JPS60214104A - Electromagnetic - Google Patents

Electromagnetic

Info

Publication number
JPS60214104A
JPS60214104A JP7070084A JP7070084A JPS60214104A JP S60214104 A JPS60214104 A JP S60214104A JP 7070084 A JP7070084 A JP 7070084A JP 7070084 A JP7070084 A JP 7070084A JP S60214104 A JPS60214104 A JP S60214104A
Authority
JP
Japan
Prior art keywords
radio wave
liquid crystal
phase shift
progressing direction
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7070084A
Other languages
Japanese (ja)
Other versions
JPH036683B2 (en
Inventor
Nobuo Kumagai
熊谷 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7070084A priority Critical patent/JPS60214104A/en
Publication of JPS60214104A publication Critical patent/JPS60214104A/en
Publication of JPH036683B2 publication Critical patent/JPH036683B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To decrease number of layers in the progressing direction of a radio wave and also to apply an electromagnetic lens up to a high frequency region by forming the electromagnetic lens with a phase shifter using a liquid crystal. CONSTITUTION:The electromagnetic lens is formed by arranging required number of the phase shifters 11 in a face orthogonal to the radio wave progressing direction from an antenna horn 4. The phase shifter 11 is formed by arranging required number of phase shift elements 12 in the progressing direction of a radio wave 11. The phase shift element 12 consists of two sets of dielectric thin plates 13 opposed to each other and a cell made of one set of a conductor thin plate 14 in parallel with the progressing direction of the radio wave and packed with the liquid crystal 15. Then the phase shift element 12 is arranged corresponding to the bit number of a control signal in the progressing direction of the current. Thus, the number of layers in the progressing direction of the radio wave is decreased and since the liquid crystal is used, the lens is applied up to a high frequency region.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は外部からの制御信号により電子的にビームの
屈折方向を制御する電波レンズの改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a radio wave lens that electronically controls the refraction direction of a beam using an external control signal.

〔従来技術〕[Prior art]

第1図は例えばMicrowave Journal 
1981年2月号P、45〜P、53に示された従来の
電子的にビームの屈折方向を制御する電波レンズを示す
図であり0図にお匹て111は金属格子、(2)は印加
されるバイアス電圧の極性に応じて等価的にショートあ
るいはオープンの特性を示すピンダイオード。
Figure 1 shows, for example, Microwave Journal.
This is a diagram showing a conventional radio wave lens that electronically controls the refraction direction of a beam, which was shown in February 1981 issue P, 45 to P, 53. A pin diode that exhibits equivalent short-circuit or open characteristics depending on the polarity of the applied bias voltage.

(3)は上記金属格子(1)とピンダイオード12+ 
i空間に固定するための誘電体板、(41は電波をこの
電波レンズに照射するホーンアンテナ、(51は上記金
網格子(11,ピンダイオード(21,誘15体板(3
)より構成される単層レンズ板、(6)及び(7)はこ
の単層レンズ板を複数膚重ねてビームをそれぞれ左右、
上下に屈折させるレンズ、(8)は電波の電界方向を示
す。
(3) is the metal grid (1) and the pin diode 12+
A dielectric plate for fixing in i-space, (41 is a horn antenna that irradiates radio waves to this radio wave lens, (51 is the above-mentioned wire mesh lattice (11, pin diode (21, dielectric plate (3)
), (6) and (7) are made by stacking multiple single-layer lens plates to direct the beam to the left and right sides, respectively.
A lens (8) that refracts the light up and down indicates the direction of the electric field of the radio wave.

第2図は単層レンズ板(51の動作原理を示す図であり
、第2図(a)は構成図、第2図(bl 、 (c)は
ピンダイオード+21にそれぞれ順方向あるいは逆方向
のバイアス電圧を印加したときの等価的な図、第2図(
d)はビームが屈折する原理を示す図である。尚。
Fig. 2 is a diagram showing the operating principle of the single-layer lens plate (51), Fig. 2 (a) is a configuration diagram, and Fig. 2 (bl) and (c) are pin diode +21 with forward and reverse directions, respectively. Equivalent diagram when bias voltage is applied, Figure 2 (
d) is a diagram showing the principle of beam refraction. still.

図中(1)から181は第1図と同じで(9)は電波の
波欽顛は電波の進行方向(ビーム方向)である。
In the figure, (1) to 181 are the same as in FIG. 1, and (9) indicates the wave direction of the radio wave in the direction in which the radio wave travels (beam direction).

いま第2図(a)においてピンダイオード(2)の取付
間隔を2分の1波長以下の寸法とし、また金属格子Il
lの幅及び間隔管それぞれ所定の寸法とすることにより
、第2図(t)) I (C)の金属格子(11は、そ
れを透過する金属格子111に平行な電界をもつ電波に
対して、それぞれ銹導性、容量性の回路素子として働き
、それぞれ電波の透過位相量は進み、遅れを生じる。
Now, in Fig. 2(a), the mounting interval of the pin diodes (2) is set to a dimension of 1/2 wavelength or less, and the metal grating Il
By setting the width of l and the interval tubes to predetermined dimensions, the metal grid (11 in Fig. 2(t)) I(C) is , act as conductive and capacitive circuit elements, respectively, and the transmitted phase amount of radio waves leads and lags respectively.

第2図(a)に示すように9例えば1枚の単層レンズ板
(5)で上半分に順方向バイアス(図中−)、下半分に
逆方向バイアス(図中■をピンダイオード(21にそれ
ぞれ加えることにより、上述したように上半分は位相が
進み、下半分は位相が遅れるため。
As shown in Fig. 2(a), for example, with one single layer lens plate (5), the upper half is forward biased (- in the figure) and the lower half is reverse biased (■ in the figure is a pin diode (21). By adding each, the phase of the upper half advances and the phase of the lower half lags, as mentioned above.

電波の波面(9)が変化し1等価的に図中破線に示すよ
うに見なされ、電波の進行方向Qllが下方へ屈折する
The wavefront (9) of the radio wave changes and is equivalently seen as shown by the broken line in the figure, and the traveling direction Qll of the radio wave is refracted downward.

しかし以上述べてきたように、第1図に示す従来の電波
レンズは、ピンダイオードと金属格子を組合わせ、その
バイアス電圧を順方向/逆方向切換えることにより透過
位相量を変えて、ビームを屈折させるものであり、この
−波レンズを固定ビームのアンテナと組合せ、電子走査
アンテナを構成する場合、透過位相量をΔφラジアン毎
に変化させるとしたら1%波の進行方向の単層レンズ板
の層数Nは、ビームを上下及び左右に走査するものとし
て次式で表わされる。
However, as described above, the conventional radio wave lens shown in Fig. 1 combines a pin diode and a metal grating, and changes the amount of transmission phase by switching the bias voltage in the forward/reverse direction to refract the beam. When this -wave lens is combined with a fixed beam antenna to configure an electronic scanning antenna, if the transmission phase amount is changed every Δφ radian, the layer of the single-layer lens plate in the direction of propagation of the wave is 1%. The number N is expressed by the following equation assuming that the beam is scanned vertically and horizontally.

2π N=2(−−s) ・・・111 Δφ いま1例えばΔφを通常の電子走査アンテナに用いられ
るπ/8ラジアンとすると1層数Nは30層となり、ま
た1層あたりも2分の1波長以下の間隔でピンダイオー
ドを用いなければならないため、必要なピンダイオード
の数量が膨大なものとなり1価格が高い及び組立が離し
いなどの欠点がおった。
2π N=2(--s) ...111 Δφ For example, if Δφ is π/8 radian used in a normal electronic scanning antenna, the number of layers N is 30, and the number of layers per layer is 2/2. Since pin diodes must be used at intervals of one wavelength or less, the number of pin diodes required is enormous, resulting in drawbacks such as high cost and difficult assembly.

またミリ波帯、サブミリ波帯などのように周波数が高く
なると、ピンダイオードのジャンクション容量の影響が
大きくなり、逆バイアスを印加しても完全なオーダ/と
ならずそのため順/逆バイアス切換時の透過位相量の変
化が小さくなり、ビームを屈折させることが困難となる
欠点がめった。
Furthermore, as the frequency increases, such as in the millimeter wave band and submillimeter wave band, the influence of the pin diode's junction capacitance increases, and even when reverse bias is applied, it does not become a perfect order of magnitude. Therefore, when switching between forward and reverse bias, The disadvantage is that the change in the amount of transmitted phase becomes small, making it difficult to refract the beam.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改善する目的でなされたもので
、′IL波の進行方向の層数を減らすためにビット数に
対応して透過位相量を変化させ、かつミリ波、サブミリ
波帯などのように高い周波数領域まで使用できる電波レ
ンズを提案するものである。
This invention was made with the purpose of improving such drawbacks, and it is possible to change the amount of transmission phase corresponding to the number of bits in order to reduce the number of layers in the direction of propagation of the IL wave, and to This project proposes a radio wave lens that can be used up to high frequency ranges.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示す図であり。 FIG. 3 is a diagram showing an embodiment of the present invention.

図において、 141. telは第1図と同じであり
、αυはこの発明による電波レンズを構成する移相器で
ちる。
In the figure, 141. tel is the same as in FIG. 1, and αυ is the phase shifter constituting the radio lens according to the present invention.

第4図に上記移相器の構成例を示す一部欠載図であり、
この場合1例として4ビツトの移相器をあられしている
。図において、 Q21は移相器を構成する各1ピツト
に対応する移相素子、 +13. +141. (Is
は各移相素子t−構成する。互いに対向する2組の誘電
体薄板、電波の進行方向に平行でかつ対向する1組の導
体薄板、前記薄板で構成されるセルの中に充てんされた
液晶をそれぞれ表わし、顧はバイアス電圧を加えるため
の接続線?示す。
FIG. 4 is a partially missing diagram showing an example of the configuration of the phase shifter,
In this case, a 4-bit phase shifter is used as an example. In the figure, Q21 is a phase shift element corresponding to each pit constituting the phase shifter; +13. +141. (Is
constitutes each phase shift element t-. Two sets of thin dielectric plates facing each other, a set of thin conductive plates facing each other and parallel to the direction of propagation of radio waves, and a liquid crystal filled in a cell made up of the thin plates, each of which has a bias voltage applied to it. Connecting wire for? show.

上記のように構成された移相素子α3においては。In the phase shift element α3 configured as described above.

電波の移相量は主に電界方向の液晶の誘を率により決ま
9.それをいまε2 とすると、電波の移相量Φは次式
で近似できる。
The amount of phase shift of radio waves is mainly determined by the permittivity of the liquid crystal in the direction of the electric field9. Letting this be ε2, the phase shift amount Φ of the radio wave can be approximated by the following equation.

Φ=−L!a (W−t ) (ラジアン) ・・・(
2)λ ρ ここでd:電波の進行方向に対する1つの移相素子の液
晶層の厚さ λ:を波の波長 第5図に印加電圧と液晶の分子配向の関係を示す実施例
の断面図であり、(a)は電圧を印加しない場合、(b
)は電圧を印加した場合をそれぞれ示す。
Φ=-L! a (W-t) (radian) ...(
2) λ ρ where d: Thickness of the liquid crystal layer of one phase shift element with respect to the direction of radio wave propagation λ: Wave wavelength Figure 5 is a cross-sectional view of an example showing the relationship between applied voltage and liquid crystal molecular orientation. , (a) is when no voltage is applied, (b
) indicates the case where voltage is applied.

図において+81及び(L35−fl+9は第4図と同
じであり。
In the figure, +81 and (L35-fl+9) are the same as in FIG.

αηは長い方向が分子配向の方向を示す液晶分子。αη is a liquid crystal molecule whose long direction indicates the direction of molecular orientation.

(ill、 alはそれぞれバイアス電圧印加用の電源
とスイッチを示す。いま第5図(a)に示すように電圧
を印加しない場合、電波の電介と直交方向になるよ゛う
に分子の配向処理をろらかじめ実施しておく。
(ill and al respectively indicate a power supply and a switch for applying a bias voltage. If no voltage is applied as shown in Fig. 5(a), the molecules are orientated so that they are perpendicular to the direction of the radio wave. Implement this in advance.

第5図(b)に示すように電圧を印加すると分子が電波
の電界方向に配向する。
As shown in FIG. 5(b), when a voltage is applied, the molecules are oriented in the direction of the electric field of the radio wave.

第6図は液晶の比誘電率の周波数特性の一例を分子配向
方向、及び配向方向と直交する方向について比較して示
す図である。図において横軸は周波数(Hz)、縦軸は
比誘電率であり、実線は分子の配向方向の比誘電率、破
線は配向方向と直交する方向の比誘電率全それぞれあら
れす。
FIG. 6 is a diagram illustrating an example of the frequency characteristics of the dielectric constant of a liquid crystal, comparing the molecular orientation direction and the direction orthogonal to the orientation direction. In the figure, the horizontal axis is the frequency (Hz) and the vertical axis is the dielectric constant, the solid line is the dielectric constant in the orientation direction of the molecules, and the broken line is the total dielectric constant in the direction perpendicular to the orientation direction.

以上述べてきたように液晶は外部から電圧を印加するこ
とにより2分子の配向方向を変えることができ、配向方
向及びそれと直交する方向の誘電率はほとんどの周波数
で異なるため、液晶のこの特性を使って、印加する電圧
を0N10FFすることにより、電波の電界方向の液晶
の誘電率ερを変えることができ、第(2)式で示すよ
うに ερの変化に対応して電波の移相量が変わる。
As mentioned above, liquid crystals can change the alignment direction of two molecules by applying an external voltage, and since the dielectric constant in the alignment direction and the direction orthogonal to it differs at most frequencies, this property of liquid crystals can be changed. By changing the applied voltage to 0N10FF, the permittivity ερ of the liquid crystal in the direction of the electric field of the radio wave can be changed, and as shown in equation (2), the amount of phase shift of the radio wave changes in response to the change in ερ. change.

いま液晶の配向方向の比誘電率をεd、配向と直交方向
の比誘電率をεCとすると、液晶への電圧をOFFから
ONにすることによる移相量の変化ΔΦは次式で近似さ
れる。
Now, if the relative permittivity of the liquid crystal in the alignment direction is εd, and the relative permittivity in the direction perpendicular to the alignment is εC, then the change in phase shift ΔΦ caused by turning the voltage to the liquid crystal from OFF to ON is approximated by the following equation. .

ΔΦ=にd(F;5−)<ラジアン)・・・(3)第(
3)式の関係より、ΔΦの絶対値がそれぞれπ。
ΔΦ=d(F;5-)<radian)...(3)th (
3) From the relationship in the equation, the absolute value of ΔΦ is π.

π/2.π/4.π/8ラジアンとなる厚さdをめ。π/2. π/4. Choose a thickness d that is π/8 radians.

それを各ビットの移相素子の電波の進行方向の液晶の厚
さとすることにより4ビツトの移相器を形成できる。
A 4-bit phase shifter can be formed by setting this to the thickness of the liquid crystal in the direction of propagation of the radio wave of each bit's phase shift element.

第1図はこの発明による電波レンズの電波の屈折の原理
を示す図である。図において(8+ −Qlは第2図、
aυは第3図とそれぞれ同じであり、(12A)。
FIG. 1 is a diagram showing the principle of refraction of radio waves by the radio wave lens according to the present invention. In the figure (8+ -Ql is in Figure 2,
aυ are the same as in Figure 3 (12A).

(12B)、(12C)、(12D)はそれぞれπ、π
/2.π/4゜π/8 ラジアンの移相素子を示す。こ
こで斜線を施こした移相素子は位相が遅れるようなバイ
アス状態にされているものとする。いま4つの移相器a
υはそれぞれ上から下へπ/8ラジアンづつ透過波の移
相を遅らせるため、を波の波面は等倹約に破線の如くな
り、電波の進行方向は下方に屈折する。
(12B), (12C), (12D) are π and π, respectively
/2. π/4°π/8 radian phase shift element is shown. Here, it is assumed that the phase shift elements shaded with diagonal lines are biased so that the phase is delayed. Now there are four phase shifters a
Since υ retards the phase shift of the transmitted wave by π/8 radians from top to bottom, the wave front of the wave equally parsimoniously becomes like a broken line, and the direction of propagation of the radio wave is refracted downward.

以上の説明は4ビツトの場合について述べたが。The above explanation was for the case of 4 bits.

この電波レンズは、その構成上ビット数による制約を受
けず、を波の進行方向に必要な数だけ移相素子を配列す
ることができる。
This radio wave lens is not limited by the number of bits due to its configuration, and can arrange as many phase shift elements as necessary in the direction of wave propagation.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、従来の電子的に制御する
電波レンズに比べ、同じ最小移相量とした場合電波の進
行方向の層数(素子数)を大幅に減らすことができるた
め低価格化をはかることができ、またミリ波、サブミリ
波帯などの高い周波数で使用する場合、従来の電波レン
ズで問題であったピンダイオードを使わず、液晶を用い
ることにより高い周波数領域で使用する場合の問題を解
決し得る効果がめる。
As explained above, compared to conventional electronically controlled radio wave lenses, this invention can significantly reduce the number of layers (number of elements) in the direction of propagation of radio waves for the same minimum phase shift, resulting in lower costs. In addition, when used at high frequencies such as millimeter wave and submillimeter wave bands, the use of liquid crystals eliminates the need for pin diodes, which was a problem with conventional radio lenses. See the effects that can solve the problem.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電波レンズを示す図、第2図は単層レン
ズ板の動作原理を示す図、第3図はこの発明の一実施例
を示す図、第4図は移相器の構成例を示す一部欠載図、
第5図は印加電圧と液晶の分子配向の関係を示す実施例
の断面図、第6図は液晶の比誘電率の周波数特性を示す
図、第7図はこの発明による電波レンズの電波の屈折の
原理を示す図である。 図においてαυは金属格子、(2;はピンダイオード。 (3)は誘電体板、(41はホーンアンテナ、(5)は
単層レンズ板、 +61. +71はレンズ、 +81
は電波の電界の方向、−(9)は電波の波面、叫は電波
の進行方向、Qυは移相器、α3は移相素子、 Qlは
誘電体薄板、αをは導体薄板、a!9は液晶、翰は接続
線、 Q7)は液晶分子、o8は電源、α9はスイッチ
を示す。 なお図中同一符号は同一または相当部分を示すものとす
る。 代理人大岩増雄 第1B 第3図 第2図 (cl) 第4図 第5図 (a) 6 6 (b) 6
Fig. 1 is a diagram showing a conventional radio wave lens, Fig. 2 is a diagram showing the operating principle of a single-layer lens plate, Fig. 3 is a diagram showing an embodiment of the present invention, and Fig. 4 is a diagram showing the configuration of a phase shifter. Some missing figures showing examples,
FIG. 5 is a cross-sectional view of an example showing the relationship between applied voltage and molecular orientation of liquid crystal, FIG. 6 is a diagram showing frequency characteristics of relative dielectric constant of liquid crystal, and FIG. 7 is refraction of radio waves of the radio wave lens according to the present invention. FIG. In the figure, αυ is a metal grid, (2; is a pin diode, (3) is a dielectric plate, (41 is a horn antenna, (5) is a single layer lens plate, +61. +71 is a lens, +81
is the direction of the electric field of the radio wave, -(9) is the wavefront of the radio wave, is the traveling direction of the radio wave, Qυ is the phase shifter, α3 is the phase shift element, Ql is the dielectric thin plate, α is the conductive thin plate, a! 9 is a liquid crystal, the wire is a connection line, Q7) is a liquid crystal molecule, o8 is a power supply, and α9 is a switch. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa 1B Figure 3 Figure 2 (cl) Figure 4 Figure 5 (a) 6 6 (b) 6

Claims (1)

【特許請求の範囲】 外部からの電圧等の信号により、ビームの屈折方向を電
子的に制御する電波レンズにおいて、互いに対向する2
組の誘電体薄板と電波の進行方向に平行でかつ対向する
1組の導体薄板から成る立方体もしくは直方体のセルと
、前記セルの中に充てんされ、外部から上記導体薄板を
通して電圧を印加することにより0分子の配向方向を変
化させ。 それに伴なって変化する誘電異方性を肩する液晶とから
成る移相素子を、制御信号のビット数に対応して所定の
長さに区切って、%波の進行方向にビット数分だけ並べ
た移相器が、ビームを屈折させるために電波の進行方向
と直交する面内に所要数配列しであることを特徴とする
電波レンズ。
[Claims] In a radio wave lens that electronically controls the direction of refraction of a beam by a signal such as an external voltage, there are two lenses facing each other.
A cubic or rectangular parallelepiped cell consisting of a set of dielectric thin plates and a set of conductor thin plates parallel to and opposite to the direction of propagation of radio waves; Change the orientation direction of the 0 molecule. A phase shift element consisting of a liquid crystal that handles the dielectric anisotropy that changes accordingly is divided into predetermined lengths corresponding to the number of bits of the control signal, and arranged in the direction of propagation of the % wave for the number of bits. A radio wave lens characterized in that a required number of phase shifters are arranged in a plane perpendicular to the direction of propagation of radio waves in order to refract the beam.
JP7070084A 1984-04-09 1984-04-09 Electromagnetic Granted JPS60214104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070084A JPS60214104A (en) 1984-04-09 1984-04-09 Electromagnetic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070084A JPS60214104A (en) 1984-04-09 1984-04-09 Electromagnetic

Publications (2)

Publication Number Publication Date
JPS60214104A true JPS60214104A (en) 1985-10-26
JPH036683B2 JPH036683B2 (en) 1991-01-30

Family

ID=13439146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070084A Granted JPS60214104A (en) 1984-04-09 1984-04-09 Electromagnetic

Country Status (1)

Country Link
JP (1) JPS60214104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709209A1 (en) * 1993-03-26 1995-02-24 Thomson Csf Microwave phase-shifter (phase-modulator) and application to an array antenna
US7430915B2 (en) 2003-09-02 2008-10-07 Hosiden Corporation Vibration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709209A1 (en) * 1993-03-26 1995-02-24 Thomson Csf Microwave phase-shifter (phase-modulator) and application to an array antenna
US7430915B2 (en) 2003-09-02 2008-10-07 Hosiden Corporation Vibration sensor

Also Published As

Publication number Publication date
JPH036683B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
US5309166A (en) Ferroelectric-scanned phased array antenna
US10804587B2 (en) Electrically controllable radio-frequency circuit element having an electrochromic material
US9733544B2 (en) Tunable optical metamaterial
US8063833B2 (en) Method of achieving an opaque or absorption state in a tunable frequency selective surface
US11870122B2 (en) Liquid crystal phase shifter and antenna
US4395685A (en) Waveguide junction for producing circularly polarized signal
JP3535423B2 (en) Radome
JP2007522735A (en) Adjustable device
KR20150117701A (en) Phase shift device
JPH03145305A (en) Micro strip antenna
US4476471A (en) Antenna apparatus including frequency separator having wide band transmission or reflection characteristics
US5103241A (en) High Q bandpass structure for the selective transmission and reflection of high frequency radio signals
WO2021189238A1 (en) Phase shifter, and antenna
CN109273859A (en) Coupled mode broadband active frequency-selective surfaces
WO2019233140A1 (en) Liquid crystal phase shifter and electronic device
JPS60214104A (en) Electromagnetic
WO2023140243A1 (en) Reflectarray
US3851279A (en) Tee junction waveguide circulator having dielectric matching posts at junction
US5206613A (en) Measuring the ability of electroptic materials to phase shaft RF energy
JPS60214105A (en) Phase shifter
US2588249A (en) Wave polarization shifter systems
JPH02113702A (en) Microstrip line
WO2023188735A1 (en) Radio wave reflective element using liquid crystal material
WO2024040445A1 (en) Phase modulation surface unit, phase modulation surface structure, and terminal device
TWI781725B (en) Display device