JPS60212727A - Loading type directional coupler - Google Patents

Loading type directional coupler

Info

Publication number
JPS60212727A
JPS60212727A JP6934284A JP6934284A JPS60212727A JP S60212727 A JPS60212727 A JP S60212727A JP 6934284 A JP6934284 A JP 6934284A JP 6934284 A JP6934284 A JP 6934284A JP S60212727 A JPS60212727 A JP S60212727A
Authority
JP
Japan
Prior art keywords
layer
inp
loading
directional coupler
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6934284A
Other languages
Japanese (ja)
Other versions
JPH0697315B2 (en
Inventor
Masato Ishino
正人 石野
Yasushi Matsui
松井 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59069342A priority Critical patent/JPH0697315B2/en
Publication of JPS60212727A publication Critical patent/JPS60212727A/en
Publication of JPH0697315B2 publication Critical patent/JPH0697315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3133Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To form a pair of loading type waveguides separated electrically by only selective etching of a clad layer, and to obtain a good optical modulation characteristic by providing a loading clad layer of high specific resistance and the first or the second conductive type, between an optical waveguide of high specific resistance and the first conductive type and a loading clad layer of low specific resistance and the second conductive type. CONSTITUTION:As for an element, after a multi-layer epitaxial growth, Au/Zn electrodes 5, 5' and an Au/Sn electrode 6 are vapor-deposited on the surface and the rear side, respectively, a stripe-like pattern which becomes a waveguide is formed on the surface by photolighography, and other part than Au/Zn electrodes 4, 4' is etched. Subsequently, an InP layer of other part than loading InP clad layers 4, 4' and 10, 10' is removed by selecting etching by using an etchant of an HCl compound, and an incident end 11 and an emitting end 12 are formed by cleavage, by which the element can be manufactured. In this way, by leading in an n<->-InP layer between an n<-> InGaAsP optical waveguide layer of a loading type directional coupler and a P<+> InP clad layer, a pair of loading type waveguides separated electrically by only executing the selective etching can be formed, and a good optical modulation characteristic is obtained by the element of this structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信用部品としての光スィッチ、光変調器と
して有望である方向性結合器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical switch as an optical communication component and a directional coupler that is promising as an optical modulator.

従来例の構成とその問題点 方向性結合器は1対の光導波路を近接して並置し光の結
合を利用するとともに、電気光学効果を有する材料を用
いれば電圧印加により光の結合度を変化することができ
光の強度変調やスイッチングを行わしめることができる
。通常このような素子はLiNbO2等の誘電体材料で
多く作られているが半導体材料を用いた場合は半導体レ
ーザー等の発光素子や受光素子およびその他の電気素子
との一体化が可能となり光集積回路の立場から非常に有
望である。
Conventional configuration and its problems A directional coupler utilizes optical coupling by arranging a pair of optical waveguides in close proximity, and if a material with an electro-optic effect is used, the degree of optical coupling can be changed by applying a voltage. It is possible to perform intensity modulation and switching of light. Usually, such elements are often made of dielectric materials such as LiNbO2, but when semiconductor materials are used, they can be integrated with light-emitting elements such as semiconductor lasers, light-receiving elements, and other electrical elements, making it possible to create optical integrated circuits. This is very promising from this standpoint.

通常半導体を用いた場合の方向性結合器としては変調電
力等の立場からpn接合を利用できるいわゆる装荷型方
向性結合器が最も有利である。
As a directional coupler using a semiconductor, a so-called loaded directional coupler that can utilize a pn junction is most advantageous from the standpoint of modulation power and the like.

第1図に長波長レーザー材料であるInP/ InGa
AsP系を用いた場合の方向性結合器の断面図を示す。
Figure 1 shows InP/InGa, which is a long wavelength laser material.
A cross-sectional view of a directional coupler using an AsP system is shown.

これはSドープのn+InP基板1上にToドープn”
InPバフア一層21ノンドーグのn−InGaAsP
光導波層3 、 Zn ドープのPJnPクラッド層4
を順次エピタキ’/ + #成長し、P+InP側にA
u −Zn電極6゜n+InP側にAu−8n電極を形
成したのち、P”InPクラッド層6を導波路パターン
を残してHCl系のエッチャントで選択的にエツチング
してとり除き装荷クラッド4,4′を形成し、さらにへ
き開により入射端面11出射端面を形成したものである
This is a To-doped n'' on an S-doped n+InP substrate 1.
InP buffer single layer 21 non-dorg n-InGaAsP
Optical waveguide layer 3, Zn-doped PJnP cladding layer 4
Sequentially epitaxy '/+# and grow A on the P+InP side.
After forming an Au-8n electrode on the n+InP side of the u-Zn electrode 6°, the P''InP cladding layer 6 is selectively etched with an HCl-based etchant to remove the loaded cladding layer 4, 4', leaving a waveguide pattern. is formed, and an incident end face 11 and an outgoing end face are further formed by cleavage.

n −I nGaAs P光導波層3のうち、この装荷
クラッド4.4′の真下の部分が三次元導波路7,7′
を形成する。
The portion of the n-I nGaAs P optical waveguide layer 3 directly below the loaded cladding 4.4' is the three-dimensional waveguide 7, 7'.
form.

ここで一方の三次元導波路7′に光を入射すると三次元
導波路7.7′間での光波の結合により、隣の導波路7
に移行する。さらに一方のAu / Zn電極6,6′
と裏面のAu/Sn電極6にpn接合に逆バイアスがか
かるように電圧を印加すると電気光学効果による導波路
間の結合状態の変化により出射光9,9′のパワー比が
変化でき光の変調およびスイッチングをおこなうことが
できる。
Here, when light enters one three-dimensional waveguide 7', the light waves are coupled between the three-dimensional waveguides 7 and 7', and the adjacent waveguide 7
to move to. Furthermore, one Au/Zn electrode 6, 6'
When a voltage is applied to the Au/Sn electrode 6 on the back surface so as to apply a reverse bias to the pn junction, the power ratio of the output lights 9 and 9' changes due to the change in the coupling state between the waveguides due to the electro-optic effect, resulting in light modulation. and switching can be performed.

ところでこの光の変調を有効に行なうためには一対の導
波路7,7′は電気的に分離されていなければならない
。しかしながら実際にはエピタキシャル成長中にn−I
nGaAsP光導波層3中にP型ドーパントがオートド
ーグされpn接合面はn−I nGaAs P光導波層
3内部に形成される。従って第1図に示す素子構造では
リーク電流が大きく、あまり大き゛い逆バイアスは印加
できない。さらに2つの導波路7.7′は電気的に分離
されておらず、一本の導波路に独立に電圧を印加するこ
とができず、良好な光変調特性が得られない。
However, in order to effectively modulate this light, the pair of waveguides 7 and 7' must be electrically separated. However, in reality, during epitaxial growth n-I
A P-type dopant is autodoped into the nGaAsP optical waveguide layer 3, and a pn junction is formed inside the n-I nGaAsP optical waveguide layer 3. Therefore, in the element structure shown in FIG. 1, leakage current is large, and a very large reverse bias cannot be applied. Furthermore, the two waveguides 7, 7' are not electrically isolated, and voltage cannot be applied independently to one waveguide, making it impossible to obtain good optical modulation characteristics.

このような構造の素子で電気的分離を完全におこなうた
めには装荷クラッドをエツチングする際にn−InGa
AaP光導波層3をpn接合面以下までさらにエツチン
グしなければならない。しかしながら光導波層3をエツ
チングすると導波路7.7′の形状が変化し、導波路間
での光の結合が弱くなり隣の導波路に光が移行するのに
非常に長い距離を要する。またエツチングのばらつき等
により導波路パラメーターを一定に保つことはむつかし
い。
In order to achieve complete electrical isolation in a device with such a structure, it is necessary to use n-InGa when etching the loaded cladding.
The AaP optical waveguide layer 3 must be further etched below the pn junction. However, when the optical waveguide layer 3 is etched, the shape of the waveguides 7, 7' changes, and the coupling of light between the waveguides becomes weaker, so that it takes a very long distance for light to migrate to an adjacent waveguide. Furthermore, it is difficult to keep the waveguide parameters constant due to variations in etching.

従ってInPクラッド層4,4′とInGaAaP光導
波層3界面でエツチングをストップさせ、かつ一対の導
波路を電気的に分離することが望ましい方法である。
Therefore, it is desirable to stop the etching at the interface between the InP cladding layers 4, 4' and the InGaAaP optical waveguide layer 3, and to electrically separate the pair of waveguides.

このようにして第1図に示す構造の装荷型方向性結合器
ではpn接合面が光導波層3内部に形成されるために各
導波路に独立に電界を印加することができず、良好な光
変調特性を得ることができなかった。
In this way, in the loaded directional coupler having the structure shown in FIG. It was not possible to obtain optical modulation characteristics.

発明の目的 本発明は以上に述べた従来の構造の装荷型方向性結合器
の抱える問題点を克服し、良好な光変調特性を有する方
向性結合器を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to overcome the problems of the conventional loaded directional couplers described above and to provide a directional coupler having good optical modulation characteristics.

発明の構成 本発明は従来の構造の装荷型方向性結合器において、第
1の導電型で高比抵抗である光導波層と第2の導電型で
低比抵抗である装荷InPクラッド層の間に第1もしく
は第2の導電型で高比抵抗である装荷InPクラッド層
を導入した構造の装荷型方向性結合器であり、この層の
導入によってクラッド層の選択エツチングのみで導波路
の形状をくずすことなく個々の導波路を電気的に分離形
成でき、良好な光変調特性を得ることができるものであ
る。
Composition of the Invention The present invention provides a loaded directional coupler having a conventional structure between an optical waveguide layer of a first conductivity type and high resistivity and a loaded InP cladding layer of a second conductivity type and low resistivity. This is a loaded directional coupler with a structure in which a loaded InP cladding layer of the first or second conductivity type and high resistivity is introduced.By introducing this layer, the shape of the waveguide can be changed only by selective etching of the cladding layer. Individual waveguides can be electrically separated and formed without breaking, and good optical modulation characteristics can be obtained.

実施例の説明 第2図は本発明の装荷型方向性結合器の構造を示す断面
図である。ここで1〜6は第1図に示す通りであり、1
0 、10’は本発明にかかわる装荷n”’−InPク
ラッド層である。各層のキャリア密度はSドープn”−
InP基板1は3 X 1018/d 、 Teドープ
♂−InPバッフ1一層2は3 X 1 o18.z7
 、ノンドーグn”’−I nGaAs P層3はlX
10/−、ノンドーグn−InPクラッド層10 、1
0’はI X 1016/ctA、 ZnドーグP+−
InP層4,4′は8X1010111である。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a sectional view showing the structure of a loaded directional coupler of the present invention. Here, 1 to 6 are as shown in Figure 1, and 1
0 and 10' are loaded n"'-InP cladding layers according to the present invention. The carrier density of each layer is S-doped n"-
InP substrate 1 is 3 x 1018/d, Te-doped ♂-InP buffer 1 and layer 2 is 3 x 1 o18. z7
, non-dorg n"'-I nGaAs P layer 3 is lX
10/-, non-doped n-InP cladding layer 10, 1
0' is I X 1016/ctA, ZnDawg P+-
InP layers 4, 4' are 8×1010111.

この素子は多層エピタキシャル成長ののち、表面にAu
/Zn電極5.5’、裏面にAu / s n電極6を
蒸着し、表面にフォトリングラフイーにより導波路とな
るストライプ状のパターンを形成してAu/Zn電極4
,4′以外の部分をエツチングし、引き続きHC1系の
エッチャントによって装荷InPクラッド層4.4’、
10.10’以外の部分のInP層を選択エツチングに
よって取り除き、入射端11.出射端12をへき開によ
って形成することによって作製できる。実際にこのよう
圧して作成した素子のAu/Zn電極6.または5’A
u/Sn電極6間に逆バイアスを印加した時、耐圧20
V以上、10V印加した時のリーク電流は1μ八以下で
あった・さらに2つのAu/Zn電極5,5′間も20
V以上の耐圧を示し電気的に独立であった。
This device is made of Au on the surface after multilayer epitaxial growth.
/Zn electrode 5.5', Au/s n electrode 6 is vapor-deposited on the back surface, and a striped pattern that will become a waveguide is formed on the surface by photophosphorography to form Au/Zn electrode 4.
, 4', and then the loaded InP cladding layer 4.4', 4' is etched using an HC1-based etchant.
The InP layer at the portion other than 10.10' is removed by selective etching, and the input end 11.10' is removed by selective etching. It can be manufactured by forming the output end 12 by cleavage. Au/Zn electrode of the device actually made by pressing in this way 6. or 5'A
When a reverse bias is applied between the u/Sn electrode 6, the breakdown voltage is 20
The leakage current was less than 1μ8 when 10V was applied.Furthermore, the leakage current between the two Au/Zn electrodes 5 and 5' was 20V or less.
They exhibited a breakdown voltage of V or higher and were electrically independent.

この構造の装荷型方向性結合器の光変調特性を第3図に
示す。ここで横軸は、Au/Zn電極、 Au/Sn電
極6間に印加した逆方向電圧であり、縦軸は各導波路端
での出射光9,9′の相対光出力P1゜P2 である。
FIG. 3 shows the optical modulation characteristics of a loaded directional coupler with this structure. Here, the horizontal axis is the reverse voltage applied between the Au/Zn electrode and the Au/Sn electrode 6, and the vertical axis is the relative optical output P1゜P2 of the emitted light 9, 9' at each waveguide end. .

この素子の構造パラメーターとしてT = 1.c>μ
mH1=0.3 prn H2==1.Opm W= 
3.0 prn S = 3.0.canL=2mであ
る。第3図から印加電圧24Vで消光比が20 dB程
度得られ良好な光変調特性が得られていることがわかる
The structural parameters of this element are T = 1. c>μ
mH1=0.3 prn H2==1. Opm W=
3.0 prn S = 3.0. canL=2m. It can be seen from FIG. 3 that an extinction ratio of about 20 dB was obtained with an applied voltage of 24 V, and good optical modulation characteristics were obtained.

以上のように本実施例によれば、装荷型方向性結合器の
n”−InGaAsP光導波層とP”InPクラッド層
の間にn7−InP層を導入することKより、InPの
選択エツチングを行なうだけで電気的に分離できた一対
の装荷型導波路が形成でき、この構造の素子で良好な光
変調特性が得られることができる。
As described above, according to this embodiment, by introducing the n7-InP layer between the n''-InGaAsP optical waveguide layer and the P''InP cladding layer of the loaded directional coupler, selective etching of InP is achieved. By simply carrying out this process, a pair of electrically isolated loaded waveguides can be formed, and an element with this structure can obtain good optical modulation characteristics.

なお、本実施例でのn InP層はP−−InP層でも
よい。また本実施例ではInP系材料に限定したが、光
導波層とクラッド層間の選択エツチングが利用できるも
のであればこれに限られるものではない0発明の効果 本発明の装荷型方向性結合器は、高比抵抗で第1の導電
型の先導波層と低比抵抗で第2の導電型の装荷クランド
層の間に高比抵抗で第1もしくは第2の導電型の装荷ク
ラッド層を施けることKより、クラッド層の選択エツチ
ングのみで電気的に分離された一対の装荷型導波路が形
成でき、この素子を用いれば良好な光変調特性を得るこ
とができ、その実用的効果は大きい。
Note that the n InP layer in this embodiment may be a P--InP layer. Further, in this embodiment, the material is limited to InP, but it is not limited to this as long as selective etching between the optical waveguide layer and the cladding layer can be utilized.Advantages of the InventionThe loaded directional coupler of the present invention is , a high resistivity loaded cladding layer of the first or second conductivity type is applied between the high resistivity first conductivity type leading wave layer and the low resistivity loaded landing layer of the low resistivity second conductivity type; Therefore, a pair of electrically separated loaded waveguides can be formed only by selective etching of the cladding layer, and by using this device, good optical modulation characteristics can be obtained, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装荷型方向性結合器の構造図、第2図は
本発明の一実施例における装荷型方向性結合器の構造図
、第3図は実施例における装荷型方向性結合器の光変調
特性図である。
Fig. 1 is a structural diagram of a conventional loaded directional coupler, Fig. 2 is a structural diagram of a loaded directional coupler in an embodiment of the present invention, and Fig. 3 is a structural diagram of a loaded directional coupler in an embodiment. FIG.

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型で低比抵抗の半導体基板上に、もしくは前
記半導体基板上の第1導電型で前記半導体基板と同一材
料の緩衝層上に、第1の導電型で前記半導体基板より屈
折率が高く、高比抵抗の光導波層、さらにその上に第2
の導電型で低比抵抗の装荷クラッド層を有し、前記半導
体基板の下面と前記装荷クラッド層の上面に電極を有し
、前記光導波層と前記装荷クラッド層の間に第1もしく
は第2の導電型で高比抵抗の第2の装荷クラッド層を設
けたことを特徴とする装荷型方向性結合器。
On a semiconductor substrate of a first conductivity type and a low specific resistance, or on a buffer layer of a first conductivity type and the same material as the semiconductor substrate on the semiconductor substrate, the refractive index is lower than that of the semiconductor substrate with a first conductivity type. and a high resistivity optical waveguide layer, and a second layer on top of the optical waveguide layer.
a loaded cladding layer of conductivity type and low resistivity, electrodes are provided on a lower surface of the semiconductor substrate and an upper surface of the loaded cladding layer, and a first or second electrode is provided between the optical waveguide layer and the loaded cladding layer. A loaded directional coupler characterized in that a second loaded cladding layer of conductivity type and high specific resistance is provided.
JP59069342A 1984-04-06 1984-04-06 Loaded directional coupler Expired - Fee Related JPH0697315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59069342A JPH0697315B2 (en) 1984-04-06 1984-04-06 Loaded directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069342A JPH0697315B2 (en) 1984-04-06 1984-04-06 Loaded directional coupler

Publications (2)

Publication Number Publication Date
JPS60212727A true JPS60212727A (en) 1985-10-25
JPH0697315B2 JPH0697315B2 (en) 1994-11-30

Family

ID=13399775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069342A Expired - Fee Related JPH0697315B2 (en) 1984-04-06 1984-04-06 Loaded directional coupler

Country Status (1)

Country Link
JP (1) JPH0697315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002384A (en) * 2012-06-18 2014-01-09 Gwangju Inst Of Science & Technology Optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245296A (en) * 1975-10-07 1977-04-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductive phototransmission pass and semiconductor emission devic e used it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245296A (en) * 1975-10-07 1977-04-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductive phototransmission pass and semiconductor emission devic e used it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002384A (en) * 2012-06-18 2014-01-09 Gwangju Inst Of Science & Technology Optical element

Also Published As

Publication number Publication date
JPH0697315B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
KR101869414B1 (en) Loss modulated silicon evanescent lasers
US6122414A (en) Semiconductor Mach-Zehnder modulator
EP0233011B1 (en) Optical switch
EP4064469A1 (en) Semiconductor devices for emitting modulated light and methods for fabricating such devices
US20030185481A1 (en) Semiconductor waveguide device
JPH07230066A (en) Semiconductor optical modulator
JP2000208862A (en) Semiconductor optical integrated device and its manufacture
JPH03256386A (en) Semiconductor laser, its manufacture and optical communication system
JPH01319986A (en) Semiconductor laser device
JPS60212727A (en) Loading type directional coupler
US11367997B2 (en) Semiconductor integrated optics element and production method therefor
US20050053349A1 (en) Waveguide photodetector
JP2605911B2 (en) Optical modulator and photodetector
WO2021065578A1 (en) Light modulation element
JP2938185B2 (en) Semiconductor light emitting device
JPH03291617A (en) Integrated type optical modulator
JPS62176184A (en) Semiconductor light emitting device having modulator
JPS6381305A (en) Optical integrated circuit
JPH03192788A (en) Integrated optical modulator
JP2004037755A (en) Light control element
JPS6194021A (en) Optical directional coupling element
JPH04345081A (en) Semiconductor light emitting device
JPS6356983A (en) Semiconductor laser device
JPS644088A (en) Semiconductor optical modulation element
JPS6319630A (en) Optical switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees