JPH036683B2 - - Google Patents

Info

Publication number
JPH036683B2
JPH036683B2 JP7070084A JP7070084A JPH036683B2 JP H036683 B2 JPH036683 B2 JP H036683B2 JP 7070084 A JP7070084 A JP 7070084A JP 7070084 A JP7070084 A JP 7070084A JP H036683 B2 JPH036683 B2 JP H036683B2
Authority
JP
Japan
Prior art keywords
radio wave
radio waves
propagation
phase shift
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7070084A
Other languages
Japanese (ja)
Other versions
JPS60214104A (en
Inventor
Nobuo Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7070084A priority Critical patent/JPS60214104A/en
Publication of JPS60214104A publication Critical patent/JPS60214104A/en
Publication of JPH036683B2 publication Critical patent/JPH036683B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は外部からの制御信号により電子的に
ビームの屈折方向を制御する電波レンズの改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a radio wave lens that electronically controls the refraction direction of a beam using an external control signal.

〔従来技術〕[Prior art]

第1図は例えばMicrowave Journal 1981年2
月号P.45〜P.53に示された従来の電子的にビーム
の屈折方向を制御する電波レンズを示す図であ
り、図において1は金属格子、2は印加されるバ
イアス電圧の極性に応じて等価的にシヨートある
いはオープンの特性を示すピンダイオード、3は
上記金属格子1とピンダイオード2を空間に固定
するための誘電体板、4は電波をこの電波レンズ
に照射するホーンアンテナ、5は上記金属格子
1、ピンダイオード2、誘電体板3より構成され
る単層レンズ板、6及び7はこの単層レンズ板を
複数層重ねてビームをそれぞれ左右、上下に屈折
させるレンズ、8は電波の電界方向を示す。
Figure 1 is an example from Microwave Journal 19812.
This is a diagram showing the conventional radio wave lens that electronically controls the refraction direction of the beam, shown on pages 45 to 53 of the monthly issue. In the diagram, 1 is a metal grid, and 2 is a polarity of the applied bias voltage. 3 is a dielectric plate for fixing the metal grid 1 and the pin diode 2 in space; 4 is a horn antenna for irradiating radio waves to the radio lens; 5 is a pin diode that equivalently shows short or open characteristics. is a single-layer lens plate composed of the metal grating 1, pin diode 2, and dielectric plate 3; 6 and 7 are lenses that are made by stacking a plurality of these single-layer lens plates to refract the beam left and right and up and down, respectively; 8 is a lens that refracts the beam horizontally and vertically; Indicates the direction of the electric field of radio waves.

第2図は単層レンズ板5の動作原理を示す図で
あり、第2図aは構成図、第2図b,cはピンダ
イオード2にそれぞれ順方向あるいは逆方向のバ
イアス電圧を印加したときの等価的な図、第2図
dはビームが屈折する原理を示す図である。尚、
図中1から8は第1図と同じで9は電波の波面、
10は電波の進行方向(ビーム方向)である。
FIG. 2 is a diagram showing the operating principle of the single-layer lens plate 5, FIG. 2 a is a configuration diagram, and FIG. 2 b and c are diagrams when a forward or reverse bias voltage is applied to the pin diode 2, respectively. An equivalent diagram of FIG. 2d is a diagram illustrating the principle of beam refraction. still,
In the figure, 1 to 8 are the same as in Figure 1, and 9 is the wavefront of the radio wave.
10 is the traveling direction (beam direction) of the radio waves.

いま第2図aにおいてピンダイオード2の取付
間隔を2分の1波長以下の寸法とし、また金属格
子1の幅及び間隔をそれぞれ所定の寸法とするこ
とにより、第2図b,cの金属格子1は、それを
透過する金属格子1に平行な電界をもつ電波に対
して、それぞれ誘導性、容量性の回路素子として
働き、それぞれ電波の透過位相量は進み、遅れを
生じる。
Now, by setting the mounting interval of the pin diodes 2 to a dimension of 1/2 wavelength or less in FIG. 2a, and setting the width and spacing of the metal grating 1 to predetermined dimensions, the metal gratings shown in FIGS. 2b and c are obtained. 1 acts as an inductive circuit element and a capacitive circuit element, respectively, for radio waves having an electric field parallel to the metal grid 1 passing through them, and the transmitted phase amount of the radio waves leads and lags respectively.

第2図dに示すように、例えば1枚の単層レン
ズ板5で上半分に順方向バイアス(図中●)、下
半分に逆方向バイアス(図中をピンダイオード
2にそれぞれ加えることにより、上述したように
上半分は位相が進み、下半分は位相が遅れるた
め、電波の波面9が変化し、等価的に図中破線に
示すように見なされ、電波の進行方向10が下方
へ屈折する。
As shown in FIG. 2d, for example, by applying a forward bias (● in the figure) to the upper half of one single layer lens plate 5 and a reverse bias (● in the figure) to the lower half (respectively to the pin diode 2 in the figure), As mentioned above, the phase advances in the upper half and the phase lags in the lower half, so the wavefront 9 of the radio wave changes, equivalently seen as shown by the broken line in the figure, and the traveling direction 10 of the radio wave is refracted downward. .

しかし以上述べてきたように、第1図に示す従
来の電波レンズは、ピンダイオードと金属格子を
組合わせ、そのバイアス電圧を順方向/逆方向切
換えることにより透過位相量を変えて、ビームを
屈折させるものであり、この電波レンズを固定ビ
ームのアンテナと組合せ、電子走査アンテナを構
成する場合、透過位相量をΔφラジアン毎に変化
させるとしたら、電波の進行方向の単層レンズ板
の層数Nは、ビームを上下及び左右に走査するも
のとして次式で表わされる。
However, as mentioned above, the conventional radio wave lens shown in Figure 1 combines a pin diode and a metal grating, and changes the amount of transmission phase by switching the bias voltage in the forward/reverse direction to refract the beam. When this radio wave lens is combined with a fixed beam antenna to form an electronic scanning antenna, if the transmission phase amount is changed every Δφ radian, the number of layers of the single layer lens plate in the direction of propagation of radio waves is N. is expressed by the following equation assuming that the beam is scanned vertically and horizontally.

N=2(2π/Δφ−1) ………(1) いま、例えばΔφを通常の電子走査アンテナに
用いられるπ/8ラジアンとすると、層数Nは30
層となり、また1層あたりも2分の1波長以下の
間隔でピンダイオードを用いなければならないた
め、必要なピンダイオードの数量が膨大なものと
なり、価格が高い及び組立が難しいなどの欠点が
あつた。
N=2 (2π/Δφ−1) ………(1) For example, if Δφ is π/8 radian used in a normal electronic scanning antenna, the number of layers N is 30
This method requires pin diodes to be used in layers, and pin diodes must be used at intervals of half a wavelength or less per layer, so the number of pin diodes required is enormous, and there are disadvantages such as high cost and difficulty in assembly. Ta.

またミリ波帯、サブミリ波帯などのように周波
数が高くなると、ピンダイオードのジヤンクシヨ
ン容量の影響が大きくなり、逆バイアスを印加し
ても完全なオープンとならずそのため順/逆バイ
アス切換時の透過位相量の変化が小さくなり、ビ
ームを屈折させることが困難となる欠点があつ
た。
Furthermore, as the frequency increases, such as in the millimeter wave band and submillimeter wave band, the effect of the junction capacitance of the pin diode increases, and even if reverse bias is applied, it does not become completely open, resulting in transmission during forward/reverse bias switching. This had the drawback that the change in phase amount became small, making it difficult to refract the beam.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改善する目的でなされ
たもので、電波の進行方向の層数を減らすために
ビツト数に対応して透過位相量を変化させ、かつ
ミリ波、サブミリ波帯などのように高い周波数領
域まで使用できる電波レンズを提案するものであ
る。
This invention was made with the aim of improving such drawbacks, and it changes the amount of transmission phase in accordance with the number of bits in order to reduce the number of layers in the direction of propagation of radio waves, and it This project proposes a radio wave lens that can be used up to high frequency ranges.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示す図であり、
図において、4,8は第1図と同じであり、11
はこの発明による電波レンズを構成する移相器で
ある。
FIG. 3 is a diagram showing an embodiment of the present invention,
In the figure, 4 and 8 are the same as in Figure 1, and 11
is a phase shifter constituting a radio wave lens according to the present invention.

第4図に上記移相器の構成例を示す一部欠載図
であり、この場合1例として4ビツトの移相器を
あらわしている。図において、12は移相器を構
成する各1ビツトに対応する移相素子、13,1
4,15は各移相素子を構成する、互いに対向す
る2組の誘電体薄板、電波の進行方向に平行でか
つ対向する1組の導体薄板、前記薄板で構成され
るセルの中に充てんされた液晶をそれぞれ表わ
し、16はバイアス電圧を加えるための接続線を
示す。
FIG. 4 is a partially missing diagram showing an example of the configuration of the phase shifter, and in this case, a 4-bit phase shifter is shown as an example. In the figure, 12 is a phase shift element corresponding to each bit constituting the phase shifter, 13, 1
4 and 15 constitute each phase shift element, and include two sets of dielectric thin plates facing each other, a set of conductive thin plates parallel to and facing the direction of propagation of radio waves, and a cell filled with the thin plates; The reference numeral 16 indicates a connection line for applying a bias voltage.

上記のように構成された移相素子12において
は、電波の移相量は主に電界方向の液晶の誘電率
により決まり、それをいまε〓とすると、電波の移
相量Φは次式で近似できる。
In the phase shift element 12 configured as described above, the amount of phase shift of the radio wave is mainly determined by the permittivity of the liquid crystal in the direction of the electric field, and if this is now ε, then the amount of phase shift of the radio wave Φ is expressed by the following equation. Can be approximated.

Φ=2π/λd(√〓−1)(ラジアン) ………(2) ここで d:電波の進行方向に対する1つの移相素子の液
晶層の厚さ λ:電波の波長 第5図に印加電圧と液晶の分子配向の関係を示
す実施例の断面図であり、aは電圧を印加しない
場合、bは電圧を印加した場合をそれぞれ示す。
図において8及び13〜16は第4図と同じであ
り、17は長い方向が分子配向の方向を示す液晶
分子、18,19はそれぞれバイアス電圧印加用
の電源とスイツチを示す。いま第5図aに示すよ
うに電圧を印加しない場合、電波の電介と直交方
向になるように分子の配向処理をあらかじめ実施
しておく。第5図bに示すように電圧を印加する
と分子が電波の電界方向に配向する。
Φ=2π/λd(√〓−1) (radians) ......(2) where d: Thickness of the liquid crystal layer of one phase shift element in the direction of propagation of radio waves λ: Wavelength of radio waves Applied to Figure 5 FIG. 2 is a cross-sectional view of an example showing the relationship between voltage and molecular orientation of liquid crystal, where a shows the case where no voltage is applied, and b shows the case where the voltage is applied.
In the figure, 8 and 13 to 16 are the same as in FIG. 4, 17 is a liquid crystal molecule whose long direction indicates the direction of molecular orientation, and 18 and 19 are a power source and a switch for applying a bias voltage, respectively. As shown in FIG. 5a, when no voltage is applied, the molecules are orientated in advance so that they are orthogonal to the direction of the radio waves. As shown in FIG. 5b, when a voltage is applied, the molecules are oriented in the direction of the electric field of the radio wave.

第6図は液晶の比誘電率の周波数特性の一例を
分子配向方向、及び配向方向と直交する方向につ
いて比較して示す図である。図において横軸は周
波数(Hz)、縦軸は比誘電率であり、実線は分子
の配向方向の比誘電率、破線は配向方向と直交す
る方向の比誘電率をそれぞれあらわす。
FIG. 6 is a diagram illustrating an example of the frequency characteristics of the dielectric constant of a liquid crystal, comparing the molecular orientation direction and the direction orthogonal to the orientation direction. In the figure, the horizontal axis is the frequency (Hz), and the vertical axis is the dielectric constant, where the solid line represents the dielectric constant in the orientation direction of the molecules, and the broken line represents the dielectric constant in the direction perpendicular to the orientation direction.

以上述べてきたように液晶は外部から電圧を印
加することにより、分子の配向方向を変えること
ができ、配向方向及びそれと直交する方向の誘電
率はほとんどの周波数で異なるため、液晶のこの
特性を使つて、印加する電圧をON/OFFするこ
とにより、電波の電界方向の液晶の誘電率ε〓を変
えることができ、第(2)式で示すようにε〓の変化に
対応して電波の移相量が変わる。
As mentioned above, the orientation direction of molecules in liquid crystals can be changed by applying an external voltage, and since the dielectric constant in the orientation direction and in the direction orthogonal to it differs at most frequencies, this property of liquid crystals can be changed. By turning the applied voltage ON/OFF, the dielectric constant ε〓 of the liquid crystal in the direction of the electric field of the radio wave can be changed. The amount of phase shift changes.

いま液晶の配向方向の比誘電率をεd、配向と直
交方向の比誘電率をεcとすると、液晶への電圧を
OFFからONにすることによる移相量の変化ΔΦ
は次式で近似される。
Now, if the relative permittivity of the liquid crystal in the alignment direction is ε d and the relative permittivity in the direction perpendicular to the alignment is ε c , then the voltage to the liquid crystal is
Change in phase shift amount ΔΦ due to switching from OFF to ON
is approximated by the following equation.

ΔΦ=2π/λd(√c−√d)(ラジアン)………(
3) 第(3)式の関係より、ΔΦの絶対値がそれぞれ
π、π/2、π/4、π/8ラジアンとなる厚さ
dを求め、それを各ビツトの移相素子の電波の進
行方向の液晶の厚さとするこにより4ビツトの移
相器を形成できる。
ΔΦ=2π/λd (√ c −√ d ) (radians)……(
3) From the relationship in equation (3), find the thickness d at which the absolute value of ΔΦ is π, π/2, π/4, and π/8 radians, respectively, and calculate it as the radio wave of the phase shift element for each bit. A 4-bit phase shifter can be formed by adjusting the thickness of the liquid crystal in the advancing direction.

第7図はこの発明による電波レンズの電波の屈
折の原理を示す図である。図において8〜10は
第2図、11は第3図とそれぞれ同じであり、1
2A,12B,12C,12Dはそれぞれπ、
π/2、π/4、π/8ラジアンの移相素子を示
す。ここで斜線を施こした移相素子は位相が遅れ
るようなバイアス状態にされているものとする。
いま4つの移相器11はそれぞれ上から下へπ/
8ラジアンづつ透過波の移相を遅らせるため、電
波の波面は等価的に破線の如くなり、電波の進行
方向は下方に屈折する。
FIG. 7 is a diagram showing the principle of refraction of radio waves by the radio wave lens according to the present invention. In the figure, 8 to 10 are the same as in Figure 2, 11 is the same as in Figure 3, and 1
2A, 12B, 12C, 12D are respectively π,
Phase shift elements of π/2, π/4, and π/8 radians are shown. Here, it is assumed that the phase shift elements shaded with diagonal lines are biased so that the phase is delayed.
Now, the four phase shifters 11 each move from top to bottom by π/
Since the phase shift of the transmitted wave is delayed by 8 radians, the wavefront of the radio wave equivalently becomes like a broken line, and the direction of propagation of the radio wave is refracted downward.

以上の説明は4ビツトの場合について述べた
が、この電波レンズは、その構成上ビツト数によ
る制約を受けず、電波の進行方向に必要な数だけ
移相素子を配列することができる。
Although the above description has been made regarding the case of 4 bits, this radio wave lens is not limited by the number of bits due to its structure, and can arrange as many phase shift elements as required in the direction of propagation of radio waves.

〔発明の効果〕 この発明は以上説明した通り、従来の電子的に
制御する電波レンズに比べ、同じ最小移相量とし
た場合電波の進行方向の層数(素子数)を大幅に
減らすことができるため低価格化をはかることが
でき、またミリ波、サブミリ波帯などの高い周波
数で使用する場合、従来の電波レンズで問題であ
つたピンダイオードを使わず、液晶を用いること
により高い周波数領域で使用する場合の問題を解
決し得る効果がある。
[Effects of the Invention] As explained above, the present invention can significantly reduce the number of layers (number of elements) in the direction of propagation of radio waves when using the same minimum phase shift amount compared to conventional electronically controlled radio wave lenses. In addition, when used at high frequencies such as millimeter wave and submillimeter wave bands, it is possible to reduce costs by using liquid crystals instead of using pin diodes, which were a problem with conventional radio lenses. It has the effect of solving problems when used in

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電波レンズを示す図、第2図は
単層レンズ板の動作原理を示す図、第3図はこの
発明の一実施例を示す図、第4図は移相器の構成
例を示す一部欠載図、第5図は印加電圧と液晶の
分子配向の関係を示す実施例の断面図、第6図は
液晶の比誘電率の周波数特性を示す図、第7図は
この発明による電波レンズの電波の屈折の原理を
示す図である。 図において11は金属格子、2はピンダイオー
ド、3は誘電体板、4はホーンアンテナ、5は単
層レンズ板、6,7はレンズ、8は電波の電界の
方向、9は電波の波面、10は電波の進行方向、
11は移相器、12は移相素子、13は誘電体薄
板、14は導体薄板、15は液晶、16は接続
線、17は液晶分子、18は電源、19はスイツ
チを示す。なお図中同一符号は同一または相当部
分を示すものとする。
Fig. 1 is a diagram showing a conventional radio wave lens, Fig. 2 is a diagram showing the operating principle of a single-layer lens plate, Fig. 3 is a diagram showing an embodiment of the present invention, and Fig. 4 is a diagram showing the configuration of a phase shifter. Some partially missing figures showing an example, Figure 5 is a cross-sectional view of an example showing the relationship between applied voltage and molecular orientation of liquid crystal, Figure 6 is a diagram showing frequency characteristics of relative dielectric constant of liquid crystal, and Figure 7 is FIG. 3 is a diagram showing the principle of refraction of radio waves by the radio wave lens according to the present invention. In the figure, 11 is a metal grid, 2 is a pin diode, 3 is a dielectric plate, 4 is a horn antenna, 5 is a single layer lens plate, 6 and 7 are lenses, 8 is the direction of the electric field of the radio wave, 9 is the wavefront of the radio wave, 10 is the traveling direction of the radio wave,
11 is a phase shifter, 12 is a phase shift element, 13 is a dielectric thin plate, 14 is a conductive thin plate, 15 is a liquid crystal, 16 is a connection line, 17 is a liquid crystal molecule, 18 is a power source, and 19 is a switch. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 外部からの電圧等の信号により、ビームの屈
折方向を電子的に制御する電波レンズにおいて、
互いに対向する2組の誘導体薄板と電波の進行方
向に平行でかつ対向する1組の導体薄板から成る
立方体もしくは直方体のセルと、前記セルの中に
充てんされ、外部から上記導体薄板を通して電圧
を印加することにより、分子の配向方向を変化さ
せ、それに伴なつて変化する誘電異方性を有する
液晶とから成る移相素子を、制御信号のビツト数
に対応して所定の長さに区切つて、電波の進行方
向にビツト数分だけ並べた移相器が、ビームを屈
折させるために電波の進行方向と直交する面内に
所要数配列してあることを特徴とする電波レン
ズ。
1 In a radio wave lens that electronically controls the refraction direction of the beam using signals such as external voltage,
A cubic or rectangular parallelepiped cell consisting of two sets of dielectric thin plates facing each other and a set of conductor thin plates facing and parallel to the direction of propagation of radio waves; the cell is filled with a voltage applied from the outside through the conductive thin plates; By changing the orientation direction of molecules, a phase shift element consisting of a liquid crystal having dielectric anisotropy that changes accordingly is divided into predetermined lengths corresponding to the number of bits of a control signal, A radio wave lens characterized in that a required number of phase shifters arranged in the direction of propagation of radio waves corresponding to the number of bits are arranged in a plane orthogonal to the direction of propagation of radio waves in order to refract the beam.
JP7070084A 1984-04-09 1984-04-09 Electromagnetic Granted JPS60214104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070084A JPS60214104A (en) 1984-04-09 1984-04-09 Electromagnetic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070084A JPS60214104A (en) 1984-04-09 1984-04-09 Electromagnetic

Publications (2)

Publication Number Publication Date
JPS60214104A JPS60214104A (en) 1985-10-26
JPH036683B2 true JPH036683B2 (en) 1991-01-30

Family

ID=13439146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070084A Granted JPS60214104A (en) 1984-04-09 1984-04-09 Electromagnetic

Country Status (1)

Country Link
JP (1) JPS60214104A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709209B1 (en) * 1993-03-26 1995-12-15 Thomson Csf Microwave phase shifter and application to a network antenna.
JP4073382B2 (en) 2003-09-02 2008-04-09 ホシデン株式会社 Vibration sensor

Also Published As

Publication number Publication date
JPS60214104A (en) 1985-10-26

Similar Documents

Publication Publication Date Title
US8339320B2 (en) Tunable frequency selective surface
US5309166A (en) Ferroelectric-scanned phased array antenna
US11870122B2 (en) Liquid crystal phase shifter and antenna
KR102326919B1 (en) Phase shift device
US7903040B2 (en) Tunable arrangements
US6552696B1 (en) Electronically tunable reflector
EP0355898B1 (en) A planar array antenna, comprising coplanar waveguide printed feed lines cooperating with apertures in a ground plane
US4395685A (en) Waveguide junction for producing circularly polarized signal
CN108539331B (en) Terahertz slotting phase-shifting unit based on liquid crystal and phased array antenna formed by same
US9972916B2 (en) Planar array antenna with changeable beam angle
KR960700533A (en) Tunable MICROWAVE DEVICES INCORPORATING HIFH RWMPWEruew SUPERCONDUCTING AND FERROELECTRIC FILMS
US3392393A (en) Electrically controlled scanning antennas having a plurality of wave diffracting elements for varying the phase shift of a generated wave
US4476471A (en) Antenna apparatus including frequency separator having wide band transmission or reflection characteristics
US9515390B1 (en) Discrete phased electromagnetic reflector based on two-state elements
JP6169536B2 (en) Metamaterial active element
CN109932845B (en) Liquid crystal phase shifter and electronic device
Foo Liquid-crystal-tunable metasurface antennas
Li et al. Wideband reconfigurable reflectarray based on reflector-backed second-order bandpass frequency selective surface
WO2022259891A1 (en) Liquid crystal phase modulator, phase shifter, phased array antenna device, and radio wave reflector
US6587076B2 (en) Beam scanning antenna
JPH036683B2 (en)
US20180226714A1 (en) Dielectric travelling waveguide with varactors to control beam direction
WO2023140243A1 (en) Reflectarray
TW202230877A (en) Antenna structure and array antenna module
JPH036684B2 (en)