line pressure of LD and Lε during the operating condition at the time of measurement, and multiply that line pressure by the ratio of 1p and La. Accordingly, the rotary hydraulic characteristics based on the operating conditions are obtained, and the rotary hydraulic characteristics are converted into a duty ratio by the duty setting section 78.Next, the operation of the shift characteristic control device configured as described above is explained using FIG. To explain, the determination section 76 of the control unit 74 determines the power or economy region based on the relationship shown in FIG. N in the economy area
a is incremented by 1, and N+1 is incremented by 1 in the power domain. After that, for a certain period of time NxΔt = (N
E + N9) Judge whether △ has passed or not. If not, perform the above process again. After a certain period of time has passed, each data is stored as Rp and RB, and then the above ND and Nu
Clear. Further, according to the relationship shown in Fig. 3 (C), the rotational oil pressure corresponding to the main pulley rotation speed is picked up as PE and Pp from Lε and Lp, respectively, and (Rp
pp +RhXPa)/(R1)+Ra). That is, the rotational oil pressure is determined by determining the ratio of weight to be given to either the power or economy region depending on the driving situation.

尚、上述の式をめる際に重み関数を用いて一定時間毎に
比率を大きく変化さけず、その前の比率を加味して行い
°、比率に連続性をもたせることもできる。その方法と
して、 Rp−αNp + <1−α)Rp Rε=αNε+(1−α)Rε (0〈αく1)の比率
を上述の式で用いて回転油圧を決定づる。
Note that when formulating the above equation, a weighting function can be used to avoid large changes in the ratio at regular intervals, and the previous ratio is taken into consideration, thereby giving continuity to the ratio. As a method, the rotational oil pressure is determined by using the ratio of Rp-αNp+<1-α)RpRε=αNε+(1-α)Rε (0<α×1) in the above equation.

上述のように算出した回転油圧をデユーティ比設定部7
8でデコーテイに変換し、ソレノイド弁63を駆動する
The rotational oil pressure calculated as described above is applied to the duty ratio setting section 7.
8, it is converted into a decouple and the solenoid valve 63 is driven.

一方こうして運転者の運転状況を判断して選択されたパ
ワー又はエコノミ領域の回転油圧は、変速制御弁44の
一方にスロットル開度に応じたスプリング力と対向して
作用し、両者の関係により第5図の実線りで示す変速比
最大の低速段と、実線りで示す変速比最小の高速段との
間で無段変速される。そこで、パワー領域では、主プー
リ回転数の回転油圧特性の変化が小さいので高速段側へ
変速し難くなり、このため変速域が高回転側に設定され
て、第5図m1およびm2領域の右上り斜線で示す変速
領域となる。
On the other hand, the rotational oil pressure in the power or economy range selected by judging the driving situation of the driver acts on one side of the speed change control valve 44 in opposition to a spring force corresponding to the throttle opening, and depending on the relationship between the two, the rotational oil pressure is in the power or economy range. In FIG. 5, the gear ratio is continuously changed between a low gear ratio indicated by a solid line and a high gear ratio indicated by a solid line and a minimum gear ratio. Therefore, in the power range, since the change in the rotational hydraulic characteristics of the main pulley rotation speed is small, it is difficult to shift to the high speed side, so the shift range is set to the high speed side, and the right side of the m1 and m2 areas in Figure 5 is set. This is the shift area indicated by the upward diagonal line.

一方、エコノミ領域では、主プーリ回転数に対し変化の
大きい油圧特性に変更されるため、高速段側に変速し易
くなる。そこで、変速域が上述に比べて低回転側から設
定され、第5図m1及びm、領域の右下り斜線で示すよ
うなパワー領域に比べて広い変速領域となる。
On the other hand, in the economy range, the oil pressure characteristics are changed to have a large change with respect to the main pulley rotation speed, so it becomes easier to shift to a higher speed gear. Therefore, the speed change range is set from the low rotation side compared to the above, and becomes a wider speed change range than the power range as shown by the downward diagonal lines to the right of the areas m1 and m in FIG.

尚、本実施例では油圧特性を2種類としたが、これに限
定されるものではない。また、ノーマル領域を追加して
更にきめ細かく回転油圧を算出しても良く、スロットル
開度の代りに吸入管負圧、吸入空気量を用いることもで
きる。
In this embodiment, there are two types of hydraulic characteristics, but the present invention is not limited to this. Further, the rotational oil pressure may be calculated more precisely by adding a normal region, and the suction pipe negative pressure and the intake air amount may be used instead of the throttle opening.

以上の実施例から明らかなように、本発明によれば、運
転者の運転状況を判断してパワー又はエコノミ領域の変
速特性に自動的に切換え、運転者の要求に合った変速特
性で変速制御を行うので、性能と燃費等の相対立する要
求を同時に満足させることができる。変速制御弁44の
一方に作用する回転油圧特性を電気的に生成して変える
ものであるから、制御が容易であり、回転油圧の特性曲
線を比例的なものにして特に低いエンジン回転での変速
制御を明確に行うこともできる。更に、運転者の運転状
況により自動的に切換わるので、操作性が良い。
As is clear from the above embodiments, according to the present invention, the driving situation of the driver is judged and the speed change characteristics are automatically switched to the power or economy range, and the speed change is controlled using the speed change characteristics that match the driver's requirements. Therefore, conflicting demands such as performance and fuel efficiency can be satisfied at the same time. Since the rotary oil pressure characteristics acting on one side of the shift control valve 44 are electrically generated and changed, control is easy, and the characteristic curve of the rotary oil pressure is made proportional, making it possible to shift gears particularly at low engine speeds. Control can also be clearly exercised. Furthermore, since it is automatically switched depending on the driving situation of the driver, operability is good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される無段変速機の一例を示すス
ケルトン図、第2図は本発明による112の一実施例を
示す回路図、第3図(a)ないしく0)は各特性線図、
第4図は本発明の詳細な説明するフローチil−ト図、
第5図は本発明による変速特性線口である。 2・・・無段変速機、G・・・油圧制御部、39.40
・・・ライン圧油路、60・・・分岐油路、61・・・
調圧弁、63・・・ソレノイド弁、72・・・主プーリ
回転センサ、73・・・スロットル間11センナ、74
・・・制御ユニット、7G・・・運転状況判断部、77
・・・回転油圧特性設定部、78・・・デユーティ比設
定部。 第3図 (C) j−1しりC口碑iい肥C− 弔4図
FIG. 1 is a skeleton diagram showing an example of a continuously variable transmission to which the present invention is applied, FIG. 2 is a circuit diagram showing an embodiment of 112 according to the present invention, and FIG. Characteristic diagram,
FIG. 4 is a flowchart diagram explaining the present invention in detail;
FIG. 5 shows a transmission characteristic line according to the present invention. 2... Continuously variable transmission, G... Hydraulic control section, 39.40
... Line pressure oil path, 60... Branch oil path, 61...
Pressure regulating valve, 63... Solenoid valve, 72... Main pulley rotation sensor, 73... Throttle 11 sensor, 74
...Control unit, 7G...Driving situation judgment section, 77
...Rotary oil pressure characteristic setting section, 78...Duty ratio setting section. Figure 3 (C) j-1 Shiri C mouth stele i fat C- Funeral diagram 4

Claims (1)

【特許請求の範囲】[Claims] 無段変速機油圧制御部のライン圧回路から分岐する回路
に常に一定の油圧を生じる調圧弁、その油圧をデユーテ
ィ信号により排圧して主プーリ回転数に応じた回転油圧
の特性を数種類電気的に生成するソレノイド弁を設け、
主プーリ回転数、スロットル開度等のセンサを制御ユニ
ットを介して上記ソレノイド弁に回路構成し、該制御ユ
ニットでは運転者の運転状況を判断してそれに応じ回転
油圧特性を選択し、運転者の運転状況に合った変速特性
に自動的に切換えるように構成したことを特徴とする無
段変速機の変速特性制御装置。
A pressure regulating valve that always produces a constant hydraulic pressure in a circuit branching from the line pressure circuit of the continuously variable transmission hydraulic control unit, and the hydraulic pressure is discharged by a duty signal to electrically control several types of rotary hydraulic pressure characteristics according to the main pulley rotation speed. Install a solenoid valve that generates
Sensors for the main pulley rotation speed, throttle opening, etc. are connected to the solenoid valve via a control unit, and the control unit determines the driving situation of the driver and selects the rotational hydraulic characteristics accordingly. A speed change characteristic control device for a continuously variable transmission, characterized in that it is configured to automatically switch to a speed change characteristic suited to driving conditions.
JP6961184A 1984-04-06 1984-04-06 Shift characteristic controller for stepless transmission Pending JPS60215150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6961184A JPS60215150A (en) 1984-04-06 1984-04-06 Shift characteristic controller for stepless transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6961184A JPS60215150A (en) 1984-04-06 1984-04-06 Shift characteristic controller for stepless transmission

Publications (1)

Publication Number Publication Date
JPS60215150A true JPS60215150A (en) 1985-10-28

Family

ID=13407818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6961184A Pending JPS60215150A (en) 1984-04-06 1984-04-06 Shift characteristic controller for stepless transmission

Country Status (1)

Country Link
JP (1) JPS60215150A (en)

Similar Documents

Publication Publication Date Title
JPS61119860A (en) Electronic control device for continuously variable transmission
JPH0526967B2 (en)
EP0059426A2 (en) Control system for motor vehicle
JP2794703B2 (en) Transmission control device for continuously variable transmission
JPH0586493B2 (en)
JPH0531701B2 (en)
JPH0526966B2 (en)
JPH0526970B2 (en)
JPH0526979B2 (en)
JPS62160930A (en) Control device for stepless speed change gear
JPS62137239A (en) Method of controlling continuously variable transmission provided with subtransmission for vehicle
JPS60125447A (en) Controller for change gear ratio of stepless transmission
JPH0526968B2 (en)
JPS62255247A (en) Automatic clutch control device for vehicle
JPS60215150A (en) Shift characteristic controller for stepless transmission
JPS6362954A (en) Belt slip detecting method for v-belt type continuously variable transmission
JPS59222659A (en) Hydraulic controller of stepless transmission gear
JPS61119859A (en) Electronic control device for continuously variable transmission
JP2899759B2 (en) Line pressure control method for continuously variable transmission
JP2542860B2 (en) Controller for continuously variable transmission
JPS61119437A (en) Electronic control device of stepless transmission
JPS6060357A (en) Control device of speed change characteristic in stepless speed change gear
JP2961316B2 (en) Line pressure control method for continuously variable transmission
JPS6148658A (en) Speed-change controller for continuously variable transmission
JPS604659A (en) Hydraulic controller for continuously variable transmission