JPS60213726A - Air-fuel ratio detecting device - Google Patents

Air-fuel ratio detecting device

Info

Publication number
JPS60213726A
JPS60213726A JP7014484A JP7014484A JPS60213726A JP S60213726 A JPS60213726 A JP S60213726A JP 7014484 A JP7014484 A JP 7014484A JP 7014484 A JP7014484 A JP 7014484A JP S60213726 A JPS60213726 A JP S60213726A
Authority
JP
Japan
Prior art keywords
fuel ratio
flame
air
velocity
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7014484A
Other languages
Japanese (ja)
Other versions
JPH0251091B2 (en
Inventor
Satoshi Imamura
聡 今村
Shigeru Aoshima
滋 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP7014484A priority Critical patent/JPS60213726A/en
Publication of JPS60213726A publication Critical patent/JPS60213726A/en
Publication of JPH0251091B2 publication Critical patent/JPH0251091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/085Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electrical or electromechanical means

Abstract

PURPOSE:To enable the detection of air-fuel ratio, by utilizing the velocity of flame. CONSTITUTION:Flame 2 is formed on an optical sensor 4, comprising plural photoelectric conversion elements, through a lens 3, the flame is converted into an electric signal, and after it is amplified by an amplifier 5, it is inputted to a signal processing circuit 6. The circuit 6 computes the electric signal of the flame and detects a flame velocity. Within a region of an air-fuel ratio eta<1.1, it is found that the air-fuel ratio is decreased in a value and a flame velocity is also decreased. By detecting the flame velocity based on the above, the air-fuel ratio can be detected. As noted above, a device is adapted to utilize the flame velocity as a means of detecting the air-fuel ratio, and this enables reliable detection of the air-fuel ratio through simple constitution in which the optical sensor is just combined with the signal processing circuit. Further, detection is effected in a non-contact manner, and this improves stability and provides an increased life, and improves response.

Description

【発明の詳細な説明】 本発明は、燃焼装置に用いる空燃比検出装置に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio detection device used in a combustion device.

ボイラの燃焼の運転効率の同上や自動車の排ガス規制に
対応して、燃焼の空燃比を制御するという要求がある。
There is a demand for controlling the air-fuel ratio of combustion in response to the same operational efficiency of boiler combustion and automobile exhaust gas regulations.

仁の要求に対して、従来は、燃焼状態における燃料過剰
から窒気過剰への酸素量の変化に着目し、ジルコニア酸
素濃度計等の酸素濃度計によりこの酸素量?検出するこ
とで、空燃比を検知するという方法が一般的にとらnて
いる。
In response to Jin's request, conventional methods have focused on the change in oxygen amount from excess fuel to excess nitrogen in the combustion state, and measured this amount of oxygen using an oxygen concentration meter such as a zirconia oxygen concentration meter. A common method is to detect the air-fuel ratio by detecting the air-fuel ratio.

しかしながらこの方法は、燃焼という過酷な使用雰囲気
中にセンサ素子なそう人させることから。
However, this method requires the sensor element to be exposed to the harsh atmosphere of combustion.

センサ素子の故障の発生も多く、寿命も短いものであっ
た。ILセンナ素子として特殊な材料な使用するため1
価格面でも高くなり、一般的なものとはいえないもので
めった。更に応答性も十分なものではなかった。
Sensor elements often fail and have a short lifespan. To use a special material as an IL sensor element 1
The price was also high, and it was rare because it was not a common item. Furthermore, the responsiveness was not sufficient.

本発明は、このような事情に鑑みてなさnたものであり
、火炎の炎速度と空燃比との間に一足の関係があること
を見出し、この関係な用いて空燃比を確実に検出できる
ようにし−fc窒燃比検出装置な提供するものである。
The present invention was made in view of these circumstances, and it has been discovered that there is a relationship between the flame speed of a flame and the air-fuel ratio, and the air-fuel ratio can be reliably detected using this relationship. Thus, a FC nitrous fuel ratio detection device is provided.

仄に1本発明者が行った基礎実験のデータ結果に基づい
て本発明の詳細な説明する。第1図に基礎実験のブロッ
ク構成図を示す。燃焼官1で燃焼している火炎2はレン
ズ3を介して複数の光電変換素子からなる光学センサ4
上に結像され、電気信号に変換さnる。この電気気分は
アンプ5により増巾されたのち、信号処理回路6に入力
される。
First, the present invention will be explained in detail based on the data results of basic experiments conducted by the inventor. Figure 1 shows a block diagram of the basic experiment. The flame 2 burning in the combustion chamber 1 is passed through a lens 3 to an optical sensor 4 consisting of a plurality of photoelectric conversion elements.
An image is formed on the image and converted into an electrical signal. This electric current is amplified by an amplifier 5 and then input to a signal processing circuit 6.

この信号処理回路6は、この火炎の電気信号に演算を施
し、火炎の炎速度を検出する機能?有する〇空燃比はバ
ーナ近傍に供給さnる亜気愈を変化させることで、変え
ることができる。燃料としてのガスは、ガス圧力制御弁
7にエリ一定圧力とさnて供給さnる。なお、この実験
において燃料は都市ガスな用いている。第2図に、この
実験のデータ結果の一例を示す。横軸は空燃比ηであp
、縦軸Iri信号処理回路によりめらnた火炎の炎速度
である。データが縦長の棒で記録されているのは実験の
バラツキな示している。
This signal processing circuit 6 has a function of performing calculations on the electrical signal of this flame and detecting the flame speed of the flame. The air-fuel ratio can be changed by changing the nitrous air supplied near the burner. Gas as fuel is supplied to the gas pressure control valve 7 at a constant pressure. In this experiment, city gas was used as the fuel. FIG. 2 shows an example of the data results of this experiment. The horizontal axis is the air-fuel ratio η and p
, the vertical axis is the flame speed of the flame determined by the Iri signal processing circuit. The data are recorded as vertical bars, indicating the variation in the experiment.

この11!2図のデータかられかるように、空燃比η<
1.1の領域でニ、窒燃比の値の減少とともに。
As can be seen from the data in Figure 11!2, the air-fuel ratio η<
d in the region of 1.1, with a decrease in the value of the nitrous fuel ratio.

炎速度も減少していることがわかる。これから。It can be seen that the flame speed has also decreased. from now.

火炎の炎速度を検出−ff′Lば窒燃比ケ検出すること
ができることになるのである。本発明にこのように、火
炎の炎速匿す検出することで望燃比ケ検出する窄燃比検
出装置を構成するものである。
If the flame velocity of the flame is detected -ff'L, then the nitrogen-fuel ratio can be detected. In this way, the present invention constitutes a fuel ratio detection device that detects the desirable fuel ratio by detecting the flame speed of the flame.

仄に本発明を構成する火炎の炎速度?検出する手段につ
いて説明する。非接触で被測定対象の速度な検出する方
法としては相互相関?使う方法がよく知らnている。こ
の方法ぞ炎速度検知に適用する夷・流側を第3図に示す
。光学センサ4は火炎2の流f’LK沿って所足の距離
tだけ離されて配置さAfC2個の光電センサ4 a 
* 4 bより構成さ扛る。火炎2は定速度Vで動いて
いることηλら、この2個の光電センサ4a、4bの出
力信号U□。
What about the flame speed of the flame that constitutes the present invention? The means for detection will be explained. Is cross-correlation a method for detecting the speed of the object to be measured without contact? I know how to use it. Figure 3 shows the flow and flow sides where this method is applied to flame velocity detection. The optical sensors 4 are arranged along the flow f'LK of the flame 2 at a distance t apart from each other.
*4 Constructed from b. The flame 2 is moving at a constant speed V, and the output signals U□ of these two photoelectric sensors 4a and 4b.

U2の鼓形にはとんど同じであるが、後流の光電センサ
4bの出力@号L]2UΔtocL/Vの時間だけ遅n
ることになる。こnから、仄式で足義さnる相互相関関
数φ12 が最大となる時間差τo%’累めnば yoc □ ・・・・・・(21 0 J、9炎速度Vが検知さnるものである。φ12の最大
値は、相関関数の微分6φ12/ が。
The drum shape of U2 is almost the same, but the output of the downstream photoelectric sensor 4b is delayed by a time of 2UΔtocL/V.
That will happen. From this, we can calculate the time difference τo%' at which the cross-correlation function φ12 reaches its maximum using the following formula. The maximum value of φ12 is the differential of the correlation function 6φ12/.

dτ となるτ0で達成される。このτ0?I?Xめる回路構
W1.乞第3図に信号処理回路6として示す。この回路
に公知技術であるので動作の説明に省略するが、 V/
Fコンバータの周波数出力fが炎速度Vと比例するので
、炎速匿が検出できることになる。
This is achieved with τ0 which becomes dτ. This τ0? I? X-melting circuit structure W1. It is shown as a signal processing circuit 6 in FIG. Since this circuit is a well-known technology, it will not be explained in the explanation of its operation, but V/
Since the frequency output f of the F converter is proportional to the flame speed V, flame speed concealment can be detected.

非接触で被測定対象の速vを検出する他の方法としては
、空間フィルタセンサを使う″)5法がよく知らnてい
る。空間フィルタに第4−に示すように、平面上に規則
正しく配置さnる光量センサ4a+4bで構成さnるも
のであり、いわば空間周波数領域での狭帯域のバンドパ
スフィルタを形成するものである。この方法な炎速度検
知に適用する実施例な第5図に示す。速度Vなもって移
動している火炎2の画像のムラである空間周波数は、空
間フィルタ11の配列ピッチPICより選択さn、空間
フィルタ11i構成する光電センサ4 a + 4 b
により中心周波数f’cの電気信号に変換さnるのでお
る。v+ P * f cの間には理論的に。
Another well-known method for detecting the velocity v of the object to be measured without contact is the method using a spatial filter sensor. The light quantity sensor 4a+4b forms a so-called narrow-band bandpass filter in the spatial frequency domain.An example of application of this method to flame velocity detection is shown in FIG. The spatial frequency, which is the unevenness of the image of the flame 2 moving with the velocity V, is selected from the array pitch PIC of the spatial filter 11, n, and the photoelectric sensors 4a + 4b constituting the spatial filter 11i.
It is converted into an electrical signal with center frequency f'c by n. Theoretically, between v + P * f c.

y oc P @ f c の関係があることから、空間フィル211を構成する光
電センサ4 a * 4 bの電気出力の周波数fcヶ
、差動アンプ12.アンプ13.ハイパxフイ/I/夕
14.PLL回路15等からなる信号処理回路により検
知丁nば被測足動の速度Vをめることができることにな
・る。なお、第2図に示す実験データの炎速度は、第3
図の相互相関による失速度検出の実施例でめたものであ
る。
Since there is a relationship y oc P @ f c , the frequency fc of the electrical output of the photoelectric sensors 4 a * 4 b constituting the spatial fill 211 and the differential amplifier 12 . Amplifier 13. Hyper x Hui/I/Evening 14. If a signal processing circuit including a PLL circuit 15 or the like is used for detection, the velocity V of the foot movement to be measured can be determined. The flame speed of the experimental data shown in Fig. 2 is
This is an example of stall detection using cross-correlation shown in the figure.

本発明に、炎速度と空燃比に一足の相関関係があること
ン利用して炎速度から空燃比を検出しようとする装置で
あるが、炎速度に空燃比のみならず燃料であるガスの供
給圧力にも関係する。こnから本発明の実施例としては
、ガスの供給圧力を圧力制御弁にて一定にして供給圧力
の影響を取り除く方法の他に、圧力制御弁な用いないで
炎速度を検出し、牛導体圧力センサ等により検出できる
供給圧力値乞もって炎速度?。
The present invention is a device that attempts to detect the air-fuel ratio from the flame speed by taking advantage of the fact that there is a correlation between the flame speed and the air-fuel ratio. It is also related to pressure. Therefore, as an embodiment of the present invention, in addition to a method of keeping the gas supply pressure constant with a pressure control valve to eliminate the influence of the supply pressure, there is also a method of detecting the flame speed without using a pressure control valve, and detecting the flame velocity without using a pressure control valve. Is the supply pressure value that can be detected by a pressure sensor etc. the flame speed? .

と規格化し、この炎速度をもって空燃比を検出する方法
をとることで、供給圧力の影響を取り除くことも可能で
ある。
It is also possible to eliminate the influence of supply pressure by standardizing the flame speed and detecting the air-fuel ratio using this flame speed.

以上のように不発明によnは、空燃比ン検出する手段と
して炎速度な利用するようにしたので。
As described above, the flame velocity is utilized as a means for detecting the air-fuel ratio.

光学センサと信号処理回路を組合わせただけの単純な構
成で確実に検出することができる。’![7(検出は非
接触で行わnるので、ジルコニア酸素濃度計のような接
触形のセンサな用いる場合と比較で安定性および寿命の
点で者るしく有利であり、応答性も速いなどの効果が得
らnる。
Reliable detection can be achieved with a simple configuration consisting of a combination of an optical sensor and a signal processing circuit. '! [7 (Since detection is performed non-contact, it has significant advantages in terms of stability and lifespan compared to the use of contact-type sensors such as zirconia oxygen concentration meters, and has fast response times. The effect will be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明のための基礎英験装置のブロック構成−
,第2図は第1図の装置による実験で得らf′した空燃
比と炎速度との関係な示すグラフ、第3図は本発明の一
実施例による空燃比検出装置のブロック図、第4図は窒
間フイ/I/夕を構成する光電センサの配置乞示す説明
図、第5図は本発明の他の実施例にょる空燃比検出装置
のブロック図である。 2・・・火炎、3・・・レンズ、4・・・光学センサ、
4a。 4b・・・光電センサ、6・・・信号処理回路、11・
・・窒間フィルタ、12・・・差動アンプ、14・・・
バイパスフィルタ、15・・・PLL回路。 特許出鹿人 山武ハネウェル株式会社
Figure 1 shows the block configuration of the basic English test device for the present invention.
, FIG. 2 is a graph showing the relationship between the air-fuel ratio f' obtained in an experiment using the apparatus shown in FIG. FIG. 4 is an explanatory diagram showing the arrangement of photoelectric sensors constituting the nitrogen filter, and FIG. 5 is a block diagram of an air-fuel ratio detection device according to another embodiment of the present invention. 2... Flame, 3... Lens, 4... Optical sensor,
4a. 4b... Photoelectric sensor, 6... Signal processing circuit, 11.
...Nitrogen filter, 12...Differential amplifier, 14...
Bypass filter, 15...PLL circuit. Patent Dekajin Yamatake Honeywell Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)火炎の少なくとも2点でその’3を量の変化を検
出する光学センサと、この光学センサの出刃から、火炎
の炎速度を検出し、この炎速度から空燃比を演算する信
号処理回路と?備え7’C窒燃比検出装置。
(1) An optical sensor that detects changes in the amount of '3 at at least two points on the flame, and a signal processing circuit that detects the flame speed of the flame from the blade of this optical sensor and calculates the air-fuel ratio from this flame speed. and? Equipped with 7'C nitrous fuel ratio detection device.
(2)上記光学センサは2つの光電センサからなり。 かつ上記信号処理回路は、上記2つの光電センサKJ、
って検出さfL′fc信号間の相関にもとづいて炎速匿
な演算する機能t■するものである特許請求の範囲第1
項記載の空燃比検出装置。 13+上記元学センサは菟間フィルタであシ、かつ上記
信号処理回路に、上記菟間フィルタによって選択さt″
L、た周波数にもとづいて蔓燃比馨演算する′機能な有
するものである特許請求の範囲第1項記載の空燃比検出
装置。
(2) The optical sensor consists of two photoelectric sensors. and the signal processing circuit includes the two photoelectric sensors KJ,
The first aspect of the present invention is a function of calculating the flame speed anonymously based on the correlation between the detected fL′fc signals.
The air-fuel ratio detection device described in . 13+ The above-mentioned sensor is an Uma filter, and the signal processing circuit has a filter selected by the Uma filter.
2. The air-fuel ratio detecting device according to claim 1, which has a function of calculating a linear fuel ratio based on the frequency of the air-fuel ratio.
JP7014484A 1984-04-10 1984-04-10 Air-fuel ratio detecting device Granted JPS60213726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7014484A JPS60213726A (en) 1984-04-10 1984-04-10 Air-fuel ratio detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7014484A JPS60213726A (en) 1984-04-10 1984-04-10 Air-fuel ratio detecting device

Publications (2)

Publication Number Publication Date
JPS60213726A true JPS60213726A (en) 1985-10-26
JPH0251091B2 JPH0251091B2 (en) 1990-11-06

Family

ID=13423083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7014484A Granted JPS60213726A (en) 1984-04-10 1984-04-10 Air-fuel ratio detecting device

Country Status (1)

Country Link
JP (1) JPS60213726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276326A (en) * 1986-05-26 1987-12-01 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion
US4731438A (en) * 1986-12-30 1988-03-15 Union Carbide Corporation Water treatment method for resin in a purge vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276326A (en) * 1986-05-26 1987-12-01 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion
JPH0335581B2 (en) * 1986-05-26 1991-05-28 Ishikawajima Harima Heavy Ind
US4731438A (en) * 1986-12-30 1988-03-15 Union Carbide Corporation Water treatment method for resin in a purge vessel

Also Published As

Publication number Publication date
JPH0251091B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
KR900000823B1 (en) Calorimeter and method of obtaining the carloric value
ES2084170T3 (en) NOX DETECTOR STRUCTURE.
EP0874236A3 (en) Apparatus and sensor for sensing low concentration NOx
US3674436A (en) Exhaust gas analyzer for internal combustion engines
JPH0674928A (en) Control evaluating circuit device for heat-of-reaction sensor
JPS60213726A (en) Air-fuel ratio detecting device
US4319966A (en) Technique for monitoring SO3, H2 SO4 in exhaust gases containing SO2
JPH03221843A (en) Analyzer by light
JP2003510589A (en) Method of operating a mixed potential exhaust gas probe and apparatus for performing the method
CA1096197A (en) Apparatus for measuring excess oxygen or combustibles in a gaseous sample of a combustion process
US20040113081A1 (en) Gas velocity measurement by infrared radiation absorption
GB1510653A (en) Device for monitoring gases
JP2789272B2 (en) Flow meter flow compensation method
SE9301715D0 (en) PROCEDURE AND DEVICE FOR THE DETECTION OF OXIDIZABLE SUBSTANCES IN A SPACE
RU2178558C1 (en) Gas transducer
SU981761A1 (en) Air excess factor determining method
JPH03242534A (en) Fine particle density measuring apparatus
AU603689B2 (en) Flueless combustion safety system
RU213294U1 (en) Semiconductor gas concentration transmitter
JPS61265554A (en) Gas analyser
SU1093877A1 (en) Method of checking fuel incomplete combustion
JPS6228421B2 (en)
JPH0447225A (en) Thermal type flow velocity sensor and fluidic flowmeter using the same
Ospanov et al. Temperature Field Reconstruction of Flame from Images for Optimal Energy-Efficient Control of the Air-Fuel Mixture Making in Steam–Driven Boilers
SU991309A1 (en) Flow speed measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees